1 /*	$OpenBSD: s_log1pl.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							log1pl.c
20  *
21  *      Relative error logarithm
22  *	Natural logarithm of 1+x, 128-bit long double precision
23  *
24  *
25  *
26  * SYNOPSIS:
27  *
28  * long double x, y, log1pl();
29  *
30  * y = log1pl( x );
31  *
32  *
33  *
34  * DESCRIPTION:
35  *
36  * Returns the base e (2.718...) logarithm of 1+x.
37  *
38  * The argument 1+x is separated into its exponent and fractional
39  * parts.  If the exponent is between -1 and +1, the logarithm
40  * of the fraction is approximated by
41  *
42  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
43  *
44  * Otherwise, setting  z = 2(w-1)/(w+1),
45  *
46  *     log(w) = z + z^3 P(z)/Q(z).
47  *
48  *
49  *
50  * ACCURACY:
51  *
52  *                      Relative error:
53  * arithmetic   domain     # trials      peak         rms
54  *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
55  */
56 
57 
58 
59 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
60  * 1/sqrt(2) <= 1+x < sqrt(2)
61  * Theoretical peak relative error = 5.3e-37,
62  * relative peak error spread = 2.3e-14
63  */
64 static const long double
65   P12 = 1.538612243596254322971797716843006400388E-6L,
66   P11 = 4.998469661968096229986658302195402690910E-1L,
67   P10 = 2.321125933898420063925789532045674660756E1L,
68   P9 = 4.114517881637811823002128927449878962058E2L,
69   P8 = 3.824952356185897735160588078446136783779E3L,
70   P7 = 2.128857716871515081352991964243375186031E4L,
71   P6 = 7.594356839258970405033155585486712125861E4L,
72   P5 = 1.797628303815655343403735250238293741397E5L,
73   P4 = 2.854829159639697837788887080758954924001E5L,
74   P3 = 3.007007295140399532324943111654767187848E5L,
75   P2 = 2.014652742082537582487669938141683759923E5L,
76   P1 = 7.771154681358524243729929227226708890930E4L,
77   P0 = 1.313572404063446165910279910527789794488E4L,
78   /* Q12 = 1.000000000000000000000000000000000000000E0L, */
79   Q11 = 4.839208193348159620282142911143429644326E1L,
80   Q10 = 9.104928120962988414618126155557301584078E2L,
81   Q9 = 9.147150349299596453976674231612674085381E3L,
82   Q8 = 5.605842085972455027590989944010492125825E4L,
83   Q7 = 2.248234257620569139969141618556349415120E5L,
84   Q6 = 6.132189329546557743179177159925690841200E5L,
85   Q5 = 1.158019977462989115839826904108208787040E6L,
86   Q4 = 1.514882452993549494932585972882995548426E6L,
87   Q3 = 1.347518538384329112529391120390701166528E6L,
88   Q2 = 7.777690340007566932935753241556479363645E5L,
89   Q1 = 2.626900195321832660448791748036714883242E5L,
90   Q0 = 3.940717212190338497730839731583397586124E4L;
91 
92 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
93  * where z = 2(x-1)/(x+1)
94  * 1/sqrt(2) <= x < sqrt(2)
95  * Theoretical peak relative error = 1.1e-35,
96  * relative peak error spread 1.1e-9
97  */
98 static const long double
99   R5 = -8.828896441624934385266096344596648080902E-1L,
100   R4 = 8.057002716646055371965756206836056074715E1L,
101   R3 = -2.024301798136027039250415126250455056397E3L,
102   R2 = 2.048819892795278657810231591630928516206E4L,
103   R1 = -8.977257995689735303686582344659576526998E4L,
104   R0 = 1.418134209872192732479751274970992665513E5L,
105   /* S6 = 1.000000000000000000000000000000000000000E0L, */
106   S5 = -1.186359407982897997337150403816839480438E2L,
107   S4 = 3.998526750980007367835804959888064681098E3L,
108   S3 = -5.748542087379434595104154610899551484314E4L,
109   S2 = 4.001557694070773974936904547424676279307E5L,
110   S1 = -1.332535117259762928288745111081235577029E6L,
111   S0 = 1.701761051846631278975701529965589676574E6L;
112 
113 /* C1 + C2 = ln 2 */
114 static const long double C1 = 6.93145751953125E-1L;
115 static const long double C2 = 1.428606820309417232121458176568075500134E-6L;
116 
117 static const long double sqrth = 0.7071067811865475244008443621048490392848L;
118 /* ln (2^16384 * (1 - 2^-113)) */
119 static const long double zero = 0.0L;
120 
121 long double
log1pl(long double xm1)122 log1pl(long double xm1)
123 {
124   long double x, y, z, r, s;
125   ieee_quad_shape_type u;
126   int32_t hx;
127   int e;
128 
129   /* Test for NaN or infinity input. */
130   u.value = xm1;
131   hx = u.parts32.mswhi;
132   if (hx >= 0x7fff0000)
133     return xm1 + xm1;
134 
135   /* log1p(+- 0) = +- 0.  */
136   if (((hx & 0x7fffffff) == 0)
137       && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
138     return xm1;
139 
140   x = xm1 + 1.0L;
141 
142   /* log1p(-1) = -inf */
143   if (x <= 0.0L)
144     {
145       if (x == 0.0L)
146         return __math_divzerol(1);
147       else
148 	return __math_invalidl(xm1);
149     }
150 
151   /* Separate mantissa from exponent.  */
152 
153   /* Use frexp used so that denormal numbers will be handled properly.  */
154   x = frexpl (x, &e);
155 
156   /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
157      where z = 2(x-1)/x+1).  */
158   if ((e > 2) || (e < -2))
159     {
160       if (x < sqrth)
161 	{			/* 2( 2x-1 )/( 2x+1 ) */
162 	  e -= 1;
163 	  z = x - 0.5L;
164 	  y = 0.5L * z + 0.5L;
165 	}
166       else
167 	{			/*  2 (x-1)/(x+1)   */
168 	  z = x - 0.5L;
169 	  z -= 0.5L;
170 	  y = 0.5L * x + 0.5L;
171 	}
172       x = z / y;
173       z = x * x;
174       r = ((((R5 * z
175 	      + R4) * z
176 	     + R3) * z
177 	    + R2) * z
178 	   + R1) * z
179 	+ R0;
180       s = (((((z
181 	       + S5) * z
182 	      + S4) * z
183 	     + S3) * z
184 	    + S2) * z
185 	   + S1) * z
186 	+ S0;
187       z = x * (z * r / s);
188       z = z + e * C2;
189       z = z + x;
190       z = z + e * C1;
191       return (z);
192     }
193 
194 
195   /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
196 
197   if (x < sqrth)
198     {
199       e -= 1;
200       if (e != 0)
201 	x = 2.0L * x - 1.0L;	/*  2x - 1  */
202       else
203 	x = xm1;
204     }
205   else
206     {
207       if (e != 0)
208 	x = x - 1.0L;
209       else
210 	x = xm1;
211     }
212   z = x * x;
213   r = (((((((((((P12 * x
214 		 + P11) * x
215 		+ P10) * x
216 	       + P9) * x
217 	      + P8) * x
218 	     + P7) * x
219 	    + P6) * x
220 	   + P5) * x
221 	  + P4) * x
222 	 + P3) * x
223 	+ P2) * x
224        + P1) * x
225     + P0;
226   s = (((((((((((x
227 		 + Q11) * x
228 		+ Q10) * x
229 	       + Q9) * x
230 	      + Q8) * x
231 	     + Q7) * x
232 	    + Q6) * x
233 	   + Q5) * x
234 	  + Q4) * x
235 	 + Q3) * x
236 	+ Q2) * x
237        + Q1) * x
238     + Q0;
239   y = x * (z * r / s);
240   y = y + e * C2;
241   z = y - 0.5L * z;
242   z = z + x;
243   z = z + e * C1;
244   return (z);
245 }
246