1 
2 /* @(#)s_expm1.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /*
15 FUNCTION
16 	<<expm1>>, <<expm1f>>---exponential minus 1
17 INDEX
18 	expm1
19 INDEX
20 	expm1f
21 
22 SYNOPSIS
23 	#include <math.h>
24 	double expm1(double <[x]>);
25 	float expm1f(float <[x]>);
26 
27 DESCRIPTION
28 	<<expm1>> and <<expm1f>> calculate the exponential of <[x]>
29 	and subtract 1, that is,
30 	@ifnottex
31 	e raised to the power <[x]> minus 1 (where e
32 	@end ifnottex
33 	@tex
34 	$e^x - 1$ (where $e$
35 	@end tex
36 	is the base of the natural system of logarithms, approximately
37 	2.71828).  The result is accurate even for small values of
38 	<[x]>, where using <<exp(<[x]>)-1>> would lose many
39 	significant digits.
40 
41 RETURNS
42 	e raised to the power <[x]>, minus 1.
43 
44 PORTABILITY
45 	Neither <<expm1>> nor <<expm1f>> is required by ANSI C or by
46 	the System V Interface Definition (Issue 2).
47 */
48 
49 /* expm1(x)
50  * Returns exp(x)-1, the exponential of x minus 1.
51  *
52  * Method
53  *   1. Argument reduction:
54  *	Given x, find r and integer k such that
55  *
56  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
57  *
58  *      Here a correction term c will be computed to compensate
59  *	the error in r when rounded to a floating-point number.
60  *
61  *   2. Approximating expm1(r) by a special rational function on
62  *	the interval [0,0.34658]:
63  *	Since
64  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
65  *	we define R1(r*r) by
66  *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
67  *	That is,
68  *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
69  *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
70  *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
71  *      We use a special Remez algorithm on [0,0.347] to generate
72  * 	a polynomial of degree 5 in r*r to approximate R1. The
73  *	maximum error of this polynomial approximation is bounded
74  *	by 2**-61. In other words,
75  *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
76  *	where 	Q1  =  -1.6666666666666567384E-2,
77  * 		Q2  =   3.9682539681370365873E-4,
78  * 		Q3  =  -9.9206344733435987357E-6,
79  * 		Q4  =   2.5051361420808517002E-7,
80  * 		Q5  =  -6.2843505682382617102E-9;
81  *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
82  *	with error bounded by
83  *	    |                  5           |     -61
84  *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
85  *	    |                              |
86  *
87  *	expm1(r) = exp(r)-1 is then computed by the following
88  * 	specific way which minimize the accumulation rounding error:
89  *			       2     3
90  *			      r     r    [ 3 - (R1 + R1*r/2)  ]
91  *	      expm1(r) = r + --- + --- * [--------------------]
92  *		              2     2    [ 6 - r*(3 - R1*r/2) ]
93  *
94  *	To compensate the error in the argument reduction, we use
95  *		expm1(r+c) = expm1(r) + c + expm1(r)*c
96  *			   ~ expm1(r) + c + r*c
97  *	Thus c+r*c will be added in as the correction terms for
98  *	expm1(r+c). Now rearrange the term to avoid optimization
99  * 	screw up:
100  *		        (      2                                    2 )
101  *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
102  *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
103  *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
104  *                      (                                             )
105  *
106  *		   = r - E
107  *   3. Scale back to obtain expm1(x):
108  *	From step 1, we have
109  *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
110  *		    = or     2^k*[expm1(r) + (1-2^-k)]
111  *   4. Implementation notes:
112  *	(A). To save one multiplication, we scale the coefficient Qi
113  *	     to Qi*2^i, and replace z by (x^2)/2.
114  *	(B). To achieve maximum accuracy, we compute expm1(x) by
115  *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
116  *	  (ii)  if k=0, return r-E
117  *	  (iii) if k=-1, return 0.5*(r-E)-0.5
118  *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
119  *	       	       else	     return  1.0+2.0*(r-E);
120  *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
121  *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
122  *	  (vii) return 2^k(1-((E+2^-k)-r))
123  *
124  * Special cases:
125  *	expm1(INF) is INF, expm1(NaN) is NaN;
126  *	expm1(-INF) is -1, and
127  *	for finite argument, only expm1(0)=0 is exact.
128  *
129  * Accuracy:
130  *	according to an error analysis, the error is always less than
131  *	1 ulp (unit in the last place).
132  *
133  * Misc. info.
134  *	For IEEE double
135  *	    if x >  7.09782712893383973096e+02 then expm1(x) overflow
136  *
137  * Constants:
138  * The hexadecimal values are the intended ones for the following
139  * constants. The decimal values may be used, provided that the
140  * compiler will convert from decimal to binary accurately enough
141  * to produce the hexadecimal values shown.
142  */
143 
144 #include "fdlibm.h"
145 #include "math_config.h"
146 
147 #ifdef _NEED_FLOAT64
148 
149 static const __float64
150     one		= _F_64(1.0),
151     huge	= _F_64(1.0e+300),
152     tiny	= _F_64(1.0e-300),
153     o_threshold	= _F_64(7.09782712893383973096e+02),/* 0x40862E42, 0xFEFA39EF */
154     ln2_hi	= _F_64(6.93147180369123816490e-01),/* 0x3fe62e42, 0xfee00000 */
155     ln2_lo	= _F_64(1.90821492927058770002e-10),/* 0x3dea39ef, 0x35793c76 */
156     invln2	= _F_64(1.44269504088896338700e+00),/* 0x3ff71547, 0x652b82fe */
157     /* scaled coefficients related to expm1 */
158     Q1  =  _F_64(-3.33333333333331316428e-02), /* BFA11111 111110F4 */
159     Q2  =   _F_64(1.58730158725481460165e-03), /* 3F5A01A0 19FE5585 */
160     Q3  =  _F_64(-7.93650757867487942473e-05), /* BF14CE19 9EAADBB7 */
161     Q4  =   _F_64(4.00821782732936239552e-06), /* 3ED0CFCA 86E65239 */
162     Q5  =  _F_64(-2.01099218183624371326e-07); /* BE8AFDB7 6E09C32D */
163 
164 __float64
_NAME_64(expm1)165 _NAME_64(expm1)(__float64 x)
166 {
167 	__float64 y,hi,lo,c,t,e,hxs,hfx,r1;
168 	__int32_t k,xsb;
169 	__uint32_t hx;
170 
171 	GET_HIGH_WORD(hx,x);
172 	xsb = hx&0x80000000;		/* sign bit of x */
173 	if(xsb==0) y=x; else y= -x;	/* y = |x| */
174 	hx &= 0x7fffffff;		/* high word of |x| */
175 
176     /* filter out huge and non-finite argument */
177 	if(hx >= 0x4043687A) {			/* if |x|>=56*ln2 */
178 	    if(hx >= 0x40862E42) {		/* if |x|>=709.78... */
179                 if(hx>=0x7ff00000) {
180 		    __uint32_t low;
181 		    GET_LOW_WORD(low,x);
182 		    if(((hx&0xfffff)|low)!=0)
183 		         return x+x; 	 /* NaN */
184 		    else return (xsb==0)? x:_F_64(-1.0);/* exp(+-inf)={inf,-1} */
185 	        }
186 	        if(x > o_threshold) return __math_oflow (0); /* overflow */
187 	    }
188 	    if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
189 		if(x+tiny<_F_64(0.0))		/* raise inexact */
190 		return tiny-one;	/* return -1 */
191 	    }
192 	}
193 
194     /* argument reduction */
195 	if(hx > 0x3fd62e42) {		/* if  |x| > 0.5 ln2 */
196 	    if(hx < 0x3FF0A2B2) {	/* and |x| < 1.5 ln2 */
197 		if(xsb==0)
198 		    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
199 		else
200 		    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
201 	    } else {
202 		k  = invln2*x+((xsb==0)?_F_64(0.5):_F_64(-0.5));
203 		t  = k;
204 		hi = x - t*ln2_hi;	/* t*ln2_hi is exact here */
205 		lo = t*ln2_lo;
206 	    }
207 	    x  = hi - lo;
208 	    c  = (hi-x)-lo;
209 	}
210 	else if(hx < 0x3c900000) {  	/* when |x|<2**-54, return x */
211 	    t = huge+x;	/* return x with inexact flags when x!=0 */
212 	    return x - (t-(huge+x));
213 	}
214 	else k = 0;
215 
216     /* x is now in primary range */
217 	hfx = _F_64(0.5)*x;
218 	hxs = x*hfx;
219 	r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
220 	t  = _F_64(3.0)-r1*hfx;
221 	e  = hxs*((r1-t)/(_F_64(6.0) - x*t));
222 	if(k==0) return x - (x*e-hxs);		/* c is 0 */
223 	else {
224 	    e  = (x*(e-c)-c);
225 	    e -= hxs;
226 	    if(k== -1) return _F_64(0.5)*(x-e)_F_64(-0.5);
227           if(k==1) {
228 	       	if(x < _F_64(-0.25)) return _F_64(-2.0)*(e-(x+_F_64(0.5)));
229 	       	else 	      return  one+_F_64(2.0)*(x-e);
230           }
231 	    if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
232 	        __uint32_t high;
233 	        y = one-(e-x);
234 		GET_HIGH_WORD(high,y);
235 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
236 	        return y-one;
237 	    }
238 	    t = one;
239 	    if(k<20) {
240 	        __uint32_t high;
241 	        SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
242 	       	y = t-(e-x);
243 		GET_HIGH_WORD(high,y);
244 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
245 	   } else {
246 	        __uint32_t high;
247 		SET_HIGH_WORD(t,((0x3ff-k)<<20));	/* 2^-k */
248 	       	y = x-(e+t);
249 	       	y += one;
250 		GET_HIGH_WORD(high,y);
251 		SET_HIGH_WORD(y,high+(k<<20));	/* add k to y's exponent */
252 	    }
253 	}
254 	return y;
255 }
256 
257 _MATH_ALIAS_d_d(expm1)
258 
259 #endif /* _NEED_FLOAT64 */
260