1 /* From: @(#)k_sin.c 1.3 95/01/18 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14 //__FBSDID("$FreeBSD: src/lib/msun/ld80/k_sinl.c,v 1.1 2008/02/17 07:32:14 das Exp $");
15
16 /*
17 * ld80 version of k_sin.c. See ../src/k_sin.c for most comments.
18 */
19
20
21 /*
22 * Domain [-0.7854, 0.7854], range ~[-1.89e-22, 1.915e-22]
23 * |sin(x)/x - s(x)| < 2**-72.1
24 *
25 * See ../ld80/k_cosl.c for more details about the polynomial.
26 */
27 #if defined(__amd64__) || defined(__i386__)
28 /* Long double constants are slow on these arches, and broken on i386. */
29 static const volatile double
30 S1hi = -0.16666666666666666, /* -0x15555555555555.0p-55 */
31 S1lo = -9.2563760475949941e-18; /* -0x15580000000000.0p-109 */
32 #define S1 ((long double)S1hi + (long double)S1lo)
33 #else
34 static const long double
35 S1 = -0.166666666666666666671L; /* -0xaaaaaaaaaaaaaaab.0p-66 */
36 #endif
37
38 static const double
39 S2 = 0.0083333333333333332, /* 0x11111111111111.0p-59 */
40 S3 = -0.00019841269841269427, /* -0x1a01a01a019f81.0p-65 */
41 S4 = 0.0000027557319223597490, /* 0x171de3a55560f7.0p-71 */
42 S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
43 S6 = 1.6059006598854211e-10, /* 0x161242b90243b5.0p-85 */
44 S7 = -7.6429779983024564e-13, /* -0x1ae42ebd1b2e00.0p-93 */
45 S8 = 2.6174587166648325e-15; /* 0x179372ea0b3f64.0p-101 */
46
47 long double
__kernel_sinl(long double x,long double y,int iy)48 __kernel_sinl(long double x, long double y, int iy)
49 {
50 long double z,r,v;
51
52 z = x*x;
53 v = z*x;
54 r = (long double) S2+z*((long double) S3+z*((long double) S4+z*((long double) S5+z*((long double) S6+z*((long double) S7+z*(long double) S8)))));
55 if(iy==0) return x+v*(S1+z*r);
56 else return x-((z*(0.5l*y-v*r)-y)-v*S1);
57 }
58