1 /*	$OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:18 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							expl.c
20  *
21  *	Exponential function, 128-bit long double precision
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, expl();
28  *
29  * y = expl( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns e (2.71828...) raised to the x power.
36  *
37  * Range reduction is accomplished by separating the argument
38  * into an integer k and fraction f such that
39  *
40  *     x    k  f
41  *    e  = 2  e.
42  *
43  * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
44  * in the basic range [-0.5 ln 2, 0.5 ln 2].
45  *
46  *
47  * ACCURACY:
48  *
49  *                      Relative error:
50  * arithmetic   domain     # trials      peak         rms
51  *    IEEE      +-MAXLOG    100,000     2.6e-34     8.6e-35
52  *
53  *
54  * Error amplification in the exponential function can be
55  * a serious matter.  The error propagation involves
56  * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
57  * which shows that a 1 lsb error in representing X produces
58  * a relative error of X times 1 lsb in the function.
59  * While the routine gives an accurate result for arguments
60  * that are exactly represented by a long double precision
61  * computer number, the result contains amplified roundoff
62  * error for large arguments not exactly represented.
63  *
64  *
65  * ERROR MESSAGES:
66  *
67  *   message         condition      value returned
68  * exp underflow    x < MINLOG         0.0
69  * exp overflow     x > MAXLOG         MAXNUM
70  *
71  */
72 
73 /*	Exponential function	*/
74 
75 
76 
77 /* Pade' coefficients for exp(x) - 1
78    Theoretical peak relative error = 2.2e-37,
79    relative peak error spread = 9.2e-38
80  */
81 static long double P[5] = {
82  3.279723985560247033712687707263393506266E-10L,
83  6.141506007208645008909088812338454698548E-7L,
84  2.708775201978218837374512615596512792224E-4L,
85  3.508710990737834361215404761139478627390E-2L,
86  9.999999999999999999999999999999999998502E-1L
87 };
88 static long double Q[6] = {
89  2.980756652081995192255342779918052538681E-12L,
90  1.771372078166251484503904874657985291164E-8L,
91  1.504792651814944826817779302637284053660E-5L,
92  3.611828913847589925056132680618007270344E-3L,
93  2.368408864814233538909747618894558968880E-1L,
94  2.000000000000000000000000000000000000150E0L
95 };
96 /* C1 + C2 = ln 2 */
97 static const long double C1 = -6.93145751953125E-1L;
98 static const long double C2 = -1.428606820309417232121458176568075500134E-6L;
99 
100 static const long double LOG2EL = 1.442695040888963407359924681001892137426646L;
101 static const long double MAXLOGL = 1.1356523406294143949491931077970764891253E4L;
102 static const long double MINLOGL = -1.143276959615573793352782661133116431383730e4L;
103 static const long double huge = 0x1p10000L;
104 #if 0 /* XXX Prevent gcc from erroneously constant folding this. */
105 static const long double twom10000 = 0x1p-10000L;
106 #else
107 static volatile long double twom10000 = 0x1p-10000L;
108 #endif
109 
110 long double
expl(long double x)111 expl(long double x)
112 {
113 long double px, xx;
114 int n;
115 
116 if( isnan(x) )
117 	return(x + x);
118 if( x > MAXLOGL) {
119         if (isinf(x))
120                 return x;
121         return __math_oflowl(0);
122 }
123 
124 if( x < MINLOGL ) {
125         if (isinf(x))
126                 return 0.0L;
127 	return __math_uflowl(0);
128 }
129 
130 /* Express e**x = e**g 2**n
131  *   = e**g e**( n loge(2) )
132  *   = e**( g + n loge(2) )
133  */
134 px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
135 n = px;
136 x += px * C1;
137 x += px * C2;
138 /* rational approximation for exponential
139  * of the fractional part:
140  * e**x =  1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
141  */
142 xx = x * x;
143 px = x * __polevll( xx, P, 4 );
144 xx = __polevll( xx, Q, 5 );
145 x =  px/( xx - px );
146 x = 1.0L + x + x;
147 
148 x = ldexpl( x, n );
149 return(x);
150 }
151