1 /* Single-precision pow function.
2    Copyright (c) 2017-2018 Arm Ltd.  All rights reserved.
3 
4    SPDX-License-Identifier: BSD-3-Clause
5 
6    Redistribution and use in source and binary forms, with or without
7    modification, are permitted provided that the following conditions
8    are met:
9    1. Redistributions of source code must retain the above copyright
10       notice, this list of conditions and the following disclaimer.
11    2. Redistributions in binary form must reproduce the above copyright
12       notice, this list of conditions and the following disclaimer in the
13       documentation and/or other materials provided with the distribution.
14    3. The name of the company may not be used to endorse or promote
15       products derived from this software without specific prior written
16       permission.
17 
18    THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
19    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21    IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23    TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
28 
29 #include "fdlibm.h"
30 #if !__OBSOLETE_MATH_FLOAT
31 
32 #include <math.h>
33 #include <stdint.h>
34 #include "math_config.h"
35 
36 /*
37 POWF_LOG2_POLY_ORDER = 5
38 EXP2F_TABLE_BITS = 5
39 
40 ULP error: 0.82 (~ 0.5 + relerr*2^24)
41 relerr: 1.27 * 2^-26 (Relative error ~= 128*Ln2*relerr_log2 + relerr_exp2)
42 relerr_log2: 1.83 * 2^-33 (Relative error of logx.)
43 relerr_exp2: 1.69 * 2^-34 (Relative error of exp2(ylogx).)
44 */
45 
46 #define N (1 << POWF_LOG2_TABLE_BITS)
47 #define T __powf_log2_data.tab
48 #define A __powf_log2_data.poly
49 #define OFF 0x3f330000
50 
51 /* Subnormal input is normalized so ix has negative biased exponent.
52    Output is multiplied by N (POWF_SCALE) if TOINT_INTRINICS is set.  */
53 static inline double_t
log2_inline(uint32_t ix)54 log2_inline (uint32_t ix)
55 {
56   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
57   double_t z, r, r2, r4, p, q, y, y0, invc, logc;
58   uint32_t iz, top, tmp;
59   int k, i;
60 
61   /* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
62      The range is split into N subintervals.
63      The ith subinterval contains z and c is near its center.  */
64   tmp = ix - OFF;
65   i = (tmp >> (23 - POWF_LOG2_TABLE_BITS)) % N;
66   top = tmp & 0xff800000;
67   iz = ix - top;
68   k = (int32_t) top >> (23 - POWF_SCALE_BITS); /* arithmetic shift */
69   invc = T[i].invc;
70   logc = T[i].logc;
71   z = (double_t) asfloat (iz);
72 
73   /* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
74   r = z * invc - 1;
75   y0 = logc + (double_t) k;
76 
77   /* Pipelined polynomial evaluation to approximate log1p(r)/ln2.  */
78   r2 = r * r;
79   y = A[0] * r + A[1];
80   p = A[2] * r + A[3];
81   r4 = r2 * r2;
82   q = A[4] * r + y0;
83   q = p * r2 + q;
84   y = y * r4 + q;
85   return y;
86 }
87 
88 #undef N
89 #undef T
90 #define N (1 << EXP2F_TABLE_BITS)
91 #define T __exp2f_data.tab
92 #define SIGN_BIAS ((uint32_t) 1 << (EXP2F_TABLE_BITS + 11))
93 
94 /* The output of log2 and thus the input of exp2 is either scaled by N
95    (in case of fast toint intrinsics) or not.  The unscaled xd must be
96    in [-1021,1023], sign_bias sets the sign of the result.  */
97 static inline double_t
exp2_inline(double_t xd,uint32_t sign_bias)98 exp2_inline (double_t xd, uint32_t sign_bias)
99 {
100   uint64_t ki, ski, t;
101   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
102   double_t kd, z, r, r2, y, s;
103 
104 #if TOINT_INTRINSICS
105 # define C __exp2f_data.poly_scaled
106   /* N*x = k + r with r in [-1/2, 1/2] */
107   kd = roundtoint (xd); /* k */
108   ki = converttoint (xd);
109 #else
110 # define C __exp2f_data.poly
111 # define SHIFT __exp2f_data.shift_scaled
112   /* x = k/N + r with r in [-1/(2N), 1/(2N)] */
113   kd = (double) (xd + SHIFT); /* Rounding to double precision is required.  */
114   ki = asuint64 (kd);
115   kd -= SHIFT; /* k/N */
116 #endif
117   r = xd - kd;
118 
119   /* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1) */
120   t = T[ki % N];
121   ski = ki + sign_bias;
122   t += ski << (52 - EXP2F_TABLE_BITS);
123   s = asfloat64 (t);
124   z = C[0] * r + C[1];
125   r2 = r * r;
126   y = C[2] * r + 1;
127   y = z * r2 + y;
128   y = y * s;
129   return y;
130 }
131 
132 /* Returns 0 if not int, 1 if odd int, 2 if even int.  The argument is
133    the bit representation of a non-zero finite floating-point value.  */
134 static inline int
checkint(uint32_t iy)135 checkint (uint32_t iy)
136 {
137   int e = iy >> 23 & 0xff;
138   if (e < 0x7f)
139     return 0;
140   if (e > 0x7f + 23)
141     return 2;
142   if (iy & (((uint32_t) 1 << (0x7f + 23 - e)) - 1))
143     return 0;
144   if (iy & ((uint32_t) 1 << (0x7f + 23 - e)))
145     return 1;
146   return 2;
147 }
148 
149 static inline int
zeroinfnan(uint32_t ix)150 zeroinfnan (uint32_t ix)
151 {
152   return 2 * ix - 1 >= 2u * (uint32_t) 0x7f800000 - 1;
153 }
154 
155 float
powf(float x,float y)156 powf (float x, float y)
157 {
158   uint32_t sign_bias = 0;
159   uint32_t ix, iy;
160 
161   ix = asuint (x);
162   iy = asuint (y);
163   if (__builtin_expect (ix - 0x00800000 >= 0x7f800000 - 0x00800000
164 			  || zeroinfnan (iy),
165 			0))
166     {
167       /* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan).  */
168       if (__builtin_expect (zeroinfnan (iy), 0))
169 	{
170 	  if (2 * iy == 0)
171 	    return issignalingf_inline (x) ? x + y : 1.0f;
172 	  if (ix == 0x3f800000)
173 	    return issignalingf_inline (y) ? x + y : 1.0f;
174 	  if (2 * ix > 2u * (uint32_t) 0x7f800000 || 2 * iy > 2u * (uint32_t) 0x7f800000)
175 	    return x + y;
176 	  if (2 * ix == 2 * (uint32_t) 0x3f800000)
177 	    return 1.0f;
178 	  if ((2 * ix < 2 * (uint32_t) 0x3f800000) == !(iy & (uint32_t) 0x80000000))
179 	    return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf.  */
180 	  return y * y;
181 	}
182       if (__builtin_expect (zeroinfnan (ix), 0))
183 	{
184 	  float_t x2 = x * x;
185 	  if (ix & 0x80000000 && checkint (iy) == 1)
186 	    {
187 	      x2 = -x2;
188 	      sign_bias = 1;
189 	    }
190           if (!(iy & 0x80000000))
191               return opt_barrier_float(x2);
192 #if WANT_ERRNO
193           if (2 * ix == 0)
194               return __math_divzerof (sign_bias);
195 #endif
196           return 1 / x2;
197 	}
198       /* x and y are non-zero finite.  */
199       if (ix & 0x80000000)
200 	{
201 	  /* Finite x < 0.  */
202 	  int yint = checkint (iy);
203 	  if (yint == 0)
204 	    return __math_invalidf (x);
205 	  if (yint == 1)
206 	    sign_bias = SIGN_BIAS;
207 	  ix &= 0x7fffffff;
208 	}
209       if (ix < 0x00800000)
210 	{
211 	  /* Normalize subnormal x so exponent becomes negative.  */
212 	  ix = asuint (x * 0x1p23f);
213 	  ix &= 0x7fffffff;
214 	  ix -= (uint32_t) 23 << 23;
215 	}
216     }
217   double_t logx = log2_inline (ix);
218   double_t ylogx = (double) y * logx; /* Note: cannot overflow, y is single prec.  */
219   if (__builtin_expect ((asuint64 (ylogx) >> 47 & 0xffff)
220 			  >= asuint64 (126.0 * POWF_SCALE) >> 47,
221 			0))
222     {
223       /* |y*log(x)| >= 126.  */
224       if (ylogx > 0x1.fffffffd1d571p+6 * POWF_SCALE)
225 	/* |x^y| > 0x1.ffffffp127.  */
226 	return __math_oflowf (sign_bias);
227       if (WANT_ROUNDING && WANT_ERRNO
228 	  && ylogx > 0x1.fffffffa3aae2p+6 * POWF_SCALE)
229 	/* |x^y| > 0x1.fffffep127, check if we round away from 0.  */
230 	if ((!sign_bias
231 	     && eval_as_float (1.0f + opt_barrier_float (0x1p-25f)) != 1.0f)
232 	    || (sign_bias
233 		&& eval_as_float (-1.0f - opt_barrier_float (0x1p-25f))
234 		     != -1.0f))
235 	  return __math_oflowf (sign_bias);
236       if (ylogx <= -150.0 * POWF_SCALE)
237 	return __math_uflowf (sign_bias);
238 #if WANT_ERRNO_UFLOW
239       if (ylogx < -149.0 * POWF_SCALE)
240 	return __math_may_uflowf (sign_bias);
241 #endif
242     }
243   return (float) exp2_inline (ylogx, sign_bias);
244 }
245 
246 #if defined(_HAVE_ALIAS_ATTRIBUTE)
247 #ifndef __clang__
248 #pragma GCC diagnostic ignored "-Wmissing-attributes"
249 #endif
250 __strong_reference(powf, _powf);
251 #endif
252 
253 #endif /* !__OBSOLETE_MATH_FLOAT */
254