1 /*	$OpenBSD: e_tgammal.c,v 1.4 2013/11/12 20:35:19 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							tgammal.c
20  *
21  *	Gamma function
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, tgammal();
28  *
29  * y = tgammal( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns gamma function of the argument.  The result is correctly
36  * signed.  This variable is also filled in by the logarithmic gamma
37  * function lgamma().
38  *
39  * Arguments |x| <= 13 are reduced by recurrence and the function
40  * approximated by a rational function of degree 7/8 in the
41  * interval (2,3).  Large arguments are handled by Stirling's
42  * formula. Large negative arguments are made positive using
43  * a reflection formula.
44  *
45  *
46  * ACCURACY:
47  *
48  *                      Relative error:
49  * arithmetic   domain     # trials      peak         rms
50  *    IEEE     -40,+40      10000       3.6e-19     7.9e-20
51  *    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
52  *
53  * Accuracy for large arguments is dominated by error in powl().
54  *
55  */
56 
57 
58 
59 /*
60 tgamma(x+2)  = tgamma(x+2) P(x)/Q(x)
61 0 <= x <= 1
62 Relative error
63 n=7, d=8
64 Peak error =  1.83e-20
65 Relative error spread =  8.4e-23
66 */
67 
68 static long double P[8] = {
69  4.212760487471622013093E-5L,
70  4.542931960608009155600E-4L,
71  4.092666828394035500949E-3L,
72  2.385363243461108252554E-2L,
73  1.113062816019361559013E-1L,
74  3.629515436640239168939E-1L,
75  8.378004301573126728826E-1L,
76  1.000000000000000000009E0L,
77 };
78 static long double Q[9] = {
79 -1.397148517476170440917E-5L,
80  2.346584059160635244282E-4L,
81 -1.237799246653152231188E-3L,
82 -7.955933682494738320586E-4L,
83  2.773706565840072979165E-2L,
84 -4.633887671244534213831E-2L,
85 -2.243510905670329164562E-1L,
86  4.150160950588455434583E-1L,
87  9.999999999999999999908E-1L,
88 };
89 
90 /*
91 static long double P[] = {
92 -3.01525602666895735709e0L,
93 -3.25157411956062339893e1L,
94 -2.92929976820724030353e2L,
95 -1.70730828800510297666e3L,
96 -7.96667499622741999770e3L,
97 -2.59780216007146401957e4L,
98 -5.99650230220855581642e4L,
99 -7.15743521530849602425e4L
100 };
101 static long double Q[] = {
102  1.00000000000000000000e0L,
103 -1.67955233807178858919e1L,
104  8.85946791747759881659e1L,
105  5.69440799097468430177e1L,
106 -1.98526250512761318471e3L,
107  3.31667508019495079814e3L,
108  1.60577839621734713377e4L,
109 -2.97045081369399940529e4L,
110 -7.15743521530849602412e4L
111 };
112 */
113 #define MAXGAML 1755.455L
114 /*static const long double LOGPI = 1.14472988584940017414L;*/
115 
116 /* Stirling's formula for the gamma function
117 tgamma(x) = sqrt(2 pi) x^(x-.5) exp(-x) (1 + 1/x P(1/x))
118 z(x) = x
119 13 <= x <= 1024
120 Relative error
121 n=8, d=0
122 Peak error =  9.44e-21
123 Relative error spread =  8.8e-4
124 */
125 
126 static long double STIR[9] = {
127  7.147391378143610789273E-4L,
128 -2.363848809501759061727E-5L,
129 -5.950237554056330156018E-4L,
130  6.989332260623193171870E-5L,
131  7.840334842744753003862E-4L,
132 -2.294719747873185405699E-4L,
133 -2.681327161876304418288E-3L,
134  3.472222222230075327854E-3L,
135  8.333333333333331800504E-2L,
136 };
137 
138 #define MAXSTIR 1024.0L
139 static const long double SQTPI = 2.50662827463100050242E0L;
140 
141 /* 1/tgamma(x) = z P(z)
142  * z(x) = 1/x
143  * 0 < x < 0.03125
144  * Peak relative error 4.2e-23
145  */
146 
147 static long double S[9] = {
148 -1.193945051381510095614E-3L,
149  7.220599478036909672331E-3L,
150 -9.622023360406271645744E-3L,
151 -4.219773360705915470089E-2L,
152  1.665386113720805206758E-1L,
153 -4.200263503403344054473E-2L,
154 -6.558780715202540684668E-1L,
155  5.772156649015328608253E-1L,
156  1.000000000000000000000E0L,
157 };
158 
159 /* 1/tgamma(-x) = z P(z)
160  * z(x) = 1/x
161  * 0 < x < 0.03125
162  * Peak relative error 5.16e-23
163  * Relative error spread =  2.5e-24
164  */
165 
166 static long double SN[9] = {
167  1.133374167243894382010E-3L,
168  7.220837261893170325704E-3L,
169  9.621911155035976733706E-3L,
170 -4.219773343731191721664E-2L,
171 -1.665386113944413519335E-1L,
172 -4.200263503402112910504E-2L,
173  6.558780715202536547116E-1L,
174  5.772156649015328608727E-1L,
175 -1.000000000000000000000E0L,
176 };
177 
178 static const long double PIL = 3.1415926535897932384626L;
179 
180 static long double stirf ( long double );
181 
182 /* Gamma function computed by Stirling's formula.
183  */
stirf(long double x)184 static long double stirf(long double x)
185 {
186 long double y, w, v;
187 
188 w = 1.0L/x;
189 /* For large x, use rational coefficients from the analytical expansion.  */
190 if( x > 1024.0L )
191 	w = (((((6.97281375836585777429E-5L * w
192 		+ 7.84039221720066627474E-4L) * w
193 		- 2.29472093621399176955E-4L) * w
194 		- 2.68132716049382716049E-3L) * w
195 		+ 3.47222222222222222222E-3L) * w
196 		+ 8.33333333333333333333E-2L) * w
197 		+ 1.0L;
198 else
199 	w = 1.0L + w * __polevll( w, STIR, 8 );
200 y = expl(x);
201 if( x > MAXSTIR )
202 	{ /* Avoid overflow in pow() */
203 	v = powl( x, 0.5L * x - 0.25L );
204 	y = v * (v / y);
205 	}
206 else
207 	{
208 	y = powl( x, x - 0.5L ) / y;
209 	}
210 y = SQTPI * y * w;
211 return( y );
212 }
213 
214 long double
tgammal(long double x)215 tgammal(long double x)
216 {
217 long double p, q, z;
218 int i;
219 
220 if( isnan(x) )
221         return(x + x);
222 if(x == (long double) INFINITY)
223 	return((long double) INFINITY);
224 if(x == -(long double) INFINITY)
225 	return __math_invalidl(x);
226 if( x == 0.0L )
227 	return __math_divzerol(__signbitl(x));
228 q = fabsl(x);
229 
230 if( q > 13.0L )
231 	{
232 	int sign = 1;
233 	if( q > MAXGAML ) {
234                 if (x < 0.0L)
235                         return __math_invalidl(x);
236                 return __math_oflowl(0);
237         }
238 	if( x < 0.0L )
239 		{
240 		p = floorl(q);
241 		if( p == q )
242 			return __math_invalidl(x);
243 		i = p;
244 		if( (i & 1) == 0 )
245 			sign = -1;
246 		z = q - p;
247 		if( z > 0.5L )
248 			{
249 			p += 1.0L;
250 			z = q - p;
251 			}
252 		z = q * sinl( PIL * z );
253 		z = fabsl(z) * stirf(q);
254 		if( z <= PIL/LDBL_MAX )
255 			{
256                         return __math_oflowl(sign < 0);
257 			}
258 		z = PIL/z;
259 		}
260 	else
261 		{
262 		z = stirf(x);
263 		}
264 	return( sign * z );
265 	}
266 
267 z = 1.0L;
268 while( x >= 3.0L )
269 	{
270 	x -= 1.0L;
271 	z *= x;
272 	}
273 
274 while( x < -0.03125L )
275 	{
276 	z /= x;
277 	x += 1.0L;
278 	}
279 
280 if( x <= 0.03125L )
281 	goto small;
282 
283 while( x < 2.0L )
284 	{
285 	z /= x;
286 	x += 1.0L;
287 	}
288 
289 if( x == 2.0L )
290 	return(z);
291 
292 x -= 2.0L;
293 p = __polevll( x, P, 7 );
294 q = __polevll( x, Q, 8 );
295 z = z * p / q;
296 return z;
297 
298 small:
299 if( x == 0.0L )
300         return __math_invalidl(x);
301 else
302 	{
303         q = check_oflowl(1.0L/x);
304         if (!isinfl(q))
305                 {
306                 if( x < 0.0L )
307                         {
308                         x = -x;
309                         q = z / __polevll( x, SN, 8 ) * (-q);
310                         }
311                 else
312                         q = z / __polevll( x, S, 8 ) * q;
313                 }
314 	}
315 return q;
316 }
317