1 /*	$OpenBSD: e_log10l.c,v 1.1 2011/07/06 00:02:42 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							log10l.c
20  *
21  *	Common logarithm, 128-bit long double precision
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, log10l();
28  *
29  * y = log10l( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns the base 10 logarithm of x.
36  *
37  * The argument is separated into its exponent and fractional
38  * parts.  If the exponent is between -1 and +1, the logarithm
39  * of the fraction is approximated by
40  *
41  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
42  *
43  * Otherwise, setting  z = 2(x-1)/x+1),
44  *
45  *     log(x) = z + z^3 P(z)/Q(z).
46  *
47  *
48  *
49  * ACCURACY:
50  *
51  *                      Relative error:
52  * arithmetic   domain     # trials      peak         rms
53  *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
54  *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
55  *
56  * In the tests over the interval exp(+-10000), the logarithms
57  * of the random arguments were uniformly distributed over
58  * [-10000, +10000].
59  *
60  */
61 
62 
63 
64 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
65  * 1/sqrt(2) <= x < sqrt(2)
66  * Theoretical peak relative error = 5.3e-37,
67  * relative peak error spread = 2.3e-14
68  */
69 static const long double P[13] =
70 {
71   1.313572404063446165910279910527789794488E4L,
72   7.771154681358524243729929227226708890930E4L,
73   2.014652742082537582487669938141683759923E5L,
74   3.007007295140399532324943111654767187848E5L,
75   2.854829159639697837788887080758954924001E5L,
76   1.797628303815655343403735250238293741397E5L,
77   7.594356839258970405033155585486712125861E4L,
78   2.128857716871515081352991964243375186031E4L,
79   3.824952356185897735160588078446136783779E3L,
80   4.114517881637811823002128927449878962058E2L,
81   2.321125933898420063925789532045674660756E1L,
82   4.998469661968096229986658302195402690910E-1L,
83   1.538612243596254322971797716843006400388E-6L
84 };
85 static const long double Q[12] =
86 {
87   3.940717212190338497730839731583397586124E4L,
88   2.626900195321832660448791748036714883242E5L,
89   7.777690340007566932935753241556479363645E5L,
90   1.347518538384329112529391120390701166528E6L,
91   1.514882452993549494932585972882995548426E6L,
92   1.158019977462989115839826904108208787040E6L,
93   6.132189329546557743179177159925690841200E5L,
94   2.248234257620569139969141618556349415120E5L,
95   5.605842085972455027590989944010492125825E4L,
96   9.147150349299596453976674231612674085381E3L,
97   9.104928120962988414618126155557301584078E2L,
98   4.839208193348159620282142911143429644326E1L
99 /* 1.000000000000000000000000000000000000000E0L, */
100 };
101 
102 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
103  * where z = 2(x-1)/(x+1)
104  * 1/sqrt(2) <= x < sqrt(2)
105  * Theoretical peak relative error = 1.1e-35,
106  * relative peak error spread 1.1e-9
107  */
108 static const long double R[6] =
109 {
110   1.418134209872192732479751274970992665513E5L,
111  -8.977257995689735303686582344659576526998E4L,
112   2.048819892795278657810231591630928516206E4L,
113  -2.024301798136027039250415126250455056397E3L,
114   8.057002716646055371965756206836056074715E1L,
115  -8.828896441624934385266096344596648080902E-1L
116 };
117 static const long double S[6] =
118 {
119   1.701761051846631278975701529965589676574E6L,
120  -1.332535117259762928288745111081235577029E6L,
121   4.001557694070773974936904547424676279307E5L,
122  -5.748542087379434595104154610899551484314E4L,
123   3.998526750980007367835804959888064681098E3L,
124  -1.186359407982897997337150403816839480438E2L
125 /* 1.000000000000000000000000000000000000000E0L, */
126 };
127 
128 static const long double
129 /* log10(2) */
130 L102A = 0.3125L,
131 L102B = -1.14700043360188047862611052755069732318101185E-2L,
132 /* log10(e) */
133 L10EA = 0.5L,
134 L10EB = -6.570551809674817234887108108339491770560299E-2L,
135 /* sqrt(2)/2 */
136 SQRTH = 7.071067811865475244008443621048490392848359E-1L;
137 
138 
139 
140 /* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
141 
142 static long double
neval(long double x,const long double * p,int n)143 neval (long double x, const long double *p, int n)
144 {
145   long double y;
146 
147   p += n;
148   y = *p--;
149   do
150     {
151       y = y * x + *p--;
152     }
153   while (--n > 0);
154   return y;
155 }
156 
157 
158 /* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
159 
160 static long double
deval(long double x,const long double * p,int n)161 deval (long double x, const long double *p, int n)
162 {
163   long double y;
164 
165   p += n;
166   y = x + *p--;
167   do
168     {
169       y = y * x + *p--;
170     }
171   while (--n > 0);
172   return y;
173 }
174 
175 
176 
177 long double
log10l(long double x)178 log10l(long double x)
179 {
180   long double z;
181   long double y;
182   int e;
183   int64_t hx, lx;
184 
185 /* Test for domain */
186   GET_LDOUBLE_WORDS64 (hx, lx, x);
187   if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
188     return __math_divzerol(1);
189   if (hx < 0)
190     return __math_invalidl(x);
191   if (hx >= 0x7fff000000000000LL)
192     return (x + x);
193 
194 /* separate mantissa from exponent */
195 
196 /* Note, frexp is used so that denormal numbers
197  * will be handled properly.
198  */
199   x = frexpl (x, &e);
200 
201 
202 /* logarithm using log(x) = z + z**3 P(z)/Q(z),
203  * where z = 2(x-1)/x+1)
204  */
205   if ((e > 2) || (e < -2))
206     {
207       if (x < SQRTH)
208 	{			/* 2( 2x-1 )/( 2x+1 ) */
209 	  e -= 1;
210 	  z = x - 0.5L;
211 	  y = 0.5L * z + 0.5L;
212 	}
213       else
214 	{			/*  2 (x-1)/(x+1)   */
215 	  z = x - 0.5L;
216 	  z -= 0.5L;
217 	  y = 0.5L * x + 0.5L;
218 	}
219       x = z / y;
220       z = x * x;
221       y = x * (z * neval (z, R, 5) / deval (z, S, 5));
222       goto done;
223     }
224 
225 
226 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
227 
228   if (x < SQRTH)
229     {
230       e -= 1;
231       x = 2.0L * x - 1.0L;	/*  2x - 1  */
232     }
233   else
234     {
235       x = x - 1.0L;
236     }
237   z = x * x;
238   y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
239   y = y - 0.5L * z;
240 
241 done:
242 
243   /* Multiply log of fraction by log10(e)
244    * and base 2 exponent by log10(2).
245    */
246   z = y * L10EB;
247   z += x * L10EB;
248   z += e * L102B;
249   z += y * L10EA;
250   z += x * L10EA;
251   z += e * L102A;
252   return (z);
253 }
254