1 /*	$OpenBSD: e_log2l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*                                                      log2l.c
20  *      Base 2 logarithm, 128-bit long double precision
21  *
22  *
23  *
24  * SYNOPSIS:
25  *
26  * long double x, y, log2l();
27  *
28  * y = log2l( x );
29  *
30  *
31  *
32  * DESCRIPTION:
33  *
34  * Returns the base 2 logarithm of x.
35  *
36  * The argument is separated into its exponent and fractional
37  * parts.  If the exponent is between -1 and +1, the (natural)
38  * logarithm of the fraction is approximated by
39  *
40  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
41  *
42  * Otherwise, setting  z = 2(x-1)/x+1),
43  *
44  *     log(x) = z + z^3 P(z)/Q(z).
45  *
46  *
47  *
48  * ACCURACY:
49  *
50  *                      Relative error:
51  * arithmetic   domain     # trials      peak         rms
52  *    IEEE      0.5, 2.0     100,000    2.6e-34     4.9e-35
53  *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35
54  *
55  * In the tests over the interval exp(+-10000), the logarithms
56  * of the random arguments were uniformly distributed over
57  * [-10000, +10000].
58  *
59  */
60 
61 
62 
63 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
64  * 1/sqrt(2) <= x < sqrt(2)
65  * Theoretical peak relative error = 5.3e-37,
66  * relative peak error spread = 2.3e-14
67  */
68 static const long double P[13] =
69 {
70   1.313572404063446165910279910527789794488E4L,
71   7.771154681358524243729929227226708890930E4L,
72   2.014652742082537582487669938141683759923E5L,
73   3.007007295140399532324943111654767187848E5L,
74   2.854829159639697837788887080758954924001E5L,
75   1.797628303815655343403735250238293741397E5L,
76   7.594356839258970405033155585486712125861E4L,
77   2.128857716871515081352991964243375186031E4L,
78   3.824952356185897735160588078446136783779E3L,
79   4.114517881637811823002128927449878962058E2L,
80   2.321125933898420063925789532045674660756E1L,
81   4.998469661968096229986658302195402690910E-1L,
82   1.538612243596254322971797716843006400388E-6L
83 };
84 static const long double Q[12] =
85 {
86   3.940717212190338497730839731583397586124E4L,
87   2.626900195321832660448791748036714883242E5L,
88   7.777690340007566932935753241556479363645E5L,
89   1.347518538384329112529391120390701166528E6L,
90   1.514882452993549494932585972882995548426E6L,
91   1.158019977462989115839826904108208787040E6L,
92   6.132189329546557743179177159925690841200E5L,
93   2.248234257620569139969141618556349415120E5L,
94   5.605842085972455027590989944010492125825E4L,
95   9.147150349299596453976674231612674085381E3L,
96   9.104928120962988414618126155557301584078E2L,
97   4.839208193348159620282142911143429644326E1L
98 /* 1.000000000000000000000000000000000000000E0L, */
99 };
100 
101 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
102  * where z = 2(x-1)/(x+1)
103  * 1/sqrt(2) <= x < sqrt(2)
104  * Theoretical peak relative error = 1.1e-35,
105  * relative peak error spread 1.1e-9
106  */
107 static const long double R[6] =
108 {
109   1.418134209872192732479751274970992665513E5L,
110  -8.977257995689735303686582344659576526998E4L,
111   2.048819892795278657810231591630928516206E4L,
112  -2.024301798136027039250415126250455056397E3L,
113   8.057002716646055371965756206836056074715E1L,
114  -8.828896441624934385266096344596648080902E-1L
115 };
116 static const long double S[6] =
117 {
118   1.701761051846631278975701529965589676574E6L,
119  -1.332535117259762928288745111081235577029E6L,
120   4.001557694070773974936904547424676279307E5L,
121  -5.748542087379434595104154610899551484314E4L,
122   3.998526750980007367835804959888064681098E3L,
123  -1.186359407982897997337150403816839480438E2L
124 /* 1.000000000000000000000000000000000000000E0L, */
125 };
126 
127 static const long double
128 /* log2(e) - 1 */
129 LOG2EA = 4.4269504088896340735992468100189213742664595E-1L,
130 /* sqrt(2)/2 */
131 SQRTH = 7.071067811865475244008443621048490392848359E-1L;
132 
133 
134 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
135 
136 static long double
neval(long double x,const long double * p,int n)137 neval (long double x, const long double *p, int n)
138 {
139   long double y;
140 
141   p += n;
142   y = *p--;
143   do
144     {
145       y = y * x + *p--;
146     }
147   while (--n > 0);
148   return y;
149 }
150 
151 
152 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
153 
154 static long double
deval(long double x,const long double * p,int n)155 deval (long double x, const long double *p, int n)
156 {
157   long double y;
158 
159   p += n;
160   y = x + *p--;
161   do
162     {
163       y = y * x + *p--;
164     }
165   while (--n > 0);
166   return y;
167 }
168 
169 
170 
171 long double
log2l(long double x)172 log2l(long double x)
173 {
174   long double z;
175   long double y;
176   int e;
177   int64_t hx, lx;
178 
179 /* Test for domain */
180   GET_LDOUBLE_WORDS64 (hx, lx, x);
181   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
182     return __math_divzerol(1);
183   if (hx < 0)
184     return __math_invalidl(x);
185   if (hx >= 0x7fff000000000000LL)
186     return (x + x);
187 
188 /* separate mantissa from exponent */
189 
190 /* Note, frexp is used so that denormal numbers
191  * will be handled properly.
192  */
193   x = frexpl (x, &e);
194 
195 
196 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
197  * where z = 2(x-1)/x+1)
198  */
199   if ((e > 2) || (e < -2))
200     {
201       if (x < SQRTH)
202 	{			/* 2( 2x-1 )/( 2x+1 ) */
203 	  e -= 1;
204 	  z = x - 0.5L;
205 	  y = 0.5L * z + 0.5L;
206 	}
207       else
208 	{			/*  2 (x-1)/(x+1)   */
209 	  z = x - 0.5L;
210 	  z -= 0.5L;
211 	  y = 0.5L * x + 0.5L;
212 	}
213       x = z / y;
214       z = x * x;
215       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
216       goto done;
217     }
218 
219 
220 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
221 
222   if (x < SQRTH)
223     {
224       e -= 1;
225       x = 2.0L * x - 1.0L;	/*  2x - 1  */
226     }
227   else
228     {
229       x = x - 1.0L;
230     }
231   z = x * x;
232   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
233   y = y - 0.5L * z;
234 
235 done:
236 
237 /* Multiply log of fraction by log2(e)
238  * and base 2 exponent by 1
239  */
240   z = y * LOG2EA;
241   z += x * LOG2EA;
242   z += y;
243   z += x;
244   z += e;
245   return (z);
246 }
247