1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14  *
15  * Permission to use, copy, modify, and distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 /* double erf(double x)
29  * double erfc(double x)
30  *			     x
31  *		      2      |\
32  *     erf(x)  =  ---------  | exp(-t*t)dt
33  *		   sqrt(pi) \|
34  *			     0
35  *
36  *     erfc(x) =  1-erf(x)
37  *  Note that
38  *		erf(-x) = -erf(x)
39  *		erfc(-x) = 2 - erfc(x)
40  *
41  * Method:
42  *	1. For |x| in [0, 0.84375]
43  *	    erf(x)  = x + x*R(x^2)
44  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
45  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
46  *	   Remark. The formula is derived by noting
47  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
48  *	   and that
49  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
50  *	   is close to one. The interval is chosen because the fix
51  *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
52  *	   near 0.6174), and by some experiment, 0.84375 is chosen to
53  *	   guarantee the error is less than one ulp for erf.
54  *
55  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
56  *         c = 0.84506291151 rounded to single (24 bits)
57  *	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
58  *	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
59  *			  1+(c+P1(s)/Q1(s))    if x < 0
60  *	   Remark: here we use the taylor series expansion at x=1.
61  *		erf(1+s) = erf(1) + s*Poly(s)
62  *			 = 0.845.. + P1(s)/Q1(s)
63  *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
64  *
65  *      3. For x in [1.25,1/0.35(~2.857143)],
66  *	erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z))
67  *              z=1/x^2
68  *	erf(x)  = 1 - erfc(x)
69  *
70  *      4. For x in [1/0.35,107]
71  *	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
72  *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z))
73  *                             if -6.666<x<0
74  *			= 2.0 - tiny		(if x <= -6.666)
75  *              z=1/x^2
76  *	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6.666, else
77  *	erf(x)  = sign(x)*(1.0 - tiny)
78  *      Note1:
79  *	   To compute exp(-x*x-0.5625+R/S), let s be a single
80  *	   precision number and s := x; then
81  *		-x*x = -s*s + (s-x)*(s+x)
82  *	        exp(-x*x-0.5626+R/S) =
83  *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
84  *      Note2:
85  *	   Here 4 and 5 make use of the asymptotic series
86  *			  exp(-x*x)
87  *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
88  *			  x*sqrt(pi)
89  *
90  *      5. For inf > x >= 107
91  *	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
92  *	erfc(x) = tiny*tiny (raise underflow) if x > 0
93  *			= 2 - tiny if x<0
94  *
95  *      7. Special case:
96  *	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
97  *	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
98  *		erfc/erf(NaN) is NaN
99  */
100 
101 
102 
103 
104 static const long double
105 tiny = 1e-4931L,
106   half = 0.5L,
107   one = 1.0L,
108   two = 2.0L,
109 	/* c = (float)0.84506291151 */
110   erx = 0.845062911510467529296875L,
111 /*
112  * Coefficients for approximation to  erf on [0,0.84375]
113  */
114   /* 2/sqrt(pi) - 1 */
115   efx = 1.2837916709551257389615890312154517168810E-1L,
116   /* 8 * (2/sqrt(pi) - 1) */
117   efx8 = 1.0270333367641005911692712249723613735048E0L,
118 
119   pp[6] = {
120     1.122751350964552113068262337278335028553E6L,
121     -2.808533301997696164408397079650699163276E6L,
122     -3.314325479115357458197119660818768924100E5L,
123     -6.848684465326256109712135497895525446398E4L,
124     -2.657817695110739185591505062971929859314E3L,
125     -1.655310302737837556654146291646499062882E2L,
126   },
127 
128   qq[6] = {
129     8.745588372054466262548908189000448124232E6L,
130     3.746038264792471129367533128637019611485E6L,
131     7.066358783162407559861156173539693900031E5L,
132     7.448928604824620999413120955705448117056E4L,
133     4.511583986730994111992253980546131408924E3L,
134     1.368902937933296323345610240009071254014E2L,
135     /* 1.000000000000000000000000000000000000000E0 */
136   },
137 
138 /*
139  * Coefficients for approximation to  erf  in [0.84375,1.25]
140  */
141 /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
142    -0.15625 <= x <= +.25
143    Peak relative error 8.5e-22  */
144 
145   pa[8] = {
146     -1.076952146179812072156734957705102256059E0L,
147      1.884814957770385593365179835059971587220E2L,
148     -5.339153975012804282890066622962070115606E1L,
149      4.435910679869176625928504532109635632618E1L,
150      1.683219516032328828278557309642929135179E1L,
151     -2.360236618396952560064259585299045804293E0L,
152      1.852230047861891953244413872297940938041E0L,
153      9.394994446747752308256773044667843200719E-2L,
154   },
155 
156   qa[7] =  {
157     4.559263722294508998149925774781887811255E2L,
158     3.289248982200800575749795055149780689738E2L,
159     2.846070965875643009598627918383314457912E2L,
160     1.398715859064535039433275722017479994465E2L,
161     6.060190733759793706299079050985358190726E1L,
162     2.078695677795422351040502569964299664233E1L,
163     4.641271134150895940966798357442234498546E0L,
164     /* 1.000000000000000000000000000000000000000E0 */
165   },
166 
167 /*
168  * Coefficients for approximation to  erfc in [1.25,1/0.35]
169  */
170 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
171    1/2.85711669921875 < 1/x < 1/1.25
172    Peak relative error 3.1e-21  */
173 
174     ra[] = {
175       1.363566591833846324191000679620738857234E-1L,
176       1.018203167219873573808450274314658434507E1L,
177       1.862359362334248675526472871224778045594E2L,
178       1.411622588180721285284945138667933330348E3L,
179       5.088538459741511988784440103218342840478E3L,
180       8.928251553922176506858267311750789273656E3L,
181       7.264436000148052545243018622742770549982E3L,
182       2.387492459664548651671894725748959751119E3L,
183       2.220916652813908085449221282808458466556E2L,
184     },
185 
186     sa[] = {
187       -1.382234625202480685182526402169222331847E1L,
188       -3.315638835627950255832519203687435946482E2L,
189       -2.949124863912936259747237164260785326692E3L,
190       -1.246622099070875940506391433635999693661E4L,
191       -2.673079795851665428695842853070996219632E4L,
192       -2.880269786660559337358397106518918220991E4L,
193       -1.450600228493968044773354186390390823713E4L,
194       -2.874539731125893533960680525192064277816E3L,
195       -1.402241261419067750237395034116942296027E2L,
196       /* 1.000000000000000000000000000000000000000E0 */
197     },
198 /*
199  * Coefficients for approximation to  erfc in [1/.35,107]
200  */
201 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
202    1/6.6666259765625 < 1/x < 1/2.85711669921875
203    Peak relative error 4.2e-22  */
204     rb[] = {
205       -4.869587348270494309550558460786501252369E-5L,
206       -4.030199390527997378549161722412466959403E-3L,
207       -9.434425866377037610206443566288917589122E-2L,
208       -9.319032754357658601200655161585539404155E-1L,
209       -4.273788174307459947350256581445442062291E0L,
210       -8.842289940696150508373541814064198259278E0L,
211       -7.069215249419887403187988144752613025255E0L,
212       -1.401228723639514787920274427443330704764E0L,
213     },
214 
215     sb[] = {
216       4.936254964107175160157544545879293019085E-3L,
217       1.583457624037795744377163924895349412015E-1L,
218       1.850647991850328356622940552450636420484E0L,
219       9.927611557279019463768050710008450625415E0L,
220       2.531667257649436709617165336779212114570E1L,
221       2.869752886406743386458304052862814690045E1L,
222       1.182059497870819562441683560749192539345E1L,
223       /* 1.000000000000000000000000000000000000000E0 */
224     },
225 /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
226    1/107 <= 1/x <= 1/6.6666259765625
227    Peak relative error 1.1e-21  */
228     rc[] = {
229       -8.299617545269701963973537248996670806850E-5L,
230       -6.243845685115818513578933902532056244108E-3L,
231       -1.141667210620380223113693474478394397230E-1L,
232       -7.521343797212024245375240432734425789409E-1L,
233       -1.765321928311155824664963633786967602934E0L,
234       -1.029403473103215800456761180695263439188E0L,
235     },
236 
237     sc[] = {
238       8.413244363014929493035952542677768808601E-3L,
239       2.065114333816877479753334599639158060979E-1L,
240       1.639064941530797583766364412782135680148E0L,
241       4.936788463787115555582319302981666347450E0L,
242       5.005177727208955487404729933261347679090E0L,
243       /* 1.000000000000000000000000000000000000000E0 */
244     };
245 
246 long double
erfl(long double x)247 erfl(long double x)
248 {
249   long double R, S, P, Q, s, y, z, r;
250   int32_t ix, i;
251   u_int32_t se, i0, i1;
252 
253   GET_LDOUBLE_WORDS (se, i0, i1, x);
254   ix = se & 0x7fff;
255 
256   if (ix >= 0x7fff)
257     {				/* erf(nan)=nan */
258       i = ((se & 0xffff) >> 15) << 1;
259       return (long double) (1 - i) + one / x;	/* erf(+-inf)=+-1 */
260     }
261 
262   ix = (ix << 16) | (i0 >> 16);
263   if (ix < 0x3ffed800) /* |x|<0.84375 */
264     {
265       if (ix < 0x3fde8000) /* |x|<2**-33 */
266 	{
267 	  if (ix < 0x00080000)
268 	    return 0.125L * (8.0L * x + efx8 * x);	/*avoid underflow */
269 	  return x + efx * x;
270 	}
271       z = x * x;
272       r = pp[0] + z * (pp[1]
273 	+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
274       s = qq[0] + z * (qq[1]
275 	+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
276       y = r / s;
277       return x + x * y;
278     }
279   if (ix < 0x3fffa000) /* 1.25 */
280     {				/* 0.84375 <= |x| < 1.25 */
281       s = fabsl (x) - one;
282       P = pa[0] + s * (pa[1] + s * (pa[2]
283 	+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
284       Q = qa[0] + s * (qa[1] + s * (qa[2]
285 	+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
286       if ((se & 0x8000) == 0)
287 	return erx + P / Q;
288       else
289 	return -erx - P / Q;
290     }
291   if (ix >= 0x4001d555) /* 6.6666259765625 */
292     {				/* inf>|x|>=6.666 */
293       if ((se & 0x8000) == 0)
294 	return one - tiny;
295       else
296 	return tiny - one;
297     }
298   x = fabsl (x);
299   s = one / (x * x);
300   if (ix < 0x4000b6db) /* 2.85711669921875 */
301     {
302       R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
303 	s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
304       S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
305 	s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
306     }
307   else
308     {				/* |x| >= 1/0.35 */
309       R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
310 	s * (rb[5] + s * (rb[6] + s * rb[7]))))));
311       S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
312 	s * (sb[5] + s * (sb[6] + s))))));
313     }
314   z = x;
315   GET_LDOUBLE_WORDS (i, i0, i1, z);
316   i1 = 0;
317   SET_LDOUBLE_WORDS (z, i, i0, i1);
318   r =
319     expl (-z * z - 0.5625L) * expl ((z - x) * (z + x) + R / S);
320   if ((se & 0x8000) == 0)
321     return one - r / x;
322   else
323     return r / x - one;
324 }
325 
326 long double
erfcl(long double x)327 erfcl(long double x)
328 {
329   int32_t hx, ix;
330   long double R, S, P, Q, s, y, z, r;
331   u_int32_t se, i0, i1;
332 
333   GET_LDOUBLE_WORDS (se, i0, i1, x);
334   ix = se & 0x7fff;
335   if (ix >= 0x7fff)
336     {				/* erfc(nan)=nan */
337       /* erfc(+-inf)=0,2 */
338       return (long double) (((se & 0xffff) >> 15) << 1) + one / x;
339     }
340 
341   ix = (ix << 16) | (i0 >> 16);
342   if (ix < 0x3ffed800) /* |x|<0.84375 */
343     {
344       if (ix < 0x3fbe0000) /* |x|<2**-65 */
345 	return one - x;
346       z = x * x;
347       r = pp[0] + z * (pp[1]
348 	+ z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
349       s = qq[0] + z * (qq[1]
350 	+ z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
351       y = r / s;
352       if (ix < 0x3ffd8000) /* x<1/4 */
353 	{
354 	  return one - (x + x * y);
355 	}
356       else
357 	{
358 	  r = x * y;
359 	  r += (x - half);
360 	  return half - r;
361 	}
362     }
363   if (ix < 0x3fffa000) /* 1.25 */
364     {				/* 0.84375 <= |x| < 1.25 */
365       s = fabsl (x) - one;
366       P = pa[0] + s * (pa[1] + s * (pa[2]
367 	+ s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
368       Q = qa[0] + s * (qa[1] + s * (qa[2]
369 	+ s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
370       if ((se & 0x8000) == 0)
371 	{
372 	  z = one - erx;
373 	  return z - P / Q;
374 	}
375       else
376 	{
377 	  z = erx + P / Q;
378 	  return one + z;
379 	}
380     }
381   if (ix < 0x4005d600) /* 107 */
382     {				/* |x|<107 */
383       x = fabsl (x);
384       s = one / (x * x);
385       if (ix < 0x4000b6db) /* 2.85711669921875 */
386 	{			/* |x| < 1/.35 ~ 2.857143 */
387 	  R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
388 	    s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
389 	  S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
390 	    s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
391 	}
392       else if (ix < 0x4001d555) /* 6.6666259765625 */
393 	{			/* 6.666 > |x| >= 1/.35 ~ 2.857143 */
394 	  R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
395 	    s * (rb[5] + s * (rb[6] + s * rb[7]))))));
396 	  S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
397 	    s * (sb[5] + s * (sb[6] + s))))));
398 	}
399       else
400 	{			/* |x| >= 6.666 */
401 	  if (se & 0x8000)
402 	    return two - tiny;	/* x < -6.666 */
403 
404 	  R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +
405 						    s * (rc[4] + s * rc[5]))));
406 	  S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +
407 						    s * (sc[4] + s))));
408 	}
409       z = x;
410       GET_LDOUBLE_WORDS (hx, i0, i1, z);
411       i1 = 0;
412       i0 &= 0xffffff00;
413       SET_LDOUBLE_WORDS (z, hx, i0, i1);
414       r = expl (-z * z - 0.5625L) *
415 	expl ((z - x) * (z + x) + R / S);
416       if ((se & 0x8000) == 0)
417 	return r / x;
418       else
419 	return two - r / x;
420     }
421   else
422     {
423       if ((se & 0x8000) == 0)
424         return __math_uflowl(0);
425       else
426 	return two - tiny;
427     }
428 }
429