1 /* @(#)e_hypot.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* hypotl(x,y)
14  *
15  * Method :
16  *	If (assume round-to-nearest) z=x*x+y*y
17  *	has error less than sqrtl(2)/2 ulp, than
18  *	sqrtl(z) has error less than 1 ulp (exercise).
19  *
20  *	So, compute sqrtl(x*x+y*y) with some care as
21  *	follows to get the error below 1 ulp:
22  *
23  *	Assume x>y>0;
24  *	(if possible, set rounding to round-to-nearest)
25  *	1. if x > 2y  use
26  *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
27  *	where x1 = x with lower 64 bits cleared, x2 = x-x1; else
28  *	2. if x <= 2y use
29  *		t1*yy1+((x-y)*(x-y)+(t1*y2+t2*y))
30  *	where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1,
31  *	yy1= y with lower 64 bits chopped, y2 = y-yy1.
32  *
33  *	NOTE: scaling may be necessary if some argument is too
34  *	      large or too tiny
35  *
36  * Special cases:
37  *	hypotl(x,y) is INF if x or y is +INF or -INF; else
38  *	hypotl(x,y) is NAN if x or y is NAN.
39  *
40  * Accuracy:
41  * 	hypotl(x,y) returns sqrtl(x^2+y^2) with error less
42  * 	than 1 ulps (units in the last place)
43  */
44 
45 
46 
47 long double
hypotl(long double x,long double y)48 hypotl(long double x, long double y)
49 {
50 	long double a,b,t1,t2,yy1,y2,w;
51 	int64_t j,k,ha,hb;
52 
53 	GET_LDOUBLE_MSW64(ha,x);
54 	ha &= 0x7fffffffffffffffLL;
55 	GET_LDOUBLE_MSW64(hb,y);
56 	hb &= 0x7fffffffffffffffLL;
57 	if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
58 	SET_LDOUBLE_MSW64(a,ha);	/* a <- |a| */
59 	SET_LDOUBLE_MSW64(b,hb);	/* b <- |b| */
60 	if((ha-hb)>0x78000000000000LL) {return a+b;} /* x/y > 2**120 */
61 	k=0;
62 	if(ha > 0x5f3f000000000000LL) {	/* a>2**8000 */
63 	   if(ha >= 0x7fff000000000000LL) {	/* Inf or NaN */
64 	       u_int64_t low;
65 	       w = a+b;			/* for sNaN */
66 	       GET_LDOUBLE_LSW64(low,a);
67 	       if(((ha&0xffffffffffffLL)|low)==0 && !issignalingl_inline(b))
68                    w = a;
69 	       GET_LDOUBLE_LSW64(low,b);
70 	       if(((hb^0x7fff000000000000LL)|low)==0 && !issignalingl_inline(a))
71                    w = b;
72 	       return w;
73 	   }
74 	   /* scale a and b by 2**-9600 */
75 	   ha -= 0x2580000000000000LL;
76 	   hb -= 0x2580000000000000LL;	k += 9600;
77 	   SET_LDOUBLE_MSW64(a,ha);
78 	   SET_LDOUBLE_MSW64(b,hb);
79 	}
80 	if(hb < 0x20bf000000000000LL) {	/* b < 2**-8000 */
81 	    if(hb <= 0x0000ffffffffffffLL) {	/* subnormal b or 0 */
82 		u_int64_t low;
83 		GET_LDOUBLE_LSW64(low,b);
84 		if((hb|low)==0) return a;
85 		t1=0;
86 		SET_LDOUBLE_MSW64(t1,0x7ffd000000000000LL); /* t1=2^16382 */
87 		b *= t1;
88 		a *= t1;
89 		k -= 16382;
90 	    } else {		/* scale a and b by 2^9600 */
91 		ha += 0x2580000000000000LL;	/* a *= 2^9600 */
92 		hb += 0x2580000000000000LL;	/* b *= 2^9600 */
93 		k -= 9600;
94 		SET_LDOUBLE_MSW64(a,ha);
95 		SET_LDOUBLE_MSW64(b,hb);
96 	    }
97 	}
98     /* medium size a and b */
99 	w = a-b;
100 	if (w>b) {
101 	    t1 = 0;
102 	    SET_LDOUBLE_MSW64(t1,ha);
103 	    t2 = a-t1;
104 	    w  = sqrtl(t1*t1-(b*(-b)-t2*(a+t1)));
105 	} else {
106 	    a  = a+a;
107 	    yy1 = 0;
108 	    SET_LDOUBLE_MSW64(yy1,hb);
109 	    y2 = b - yy1;
110 	    t1 = 0;
111 	    SET_LDOUBLE_MSW64(t1,ha+0x0001000000000000LL);
112 	    t2 = a - t1;
113 	    w  = sqrtl(t1*yy1-(w*(-w)-(t1*y2+t2*b)));
114 	}
115 	if(k!=0) {
116 	    u_int64_t high;
117 	    t1 = 1.0L;
118 	    GET_LDOUBLE_MSW64(high,t1);
119 	    SET_LDOUBLE_MSW64(t1,high+(k<<48));
120 	    return check_oflowl(t1*w);
121 	} else return w;
122 }
123