1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunPro, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11 
12 /*
13  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
14  *
15  * Permission to use, copy, modify, and distribute this software for any
16  * purpose with or without fee is hereby granted, provided that the above
17  * copyright notice and this permission notice appear in all copies.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
20  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
22  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
23  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
24  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
25  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
26  */
27 
28 /* powl(x,y) return x**y
29  *
30  *		      n
31  * Method:  Let x =  2   * (1+f)
32  *	1. Compute and return log2(x) in two pieces:
33  *		log2(x) = w1 + w2,
34  *	   where w1 has 113-53 = 60 bit trailing zeros.
35  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
36  *	   arithmetic, where |y'|<=0.5.
37  *	3. Return x**y = 2**n*exp(y'*log2)
38  *
39  * Special cases:
40  *	1.  (anything) ** 0  is 1
41  *	2.  (anything) ** 1  is itself
42  *	3.  (anything) ** NAN is NAN
43  *	4.  NAN ** (anything except 0) is NAN
44  *	5.  +-(|x| > 1) **  +INF is +INF
45  *	6.  +-(|x| > 1) **  -INF is +0
46  *	7.  +-(|x| < 1) **  +INF is +0
47  *	8.  +-(|x| < 1) **  -INF is +INF
48  *	9.  +-1         ** +-INF is NAN
49  *	10. +0 ** (+anything except 0, NAN)               is +0
50  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
51  *	12. +0 ** (-anything except 0, NAN)               is +INF
52  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
53  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
54  *	15. +INF ** (+anything except 0,NAN) is +INF
55  *	16. +INF ** (-anything except 0,NAN) is +0
56  *	17. -INF ** (anything)  = -0 ** (-anything)
57  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
58  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
59  *
60  */
61 
62 
63 
64 static const long double bp[] = {
65   1.0L,
66   1.5L,
67 };
68 
69 /* log_2(1.5) */
70 static const long double dp_h[] = {
71   0.0L,
72   5.8496250072115607565592654282227158546448E-1L
73 };
74 
75 /* Low part of log_2(1.5) */
76 static const long double dp_l[] = {
77   0.0L,
78   1.0579781240112554492329533686862998106046E-16L
79 };
80 
81 static const long double zero = 0.0L,
82   one = 1.0L,
83   two = 2.0L,
84   two113 = 1.0384593717069655257060992658440192E34L,
85   huge = 1.0e3000L,
86   tiny = 1.0e-3000L;
87 
88 /* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
89    z = (x-1)/(x+1)
90    1 <= x <= 1.25
91    Peak relative error 2.3e-37 */
92 static const long double LN[] =
93 {
94  -3.0779177200290054398792536829702930623200E1L,
95   6.5135778082209159921251824580292116201640E1L,
96  -4.6312921812152436921591152809994014413540E1L,
97   1.2510208195629420304615674658258363295208E1L,
98  -9.9266909031921425609179910128531667336670E-1L
99 };
100 static const long double LD[] =
101 {
102  -5.129862866715009066465422805058933131960E1L,
103   1.452015077564081884387441590064272782044E2L,
104  -1.524043275549860505277434040464085593165E2L,
105   7.236063513651544224319663428634139768808E1L,
106  -1.494198912340228235853027849917095580053E1L
107   /* 1.0E0 */
108 };
109 
110 /* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
111    0 <= x <= 0.5
112    Peak relative error 5.7e-38  */
113 static const long double PN[] =
114 {
115   5.081801691915377692446852383385968225675E8L,
116   9.360895299872484512023336636427675327355E6L,
117   4.213701282274196030811629773097579432957E4L,
118   5.201006511142748908655720086041570288182E1L,
119   9.088368420359444263703202925095675982530E-3L,
120 };
121 static const long double PD[] =
122 {
123   3.049081015149226615468111430031590411682E9L,
124   1.069833887183886839966085436512368982758E8L,
125   8.259257717868875207333991924545445705394E5L,
126   1.872583833284143212651746812884298360922E3L,
127   /* 1.0E0 */
128 };
129 
130 static const long double
131   /* ln 2 */
132   lg2 = 6.9314718055994530941723212145817656807550E-1L,
133   lg2_h = 6.9314718055994528622676398299518041312695E-1L,
134   lg2_l = 2.3190468138462996154948554638754786504121E-17L,
135   ovt = 1.38926478993351112510650782611372039878722890e-34L,
136 //  ovt = 8.0085662595372944372e-0017L,
137   /* 2/(3*log(2)) */
138   cp = 9.6179669392597560490661645400126142495110E-1L,
139   cp_h = 9.6179669392597555432899980587535537779331E-1L,
140   cp_l = 5.0577616648125906047157785230014751039424E-17L;
141 
142 long double
powl(long double x,long double y)143 powl(long double x, long double y)
144 {
145   long double z, ax, z_h, z_l, p_h, p_l;
146   long double yy1, t1, t2, r, s, t, u, v, w;
147   long double s2, s_h, s_l, t_h, t_l;
148   int32_t i, j, k, yisint, n;
149   u_int32_t ix, iy;
150   int32_t hx, hy;
151   ieee_quad_shape_type o, p, q;
152 
153   p.value = x;
154   hx = p.parts32.mswhi;
155   ix = hx & 0x7fffffff;
156 
157   q.value = y;
158   hy = q.parts32.mswhi;
159   iy = hy & 0x7fffffff;
160 
161 
162   /* y==zero: x**0 = 1 */
163   if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0) {
164     if (issignalingl(x))
165       return x + y;
166     return one;
167   }
168 
169   /* 1.0**y = 1; -1.0**+-Inf = 1 */
170   if (x == one) {
171     if (issignalingl(y))
172       return x + y;
173     return one;
174   }
175   if (x == -1.0L && iy == 0x7fff0000
176       && (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
177     return one;
178 
179   /* +-NaN return x+y */
180   if ((ix > 0x7fff0000)
181       || ((ix == 0x7fff0000)
182 	  && ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
183       || (iy > 0x7fff0000)
184       || ((iy == 0x7fff0000)
185 	  && ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
186     return x + y;
187 
188   /* determine if y is an odd int when x < 0
189    * yisint = 0       ... y is not an integer
190    * yisint = 1       ... y is an odd int
191    * yisint = 2       ... y is an even int
192    */
193   yisint = 0;
194   if (hx < 0)
195     {
196       if (iy >= 0x40700000)	/* 2^113 */
197 	yisint = 2;		/* even integer y */
198       else if (iy >= 0x3fff0000)	/* 1.0 */
199 	{
200 	  if (floorl (y) == y)
201 	    {
202 	      z = 0.5L * y;
203 	      if (floorl (z) == z)
204 		yisint = 2;
205 	      else
206 		yisint = 1;
207 	    }
208 	}
209     }
210 
211   ax = fabsl (x);
212   /* special value of x */
213   if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
214     {
215       if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
216 	{
217 	  z = ax;		/*x is +-inf,+-1 */
218 	  if (hy < 0)
219             {
220               if (ix == 0 && iy != 0x7fff0000) {
221                   return __math_divzerol(hx < 0 && yisint == 1);
222               }
223               z = one / z;	/* z = (1/|x|) */
224             }
225 	  if (hx < 0)
226 	    {
227 	      if (((ix - 0x3fff0000) | yisint) == 0)
228 		{
229                     z = __math_invalidl(z);	/* (-1)**non-int is NaN */
230 		}
231 	      else if (yisint == 1)
232 		z = -z;		/* (x<0)**odd = -(|x|**odd) */
233 	    }
234 	  return z;
235 	}
236     }
237 
238   /* special value of y */
239   if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
240     {
241       if (iy == 0x7fff0000)	/* y is +-inf */
242 	{
243 	  if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
244 	    p.parts32.lswlo) == 0)
245             return __math_invalidl(y);	/* +-1**inf is NaN */
246 	  else if (ix >= 0x3fff0000)	/* (|x|>1)**+-inf = inf,0 */
247 	    return (hy >= 0) ? y : zero;
248 	  else			/* (|x|<1)**-,+inf = inf,0 */
249 	    return (hy < 0) ? -y : zero;
250 	}
251       if (iy == 0x3fff0000)
252 	{			/* y is  +-1 */
253 	  if (hy < 0)
254 	    return check_oflowl(one / x);
255 	  else
256 	    return x;
257 	}
258       if (hy == 0x40000000)
259 	return check_uflowl(check_oflowl(x * x));		/* y is  2 */
260       if (hy == 0x3ffe0000)
261 	{			/* y is  0.5 */
262 	  if (hx >= 0)		/* x >= +0 */
263 	    return sqrtl (x);
264 	}
265     }
266 
267   /* (x<0)**(non-int) is NaN */
268   if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
269     return __math_invalidl(x);
270 
271   /* |y| is huge.
272      2^-16495 = 1/2 of smallest representable value.
273      If (1 - 1/131072)^y underflows, y > 1.4986e9 */
274   if (iy > 0x401d654b)
275     {
276       int neg = (hx < 0) & yisint;
277       /* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
278       if (iy > 0x407d654b)
279 	{
280 	  if (ix <= 0x3ffeffff)
281             return (hy < 0) ? __math_oflowl(neg) : __math_uflowl(neg);
282 	  if (ix >= 0x3fff0000)
283 	    return (hy > 0) ? __math_oflowl(neg) : __math_uflowl(neg);
284 	}
285       /* over/underflow if x is not close to one */
286       if (ix < 0x3ffeffff)
287 	return (hy < 0) ? __math_oflowl(neg) : __math_uflowl(neg);
288       if (ix > 0x3fff0000)
289 	return (hy > 0) ? __math_oflowl(neg) : __math_uflowl(neg);
290     }
291 
292   n = 0;
293   /* take care subnormal number */
294   if (ix < 0x00010000)
295     {
296       ax *= two113;
297       n -= 113;
298       o.value = ax;
299       ix = o.parts32.mswhi;
300     }
301   n += ((ix) >> 16) - 0x3fff;
302   j = ix & 0x0000ffff;
303   /* determine interval */
304   ix = j | 0x3fff0000;		/* normalize ix */
305   if (j <= 0x3988)
306     k = 0;			/* |x|<sqrt(3/2) */
307   else if (j < 0xbb67)
308     k = 1;			/* |x|<sqrt(3)   */
309   else
310     {
311       k = 0;
312       n += 1;
313       ix -= 0x00010000;
314     }
315 
316   o.value = ax;
317   o.parts32.mswhi = ix;
318   ax = o.value;
319 
320   /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
321   u = ax - bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
322   v = one / (ax + bp[k]);
323   s = u * v;
324   s_h = s;
325 
326   o.value = s_h;
327   o.parts32.lswlo = 0;
328   o.parts32.lswhi &= 0xf8000000;
329   s_h = o.value;
330   /* t_h=ax+bp[k] High */
331   t_h = ax + bp[k];
332   o.value = t_h;
333   o.parts32.lswlo = 0;
334   o.parts32.lswhi &= 0xf8000000;
335   t_h = o.value;
336   t_l = ax - (t_h - bp[k]);
337   s_l = v * ((u - s_h * t_h) - s_h * t_l);
338   /* compute log(ax) */
339   s2 = s * s;
340   u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
341   v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
342   r = s2 * s2 * u / v;
343   r += s_l * (s_h + s);
344   s2 = s_h * s_h;
345   t_h = 3.0L + s2 + r;
346   o.value = t_h;
347   o.parts32.lswlo = 0;
348   o.parts32.lswhi &= 0xf8000000;
349   t_h = o.value;
350   t_l = r - ((t_h - 3.0L) - s2);
351   /* u+v = s*(1+...) */
352   u = s_h * t_h;
353   v = s_l * t_h + t_l * s;
354   /* 2/(3log2)*(s+...) */
355   p_h = u + v;
356   o.value = p_h;
357   o.parts32.lswlo = 0;
358   o.parts32.lswhi &= 0xf8000000;
359   p_h = o.value;
360   p_l = v - (p_h - u);
361   z_h = cp_h * p_h;		/* cp_h+cp_l = 2/(3*log2) */
362   z_l = cp_l * p_h + p_l * cp + dp_l[k];
363   /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
364   t = (long double) n;
365   t1 = (((z_h + z_l) + dp_h[k]) + t);
366   o.value = t1;
367   o.parts32.lswlo = 0;
368   o.parts32.lswhi &= 0xf8000000;
369   t1 = o.value;
370   t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
371 
372   /* s (sign of result -ve**odd) = -1 else = 1 */
373   s = one;
374   if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
375     s = -one;			/* (-ve)**(odd int) */
376 
377   /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
378   yy1 = y;
379   o.value = yy1;
380   o.parts32.lswlo = 0;
381   o.parts32.lswhi &= 0xf8000000;
382   yy1 = o.value;
383   p_l = (y - yy1) * t1 + y * t2;
384   p_h = yy1 * t1;
385   z = p_l + p_h;
386   o.value = z;
387   j = o.parts32.mswhi;
388   if (j >= 0x400d0000) /* z >= 16384 */
389     {
390       /* if z > 16384 */
391       if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
392 	o.parts32.lswlo) != 0)
393 	return __math_oflowl(s<0);	/* overflow */
394       else
395 	{
396 	  if (p_l + ovt > z - p_h)
397 	    return __math_oflowl(s<0);	/* overflow */
398 	}
399     }
400   else if ((j & 0x7fffffff) >= 0x400d01b9)	/* z <= -16495 */
401     {
402       /* z < -16495 */
403       if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
404 	o.parts32.lswlo)
405 	  != 0)
406 	return __math_uflowl(s<0);	/* underflow */
407       else
408 	{
409 	  if (p_l <= z - p_h)
410 	    return __math_uflowl(s<0);	/* underflow */
411 	}
412     }
413   /* compute 2**(p_h+p_l) */
414   i = j & 0x7fffffff;
415   k = (i >> 16) - 0x3fff;
416   n = 0;
417   if (i > 0x3ffe0000)
418     {				/* if |z| > 0.5, set n = [z+0.5] */
419       n = floorl (z + 0.5L);
420       t = n;
421       p_h -= t;
422     }
423   t = p_l + p_h;
424   o.value = t;
425   o.parts32.lswlo = 0;
426   o.parts32.lswhi &= 0xf8000000;
427   t = o.value;
428   u = t * lg2_h;
429   v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
430   z = u + v;
431   w = v - (z - u);
432   /*  exp(z) */
433   t = z * z;
434   u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
435   v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
436   t1 = z - t * u / v;
437   r = (z * t1) / (t1 - two) - (w + z * w);
438   z = one - (r - z);
439   o.value = z;
440   j = o.parts32.mswhi;
441   j += (n << 16);
442   if ((j >> 16) <= 0)
443     z = scalbnl (z, n);	/* subnormal output */
444   else
445     {
446       o.parts32.mswhi = j;
447       z = o.value;
448     }
449   return s * z;
450 }
451 
452 #if defined(_HAVE_ALIAS_ATTRIBUTE)
453 #ifndef __clang__
454 #pragma GCC diagnostic ignored "-Wmissing-attributes"
455 #endif
456 __strong_reference(powl, _powl);
457 #endif
458