1 /*	$OpenBSD: e_logl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							logl.c
20  *
21  *	Natural logarithm, long double precision
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, logl();
28  *
29  * y = logl( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns the base e (2.718...) logarithm of x.
36  *
37  * The argument is separated into its exponent and fractional
38  * parts.  If the exponent is between -1 and +1, the logarithm
39  * of the fraction is approximated by
40  *
41  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
42  *
43  * Otherwise, setting  z = 2(x-1)/x+1),
44  *
45  *     log(x) = z + z**3 P(z)/Q(z).
46  *
47  *
48  *
49  * ACCURACY:
50  *
51  *                      Relative error:
52  * arithmetic   domain     # trials      peak         rms
53  *    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
54  *    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
55  *
56  * In the tests over the interval exp(+-10000), the logarithms
57  * of the random arguments were uniformly distributed over
58  * [-10000, +10000].
59  *
60  * ERROR MESSAGES:
61  *
62  * log singularity:  x = 0; returns -INFINITY
63  * log domain:       x < 0; returns NAN
64  */
65 
66 
67 
68 /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
69  * 1/sqrt(2) <= x < sqrt(2)
70  * Theoretical peak relative error = 2.32e-20
71  */
72 static long double P[] = {
73  4.5270000862445199635215E-5L,
74  4.9854102823193375972212E-1L,
75  6.5787325942061044846969E0L,
76  2.9911919328553073277375E1L,
77  6.0949667980987787057556E1L,
78  5.7112963590585538103336E1L,
79  2.0039553499201281259648E1L,
80 };
81 static long double Q[] = {
82 /* 1.0000000000000000000000E0,*/
83  1.5062909083469192043167E1L,
84  8.3047565967967209469434E1L,
85  2.2176239823732856465394E2L,
86  3.0909872225312059774938E2L,
87  2.1642788614495947685003E2L,
88  6.0118660497603843919306E1L,
89 };
90 
91 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
92  * where z = 2(x-1)/(x+1)
93  * 1/sqrt(2) <= x < sqrt(2)
94  * Theoretical peak relative error = 6.16e-22
95  */
96 
97 static long double R[4] = {
98  1.9757429581415468984296E-3L,
99 -7.1990767473014147232598E-1L,
100  1.0777257190312272158094E1L,
101 -3.5717684488096787370998E1L,
102 };
103 static long double S[4] = {
104 /* 1.00000000000000000000E0L,*/
105 -2.6201045551331104417768E1L,
106  1.9361891836232102174846E2L,
107 -4.2861221385716144629696E2L,
108 };
109 static const long double C1 = 6.9314575195312500000000E-1L;
110 static const long double C2 = 1.4286068203094172321215E-6L;
111 
112 #define SQRTH 0.70710678118654752440L
113 
114 long double
logl(long double x)115 logl(long double x)
116 {
117 long double y, z;
118 int e;
119 
120 if( isnan(x) )
121 	return(x + x);
122 if( x == (long double) INFINITY )
123 	return(x);
124 /* Test for domain */
125 if( x <= 0.0L )
126 	{
127 	if( x == 0.0L )
128                 return __math_divzerol(1);
129 	else
130 		return __math_invalidl(x);
131 	}
132 
133 /* separate mantissa from exponent */
134 
135 /* Note, frexp is used so that denormal numbers
136  * will be handled properly.
137  */
138 x = frexpl( x, &e );
139 
140 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
141  * where z = 2(x-1)/x+1)
142  */
143 if( (e > 2) || (e < -2) )
144 {
145 if( x < SQRTH )
146 	{ /* 2( 2x-1 )/( 2x+1 ) */
147 	e -= 1;
148 	z = x - 0.5L;
149 	y = 0.5L * z + 0.5L;
150 	}
151 else
152 	{ /*  2 (x-1)/(x+1)   */
153 	z = x - 0.5L;
154 	z -= 0.5L;
155 	y = 0.5L * x  + 0.5L;
156 	}
157 x = z / y;
158 z = x*x;
159 z = x * ( z * __polevll( z, R, 3 ) / __p1evll( z, S, 3 ) );
160 z = z + e * C2;
161 z = z + x;
162 z = z + e * C1;
163 return( z );
164 }
165 
166 
167 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
168 
169 if( x < SQRTH )
170 	{
171 	e -= 1;
172 	x = ldexpl( x, 1 ) - 1.0L; /*  2x - 1  */
173 	}
174 else
175 	{
176 	x = x - 1.0L;
177 	}
178 z = x*x;
179 y = x * ( z * __polevll( x, P, 6 ) / __p1evll( x, Q, 6 ) );
180 y = y + e * C2;
181 z = y - ldexpl( z, -1 );   /*  y - 0.5 * z  */
182 /* Note, the sum of above terms does not exceed x/4,
183  * so it contributes at most about 1/4 lsb to the error.
184  */
185 z = z + x;
186 z = z + e * C1; /* This sum has an error of 1/2 lsb. */
187 return( z );
188 }
189