1 /*	$OpenBSD: s_expm1l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							expm1l.c
20  *
21  *	Exponential function, minus 1
22  *      128-bit long double precision
23  *
24  *
25  *
26  * SYNOPSIS:
27  *
28  * long double x, y, expm1l();
29  *
30  * y = expm1l( x );
31  *
32  *
33  *
34  * DESCRIPTION:
35  *
36  * Returns e (2.71828...) raised to the x power, minus one.
37  *
38  * Range reduction is accomplished by separating the argument
39  * into an integer k and fraction f such that
40  *
41  *     x    k  f
42  *    e  = 2  e.
43  *
44  * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
45  * in the basic range [-0.5 ln 2, 0.5 ln 2].
46  *
47  *
48  * ACCURACY:
49  *
50  *                      Relative error:
51  * arithmetic   domain     # trials      peak         rms
52  *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35
53  *
54  */
55 
56 
57 
58 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
59    -.5 ln 2  <  x  <  .5 ln 2
60    Theoretical peak relative error = 8.1e-36  */
61 
62 static const long double
63   P0 = 2.943520915569954073888921213330863757240E8L,
64   P1 = -5.722847283900608941516165725053359168840E7L,
65   P2 = 8.944630806357575461578107295909719817253E6L,
66   P3 = -7.212432713558031519943281748462837065308E5L,
67   P4 = 4.578962475841642634225390068461943438441E4L,
68   P5 = -1.716772506388927649032068540558788106762E3L,
69   P6 = 4.401308817383362136048032038528753151144E1L,
70   P7 = -4.888737542888633647784737721812546636240E-1L,
71   Q0 = 1.766112549341972444333352727998584753865E9L,
72   Q1 = -7.848989743695296475743081255027098295771E8L,
73   Q2 = 1.615869009634292424463780387327037251069E8L,
74   Q3 = -2.019684072836541751428967854947019415698E7L,
75   Q4 = 1.682912729190313538934190635536631941751E6L,
76   Q5 = -9.615511549171441430850103489315371768998E4L,
77   Q6 = 3.697714952261803935521187272204485251835E3L,
78   Q7 = -8.802340681794263968892934703309274564037E1L,
79   /* Q8 = 1.000000000000000000000000000000000000000E0 */
80 /* C1 + C2 = ln 2 */
81 
82   C1 = 6.93145751953125E-1L,
83   C2 = 1.428606820309417232121458176568075500134E-6L,
84 /* ln (2^16384 * (1 - 2^-113)) */
85   maxlog = 1.1356523406294143949491931077970764891253E4L,
86 /* ln 2^-114 */
87   minarg = -7.9018778583833765273564461846232128760607E1L, big = 1e4932L;
88 
89 
90 long double
expm1l(long double x)91 expm1l(long double x)
92 {
93   long double px, qx, xx;
94   int32_t ix, sign;
95   ieee_quad_shape_type u;
96   int k;
97 
98   /* Detect infinity and NaN.  */
99   u.value = x;
100   ix = u.parts32.mswhi;
101   sign = ix & 0x80000000;
102   ix &= 0x7fffffff;
103   if (ix >= 0x7fff0000)
104     {
105       /* Infinity. */
106       if (((ix & 0xffff) | u.parts32.mswlo | u.parts32.lswhi |
107 	u.parts32.lswlo) == 0)
108 	{
109 	  if (sign)
110 	    return -1.0L;
111 	  else
112 	    return x;
113 	}
114       /* NaN. No invalid exception. */
115       return x + x;
116     }
117 
118   /* expm1(+- 0) = +- 0.  */
119   if ((ix == 0) && (u.parts32.mswlo | u.parts32.lswhi | u.parts32.lswlo) == 0)
120     return x;
121 
122   /* Overflow.  */
123   if (x > maxlog)
124       return __math_oflowl(0);
125 
126   /* Minimum value.  */
127   if (x < minarg)
128       return __math_inexactl(-1.0L);
129 
130   /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
131   xx = C1 + C2;			/* ln 2. */
132   px = floorl (0.5L + x / xx);
133   k = px;
134   /* remainder times ln 2 */
135   x -= px * C1;
136   x -= px * C2;
137 
138   /* Approximate exp(remainder ln 2).  */
139   px = (((((((P7 * x
140 	      + P6) * x
141 	     + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
142 
143   qx = (((((((x
144 	      + Q7) * x
145 	     + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
146 
147   xx = x * x;
148   qx = x + (0.5L * xx + xx * px / qx);
149 
150   /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
151 
152   We have qx = exp(remainder ln 2) - 1, so
153   exp(x) - 1 = 2^k (qx + 1) - 1
154 	     = 2^k qx + 2^k - 1.  */
155 
156   if (k >= __LDBL_MAX_EXP__) {
157       /* Avoid overflow in ldexpl.  */
158       x = ldexpl(qx + 1.0L, k) - 1.0L;
159   } else {
160       px = ldexpl (1.0L, k);
161       x = px * qx + (px - 1.0L);
162   }
163   return x;
164 }
165