1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14  *
15  * Permission to use, copy, modify, and distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 /* lgammal_r(x, signgamp)
29  * Reentrant version of the logarithm of the Gamma function
30  * with user provide pointer for the sign of Gamma(x).
31  *
32  * Method:
33  *   1. Argument Reduction for 0 < x <= 8
34  *	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
35  *	reduce x to a number in [1.5,2.5] by
36  *		lgamma(1+s) = log(s) + lgamma(s)
37  *	for example,
38  *		lgamma(7.3) = log(6.3) + lgamma(6.3)
39  *			    = log(6.3*5.3) + lgamma(5.3)
40  *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
41  *   2. Polynomial approximation of lgamma around its
42  *	minimun ymin=1.461632144968362245 to maintain monotonicity.
43  *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
44  *		Let z = x-ymin;
45  *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
46  *   2. Rational approximation in the primary interval [2,3]
47  *	We use the following approximation:
48  *		s = x-2.0;
49  *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
50  *	Our algorithms are based on the following observation
51  *
52  *                             zeta(2)-1    2    zeta(3)-1    3
53  * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
54  *                                 2                 3
55  *
56  *	where Euler = 0.5771... is the Euler constant, which is very
57  *	close to 0.5.
58  *
59  *   3. For x>=8, we have
60  *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
61  *	(better formula:
62  *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
63  *	Let z = 1/x, then we approximation
64  *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)
65  *	by
66  *				    3       5             11
67  *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
68  *
69  *   4. For negative x, since (G is gamma function)
70  *		-x*G(-x)*G(x) = pi/sin(pi*x),
71  *	we have
72  *		G(x) = pi/(sin(pi*x)*(-x)*G(-x))
73  *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
74  *	Hence, for x<0, signgam = sign(sin(pi*x)) and
75  *		lgamma(x) = log(|Gamma(x)|)
76  *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
77  *	Note: one should avoid compute pi*(-x) directly in the
78  *	      computation of sin(pi*(-x)).
79  *
80  *   5. Special Cases
81  *		lgamma(2+s) ~ s*(1-Euler) for tiny s
82  *		lgamma(1)=lgamma(2)=0
83  *		lgamma(x) ~ -log(x) for tiny x
84  *		lgamma(0) = lgamma(inf) = inf
85  *		lgamma(-integer) = +-inf
86  *
87  */
88 
89 
90 
91 static const long double
92   half = 0.5L,
93   one = 1.0L,
94   pi = 3.14159265358979323846264L,
95   two63 = 9.223372036854775808e18L,
96 
97   /* lgam(1+x) = 0.5 x + x a(x)/b(x)
98      -0.268402099609375 <= x <= 0
99      peak relative error 6.6e-22 */
100   a0 = -6.343246574721079391729402781192128239938E2L,
101   a1 =  1.856560238672465796768677717168371401378E3L,
102   a2 =  2.404733102163746263689288466865843408429E3L,
103   a3 =  8.804188795790383497379532868917517596322E2L,
104   a4 =  1.135361354097447729740103745999661157426E2L,
105   a5 =  3.766956539107615557608581581190400021285E0L,
106 
107   b0 =  8.214973713960928795704317259806842490498E3L,
108   b1 =  1.026343508841367384879065363925870888012E4L,
109   b2 =  4.553337477045763320522762343132210919277E3L,
110   b3 =  8.506975785032585797446253359230031874803E2L,
111   b4 =  6.042447899703295436820744186992189445813E1L,
112   /* b5 =  1.000000000000000000000000000000000000000E0 */
113 
114 
115   tc =  1.4616321449683623412626595423257213284682E0L,
116   tf = -1.2148629053584961146050602565082954242826E-1L,/* double precision */
117 /* tt = (tail of tf), i.e. tf + tt has extended precision. */
118   tt = 3.3649914684731379602768989080467587736363E-18L,
119   /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
120 -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
121 
122   /* lgam (x + tc) = tf + tt + x g(x)/h(x)
123      - 0.230003726999612341262659542325721328468 <= x
124      <= 0.2699962730003876587373404576742786715318
125      peak relative error 2.1e-21 */
126   g0 = 3.645529916721223331888305293534095553827E-18L,
127   g1 = 5.126654642791082497002594216163574795690E3L,
128   g2 = 8.828603575854624811911631336122070070327E3L,
129   g3 = 5.464186426932117031234820886525701595203E3L,
130   g4 = 1.455427403530884193180776558102868592293E3L,
131   g5 = 1.541735456969245924860307497029155838446E2L,
132   g6 = 4.335498275274822298341872707453445815118E0L,
133 
134   h0 = 1.059584930106085509696730443974495979641E4L,
135   h1 =  2.147921653490043010629481226937850618860E4L,
136   h2 = 1.643014770044524804175197151958100656728E4L,
137   h3 =  5.869021995186925517228323497501767586078E3L,
138   h4 =  9.764244777714344488787381271643502742293E2L,
139   h5 =  6.442485441570592541741092969581997002349E1L,
140   /* h6 = 1.000000000000000000000000000000000000000E0 */
141 
142 
143   /* lgam (x+1) = -0.5 x + x u(x)/v(x)
144      -0.100006103515625 <= x <= 0.231639862060546875
145      peak relative error 1.3e-21 */
146   u0 = -8.886217500092090678492242071879342025627E1L,
147   u1 =  6.840109978129177639438792958320783599310E2L,
148   u2 =  2.042626104514127267855588786511809932433E3L,
149   u3 =  1.911723903442667422201651063009856064275E3L,
150   u4 =  7.447065275665887457628865263491667767695E2L,
151   u5 =  1.132256494121790736268471016493103952637E2L,
152   u6 =  4.484398885516614191003094714505960972894E0L,
153 
154   v0 =  1.150830924194461522996462401210374632929E3L,
155   v1 =  3.399692260848747447377972081399737098610E3L,
156   v2 =  3.786631705644460255229513563657226008015E3L,
157   v3 =  1.966450123004478374557778781564114347876E3L,
158   v4 =  4.741359068914069299837355438370682773122E2L,
159   v5 =  4.508989649747184050907206782117647852364E1L,
160   /* v6 =  1.000000000000000000000000000000000000000E0 */
161 
162 
163   /* lgam (x+2) = .5 x + x s(x)/r(x)
164      0 <= x <= 1
165      peak relative error 7.2e-22 */
166   s0 =  1.454726263410661942989109455292824853344E6L,
167   s1 = -3.901428390086348447890408306153378922752E6L,
168   s2 = -6.573568698209374121847873064292963089438E6L,
169   s3 = -3.319055881485044417245964508099095984643E6L,
170   s4 = -7.094891568758439227560184618114707107977E5L,
171   s5 = -6.263426646464505837422314539808112478303E4L,
172   s6 = -1.684926520999477529949915657519454051529E3L,
173 
174   r0 = -1.883978160734303518163008696712983134698E7L,
175   r1 = -2.815206082812062064902202753264922306830E7L,
176   r2 = -1.600245495251915899081846093343626358398E7L,
177   r3 = -4.310526301881305003489257052083370058799E6L,
178   r4 = -5.563807682263923279438235987186184968542E5L,
179   r5 = -3.027734654434169996032905158145259713083E4L,
180   r6 = -4.501995652861105629217250715790764371267E2L,
181   /* r6 =  1.000000000000000000000000000000000000000E0 */
182 
183 
184 /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
185    x >= 8
186    Peak relative error 1.51e-21
187    w0 = LS2PI - 0.5 */
188   w0 =  4.189385332046727417803e-1L,
189   w1 =  8.333333333333331447505E-2L,
190   w2 = -2.777777777750349603440E-3L,
191   w3 =  7.936507795855070755671E-4L,
192   w4 = -5.952345851765688514613E-4L,
193   w5 =  8.412723297322498080632E-4L,
194   w6 = -1.880801938119376907179E-3L,
195   w7 =  4.885026142432270781165E-3L;
196 
197 static const long double zero = 0.0L;
198 
199 static long double
sin_pi(long double x)200 sin_pi(long double x)
201 {
202   long double y, z;
203   int n, ix;
204   u_int32_t se, i0, i1;
205 
206   GET_LDOUBLE_WORDS (se, i0, i1, x);
207   ix = se & 0x7fff;
208   ix = (ix << 16) | (i0 >> 16);
209   if (ix < 0x3ffd8000) /* 0.25 */
210     return sinl (pi * x);
211   y = -x;			/* x is assume negative */
212 
213   /*
214    * argument reduction, make sure inexact flag not raised if input
215    * is an integer
216    */
217   z = floorl (y);
218   if (z != y)
219     {				/* inexact anyway */
220       y  *= 0.5L;
221       y = 2.0L*(y - floorl(y));		/* y = |x| mod 2.0 */
222       n = (int) (y*4.0L);
223     }
224   else
225     {
226       if (ix >= 0x403f8000)  /* 2^64 */
227 	{
228 	  y = zero; n = 0;		/* y must be even */
229 	}
230       else
231 	{
232 	if (ix < 0x403e8000)  /* 2^63 */
233 	  z = y + two63;	/* exact */
234 	GET_LDOUBLE_WORDS (se, i0, i1, z);
235 	n = i1 & 1;
236 	y  = n;
237 	n <<= 2;
238       }
239     }
240 
241   switch (n)
242     {
243     case 0:
244       y = sinl (pi * y);
245       break;
246     case 1:
247     case 2:
248       y = cosl (pi * (half - y));
249       break;
250     case 3:
251     case 4:
252       y = sinl (pi * (one - y));
253       break;
254     case 5:
255     case 6:
256       y = -cosl (pi * (y - 1.5L));
257       break;
258     default:
259       y = sinl (pi * (y - 2.0L));
260       break;
261     }
262   return -y;
263 }
264 
265 
266 long double
lgammal_r(long double x,int * signgamp)267 lgammal_r(long double x, int *signgamp)
268 {
269   long double t, y, z, nadj = 0, p, p1, p2, q, r, w;
270   int i, ix;
271   u_int32_t se, i0, i1;
272 
273   *signgamp = 1;
274   GET_LDOUBLE_WORDS (se, i0, i1, x);
275   ix = se & 0x7fff;
276 
277   if ((ix | i0 | i1) == 0)
278     {
279       if (se & 0x8000)
280 	*signgamp = -1;
281       return __math_divzerol(0);
282     }
283 
284   ix = (ix << 16) | (i0 >> 16);
285 
286   /* purge off +-inf, NaN, +-0, and negative arguments */
287   if (ix >= 0x7fff0000)
288     return x * x;
289 
290   if (ix < 0x3fc08000) /* 2^-63 */
291     {				/* |x|<2**-63, return -log(|x|) */
292       if (se & 0x8000)
293 	{
294 	  *signgamp = -1;
295 	  return -logl (-x);
296 	}
297       else
298 	return -logl (x);
299     }
300   if (se & 0x8000)
301     {
302       t = sin_pi (x);
303       if (t == zero)
304           return __math_divzerol(0);	/* -integer */
305       nadj = logl (pi / fabsl (t * x));
306       if (t < zero)
307 	*signgamp = -1;
308       x = -x;
309     }
310 
311   /* purge off 1 and 2 */
312   if ((((ix - 0x3fff8000) | i0 | i1) == 0)
313       || (((ix - 0x40008000) | i0 | i1) == 0))
314     r = 0;
315   else if (ix < 0x40008000) /* 2.0 */
316     {
317       /* x < 2.0 */
318       if (ix <= 0x3ffee666) /* 8.99993896484375e-1 */
319 	{
320 	  /* lgamma(x) = lgamma(x+1) - log(x) */
321 	  r = -logl (x);
322 	  if (ix >= 0x3ffebb4a) /* 7.31597900390625e-1 */
323 	    {
324 	      y = x - one;
325 	      i = 0;
326 	    }
327 	  else if (ix >= 0x3ffced33)/* 2.31639862060546875e-1 */
328 	    {
329 	      y = x - (tc - one);
330 	      i = 1;
331 	    }
332 	  else
333 	    {
334 	      /* x < 0.23 */
335 	      y = x;
336 	      i = 2;
337 	    }
338 	}
339       else
340 	{
341 	  r = zero;
342 	  if (ix >= 0x3fffdda6) /* 1.73162841796875 */
343 	    {
344 	      /* [1.7316,2] */
345 	      y = x - 2.0L;
346 	      i = 0;
347 	    }
348 	  else if (ix >= 0x3fff9da6)/* 1.23162841796875 */
349 	    {
350 	      /* [1.23,1.73] */
351 	      y = x - tc;
352 	      i = 1;
353 	    }
354 	  else
355 	    {
356 	      /* [0.9, 1.23] */
357 	      y = x - one;
358 	      i = 2;
359 	    }
360 	}
361       switch (i)
362 	{
363 	case 0:
364 	  p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
365 	  p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
366 	  r += half * y + y * p1/p2;
367 	  break;
368 	case 1:
369     p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
370     p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
371     p = tt + y * p1/p2;
372 	  r += (tf + p);
373 	  break;
374 	case 2:
375  p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
376       p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
377 	  r += (-half * y + p1 / p2);
378 	}
379     }
380   else if (ix < 0x40028000) /* 8.0 */
381     {
382       /* x < 8.0 */
383       i = (int) x;
384       t = zero;
385       y = x - (long double) i;
386   p = y *
387      (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
388   q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
389       r = half * y + p / q;
390       z = one;			/* lgamma(1+s) = log(s) + lgamma(s) */
391       switch (i)
392 	{
393 	case 7:
394 	  z *= (y + 6.0L);	/* FALLTHRU */
395 	case 6:
396 	  z *= (y + 5.0L);	/* FALLTHRU */
397 	case 5:
398 	  z *= (y + 4.0L);	/* FALLTHRU */
399 	case 4:
400 	  z *= (y + 3.0L);	/* FALLTHRU */
401 	case 3:
402 	  z *= (y + 2.0L);	/* FALLTHRU */
403 	  r += logl (z);
404 	  break;
405 	}
406     }
407   else if (ix < 0x40418000) /* 2^66 */
408     {
409       /* 8.0 <= x < 2**66 */
410       t = logl (x);
411       z = one / x;
412       y = z * z;
413       w = w0 + z * (w1
414 	  + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
415       r = (x - half) * (t - one) + w;
416     }
417   else
418     /* 2**66 <= x <= inf */
419     r = check_oflowl(x * (logl (x) - one));
420   if (se & 0x8000)
421     r = nadj - r;
422   return r;
423 }
424