1
2 /* @(#)k_rem_pio2.c 1.3 95/01/18 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 *
7 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
12 */
13
14 //__FBSDID("$FreeBSD: src/lib/msun/src/k_rem_pio2.c,v 1.11 2008/02/25 11:43:20 bde Exp $");
15
16 /*
17 * __kernel_rem_pio2(x,y,e0,nx,prec)
18 * double x[],y[]; int e0,nx,prec;
19 *
20 * __kernel_rem_pio2 return the last three digits of N with
21 * y = x - N*pi/2
22 * so that |y| < pi/2.
23 *
24 * The method is to compute the integer (mod 8) and fraction parts of
25 * (2/pi)*x without doing the full multiplication. In general we
26 * skip the part of the product that are known to be a huge integer (
27 * more accurately, = 0 mod 8 ). Thus the number of operations are
28 * independent of the exponent of the input.
29 *
30 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
31 *
32 * Input parameters:
33 * x[] The input value (must be positive) is broken into nx
34 * pieces of 24-bit integers in double precision format.
35 * x[i] will be the i-th 24 bit of x. The scaled exponent
36 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
37 * match x's up to 24 bits.
38 *
39 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
40 * e0 = ilogb(z)-23
41 * z = scalbn(z,-e0)
42 * for i = 0,1,2
43 * x[i] = floor(z)
44 * z = (z-x[i])*2**24
45 *
46 *
47 * y[] ouput result in an array of double precision numbers.
48 * The dimension of y[] is:
49 * 24-bit precision 1
50 * 53-bit precision 2
51 * 64-bit precision 2
52 * 113-bit precision 3
53 * The actual value is the sum of them. Thus for 113-bit
54 * precison, one may have to do something like:
55 *
56 * long double t,w,r_head, r_tail;
57 * t = (long double)y[2] + (long double)y[1];
58 * w = (long double)y[0];
59 * r_head = t+w;
60 * r_tail = w - (r_head - t);
61 *
62 * e0 The exponent of x[0]. Must be <= 16360 or you need to
63 * expand the ipio2 table.
64 *
65 * nx dimension of x[]
66 *
67 * prec an integer indicating the precision:
68 * 0 24 bits (single)
69 * 1 53 bits (double)
70 * 2 64 bits (extended)
71 * 3 113 bits (quad)
72 *
73 * External function:
74 * double scalbn(), floor();
75 *
76 *
77 * Here is the description of some local variables:
78 *
79 * jk jk+1 is the initial number of terms of ipio2[] needed
80 * in the computation. The minimum and recommended value
81 * for jk is 3,4,4,6 for single, double, extended, and quad.
82 * jk+1 must be 2 larger than you might expect so that our
83 * recomputation test works. (Up to 24 bits in the integer
84 * part (the 24 bits of it that we compute) and 23 bits in
85 * the fraction part may be lost to cancelation before we
86 * recompute.)
87 *
88 * jz local integer variable indicating the number of
89 * terms of ipio2[] used.
90 *
91 * jx nx - 1
92 *
93 * jv index for pointing to the suitable ipio2[] for the
94 * computation. In general, we want
95 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
96 * is an integer. Thus
97 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
98 * Hence jv = max(0,(e0-3)/24).
99 *
100 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
101 *
102 * q[] double array with integral value, representing the
103 * 24-bits chunk of the product of x and 2/pi.
104 *
105 * q0 the corresponding exponent of q[0]. Note that the
106 * exponent for q[i] would be q0-24*i.
107 *
108 * PIo2[] double precision array, obtained by cutting pi/2
109 * into 24 bits chunks.
110 *
111 * f[] ipio2[] in floating point
112 *
113 * iq[] integer array by breaking up q[] in 24-bits chunk.
114 *
115 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
116 *
117 * ih integer. If >0 it indicates q[] is >= 0.5, hence
118 * it also indicates the *sign* of the result.
119 *
120 */
121
122 #ifdef __GNUC__
123 /* GCC analyzer gets confused about the use of 'iq' here */
124 #pragma GCC diagnostic ignored "-Wpragmas"
125 #pragma GCC diagnostic ignored "-Wunknown-warning-option"
126 #pragma GCC diagnostic ignored "-Wanalyzer-use-of-uninitialized-value"
127 #endif
128
129 /*
130 * Constants:
131 * The hexadecimal values are the intended ones for the following
132 * constants. The decimal values may be used, provided that the
133 * compiler will convert from decimal to binary accurately enough
134 * to produce the hexadecimal values shown.
135 */
136
137
138 static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
139
140 /*
141 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
142 *
143 * integer array, contains the (24*i)-th to (24*i+23)-th
144 * bit of 2/pi after binary point. The corresponding
145 * floating value is
146 *
147 * ipio2[i] * 2^(-24(i+1)).
148 *
149 * NB: This table must have at least (e0-3)/24 + jk terms.
150 * For quad precision (e0 <= 16360, jk = 6), this is 686.
151 */
152 static const int32_t ipio2[] = {
153 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
154 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
155 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
156 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
157 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
158 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
159 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
160 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
161 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
162 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
163 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
164
165 #if LDBL_MAX_EXP > 1024
166 #if LDBL_MAX_EXP > 16384
167 #error "ipio2 table needs to be expanded"
168 #endif
169 0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
170 0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
171 0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
172 0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
173 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
174 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
175 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
176 0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
177 0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
178 0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
179 0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
180 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
181 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
182 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
183 0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
184 0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
185 0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
186 0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
187 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
188 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
189 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
190 0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
191 0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
192 0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
193 0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
194 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
195 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
196 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
197 0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
198 0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
199 0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
200 0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
201 0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
202 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
203 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
204 0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
205 0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
206 0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
207 0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
208 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
209 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
210 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
211 0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
212 0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
213 0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
214 0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
215 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
216 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
217 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
218 0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
219 0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
220 0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
221 0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
222 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
223 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
224 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
225 0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
226 0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
227 0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
228 0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
229 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
230 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
231 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
232 0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
233 0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
234 0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
235 0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
236 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
237 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
238 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
239 0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
240 0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
241 0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
242 0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
243 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
244 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
245 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
246 0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
247 0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
248 0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
249 0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
250 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
251 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
252 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
253 0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
254 0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
255 0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
256 0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
257 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
258 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
259 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
260 0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
261 0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
262 0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
263 0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
264 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
265 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
266 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
267 0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
268 0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
269 0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
270 0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
271 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
272 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
273 #endif
274
275 };
276
277 static const double PIo2[] = {
278 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
279 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
280 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
281 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
282 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
283 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
284 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
285 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
286 };
287
288 static const double
289 zero = 0.0,
290 one = 1.0,
291 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
292 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
293
294 int
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec)295 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec)
296 {
297 int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
298 double z,fw,f[20],fq[20] = {0},q[20];
299
300 /* initialize jk*/
301 jk = init_jk[prec];
302 jp = jk;
303
304 /* determine jx,jv,q0, note that 3>q0 */
305 jx = nx-1;
306 jv = (e0-3)/24; if(jv<0) jv=0;
307 q0 = e0-24*(jv+1);
308
309 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
310 j = jv-jx; m = jx+jk;
311 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
312
313 /* compute q[0],q[1],...q[jk] */
314 for (i=0;i<=jk;i++) {
315 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
316 q[i] = fw;
317 }
318
319 jz = jk;
320 recompute:
321 /* distill q[] into iq[] reversingly */
322 for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
323 fw = (double)((int32_t)(twon24* z));
324 iq[i] = (int32_t)(z-two24*fw);
325 z = q[j-1]+fw;
326 }
327
328 /* compute n */
329 z = scalbn(z,q0); /* actual value of z */
330 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
331 n = (int32_t) z;
332 z -= (double)n;
333 ih = 0;
334 if(q0>0) { /* need iq[jz-1] to determine n */
335 i = (iq[jz-1]>>(24-q0)); n += i;
336 iq[jz-1] -= i<<(24-q0);
337 ih = iq[jz-1]>>(23-q0);
338 }
339 else if(q0==0) ih = iq[jz-1]>>23;
340 else if(z>=0.5) ih=2;
341
342 if(ih>0) { /* q > 0.5 */
343 n += 1; carry = 0;
344 for(i=0;i<jz ;i++) { /* compute 1-q */
345 j = iq[i];
346 if(carry==0) {
347 if(j!=0) {
348 carry = 1; iq[i] = 0x1000000- j;
349 }
350 } else iq[i] = 0xffffff - j;
351 }
352 if(q0>0) { /* rare case: chance is 1 in 12 */
353 switch(q0) {
354 case 1:
355 iq[jz-1] &= 0x7fffff; break;
356 case 2:
357 iq[jz-1] &= 0x3fffff; break;
358 }
359 }
360 if(ih==2) {
361 z = one - z;
362 if(carry!=0) z -= scalbn(one,q0);
363 }
364 }
365
366 /* check if recomputation is needed */
367 if(z==zero) {
368 j = 0;
369 for (i=jz-1;i>=jk;i--) j |= iq[i];
370 if(j==0) { /* need recomputation */
371 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
372
373 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
374 f[jx+i] = (double) ipio2[jv+i];
375 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
376 q[i] = fw;
377 }
378 jz += k;
379 goto recompute;
380 }
381 }
382
383 /* chop off zero terms */
384 if(z==0.0) {
385 jz -= 1; q0 -= 24;
386 while(iq[jz]==0) { jz--; q0-=24;}
387 } else { /* break z into 24-bit if necessary */
388 z = scalbn(z,-q0);
389 if(z>=two24) {
390 fw = (double)((int32_t)(twon24*z));
391 iq[jz] = (int32_t)(z-two24*fw);
392 jz += 1; q0 += 24;
393 iq[jz] = (int32_t) fw;
394 } else iq[jz] = (int32_t) z ;
395 }
396
397 /* convert integer "bit" chunk to floating-point value */
398 fw = scalbn(one,q0);
399 for(i=jz;i>=0;i--) {
400 q[i] = fw*(double)iq[i]; fw*=twon24;
401 }
402
403 /* compute PIo2[0,...,jp]*q[jz,...,0] */
404 for(i=jz;i>=0;i--) {
405 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
406 fq[jz-i] = fw;
407 }
408
409 /* compress fq[] into y[] */
410 switch(prec) {
411 case 0:
412 fw = 0.0;
413 for (i=jz;i>=0;i--) fw += fq[i];
414 y[0] = (ih==0)? fw: -fw;
415 break;
416 case 1:
417 case 2:
418 fw = 0.0;
419 for (i=jz;i>=0;i--) fw += fq[i];
420 STRICT_ASSIGN(double,fw,fw);
421 y[0] = (ih==0)? fw: -fw;
422 fw = fq[0]-fw;
423 for (i=1;i<=jz;i++) fw += fq[i];
424 y[1] = (ih==0)? fw: -fw;
425 break;
426 case 3: /* painful */
427 for (i=jz;i>0;i--) {
428 fw = fq[i-1]+fq[i];
429 fq[i] += fq[i-1]-fw;
430 fq[i-1] = fw;
431 }
432 for (i=jz;i>1;i--) {
433 fw = fq[i-1]+fq[i];
434 fq[i] += fq[i-1]-fw;
435 fq[i-1] = fw;
436 }
437 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
438 if(ih==0) {
439 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
440 } else {
441 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
442 }
443 }
444 return n&7;
445 }
446