1 /* Data for the log part of pow. 2 Copyright (c) 2018 Arm Ltd. All rights reserved. 3 4 SPDX-License-Identifier: BSD-3-Clause 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions 8 are met: 9 1. Redistributions of source code must retain the above copyright 10 notice, this list of conditions and the following disclaimer. 11 2. Redistributions in binary form must reproduce the above copyright 12 notice, this list of conditions and the following disclaimer in the 13 documentation and/or other materials provided with the distribution. 14 3. The name of the company may not be used to endorse or promote 15 products derived from this software without specific prior written 16 permission. 17 18 THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 23 TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ 28 29 #include "fdlibm.h" 30 #if !__OBSOLETE_MATH_DOUBLE 31 32 #include "math_config.h" 33 34 #define N (1 << POW_LOG_TABLE_BITS) 35 36 const struct pow_log_data __pow_log_data = { 37 .ln2hi = 0x1.62e42fefa3800p-1, 38 .ln2lo = 0x1.ef35793c76730p-45, 39 .poly = { 40 #if N == 128 && POW_LOG_POLY_ORDER == 8 41 // relative error: 0x1.11922ap-70 42 // in -0x1.6bp-8 0x1.6bp-8 43 // Coefficients are scaled to match the scaling during evaluation. 44 -0x1p-1, 45 0x1.555555555556p-2 * -2, 46 -0x1.0000000000006p-2 * -2, 47 0x1.999999959554ep-3 * 4, 48 -0x1.555555529a47ap-3 * 4, 49 0x1.2495b9b4845e9p-3 * -8, 50 -0x1.0002b8b263fc3p-3 * -8, 51 #endif 52 }, 53 /* Algorithm: 54 55 x = 2^k z 56 log(x) = k ln2 + log(c) + log(z/c) 57 log(z/c) = poly(z/c - 1) 58 59 where z is in [0x1.69555p-1; 0x1.69555p0] which is split into N subintervals 60 and z falls into the ith one, then table entries are computed as 61 62 tab[i].invc = 1/c 63 tab[i].logc = round(0x1p43*log(c))/0x1p43 64 tab[i].logctail = (double)(log(c) - logc) 65 66 where c is chosen near the center of the subinterval such that 1/c has only a 67 few precision bits so z/c - 1 is exactly representible as double: 68 69 1/c = center < 1 ? round(N/center)/N : round(2*N/center)/N/2 70 71 Note: |z/c - 1| < 1/N for the chosen c, |log(c) - logc - logctail| < 0x1p-97, 72 the last few bits of logc are rounded away so k*ln2hi + logc has no rounding 73 error and the interval for z is selected such that near x == 1, where log(x) 74 is tiny, large cancellation error is avoided in logc + poly(z/c - 1). */ 75 .tab = { 76 #if N == 128 77 #define A(a,b,c) {a,0,b,c}, 78 A(0x1.6a00000000000p+0, -0x1.62c82f2b9c800p-2, 0x1.ab42428375680p-48) 79 A(0x1.6800000000000p+0, -0x1.5d1bdbf580800p-2, -0x1.ca508d8e0f720p-46) 80 A(0x1.6600000000000p+0, -0x1.5767717455800p-2, -0x1.362a4d5b6506dp-45) 81 A(0x1.6400000000000p+0, -0x1.51aad872df800p-2, -0x1.684e49eb067d5p-49) 82 A(0x1.6200000000000p+0, -0x1.4be5f95777800p-2, -0x1.41b6993293ee0p-47) 83 A(0x1.6000000000000p+0, -0x1.4618bc21c6000p-2, 0x1.3d82f484c84ccp-46) 84 A(0x1.5e00000000000p+0, -0x1.404308686a800p-2, 0x1.c42f3ed820b3ap-50) 85 A(0x1.5c00000000000p+0, -0x1.3a64c55694800p-2, 0x1.0b1c686519460p-45) 86 A(0x1.5a00000000000p+0, -0x1.347dd9a988000p-2, 0x1.5594dd4c58092p-45) 87 A(0x1.5800000000000p+0, -0x1.2e8e2bae12000p-2, 0x1.67b1e99b72bd8p-45) 88 A(0x1.5600000000000p+0, -0x1.2895a13de8800p-2, 0x1.5ca14b6cfb03fp-46) 89 A(0x1.5600000000000p+0, -0x1.2895a13de8800p-2, 0x1.5ca14b6cfb03fp-46) 90 A(0x1.5400000000000p+0, -0x1.22941fbcf7800p-2, -0x1.65a242853da76p-46) 91 A(0x1.5200000000000p+0, -0x1.1c898c1699800p-2, -0x1.fafbc68e75404p-46) 92 A(0x1.5000000000000p+0, -0x1.1675cababa800p-2, 0x1.f1fc63382a8f0p-46) 93 A(0x1.4e00000000000p+0, -0x1.1058bf9ae4800p-2, -0x1.6a8c4fd055a66p-45) 94 A(0x1.4c00000000000p+0, -0x1.0a324e2739000p-2, -0x1.c6bee7ef4030ep-47) 95 A(0x1.4a00000000000p+0, -0x1.0402594b4d000p-2, -0x1.036b89ef42d7fp-48) 96 A(0x1.4a00000000000p+0, -0x1.0402594b4d000p-2, -0x1.036b89ef42d7fp-48) 97 A(0x1.4800000000000p+0, -0x1.fb9186d5e4000p-3, 0x1.d572aab993c87p-47) 98 A(0x1.4600000000000p+0, -0x1.ef0adcbdc6000p-3, 0x1.b26b79c86af24p-45) 99 A(0x1.4400000000000p+0, -0x1.e27076e2af000p-3, -0x1.72f4f543fff10p-46) 100 A(0x1.4200000000000p+0, -0x1.d5c216b4fc000p-3, 0x1.1ba91bbca681bp-45) 101 A(0x1.4000000000000p+0, -0x1.c8ff7c79aa000p-3, 0x1.7794f689f8434p-45) 102 A(0x1.4000000000000p+0, -0x1.c8ff7c79aa000p-3, 0x1.7794f689f8434p-45) 103 A(0x1.3e00000000000p+0, -0x1.bc286742d9000p-3, 0x1.94eb0318bb78fp-46) 104 A(0x1.3c00000000000p+0, -0x1.af3c94e80c000p-3, 0x1.a4e633fcd9066p-52) 105 A(0x1.3a00000000000p+0, -0x1.a23bc1fe2b000p-3, -0x1.58c64dc46c1eap-45) 106 A(0x1.3a00000000000p+0, -0x1.a23bc1fe2b000p-3, -0x1.58c64dc46c1eap-45) 107 A(0x1.3800000000000p+0, -0x1.9525a9cf45000p-3, -0x1.ad1d904c1d4e3p-45) 108 A(0x1.3600000000000p+0, -0x1.87fa06520d000p-3, 0x1.bbdbf7fdbfa09p-45) 109 A(0x1.3400000000000p+0, -0x1.7ab890210e000p-3, 0x1.bdb9072534a58p-45) 110 A(0x1.3400000000000p+0, -0x1.7ab890210e000p-3, 0x1.bdb9072534a58p-45) 111 A(0x1.3200000000000p+0, -0x1.6d60fe719d000p-3, -0x1.0e46aa3b2e266p-46) 112 A(0x1.3000000000000p+0, -0x1.5ff3070a79000p-3, -0x1.e9e439f105039p-46) 113 A(0x1.3000000000000p+0, -0x1.5ff3070a79000p-3, -0x1.e9e439f105039p-46) 114 A(0x1.2e00000000000p+0, -0x1.526e5e3a1b000p-3, -0x1.0de8b90075b8fp-45) 115 A(0x1.2c00000000000p+0, -0x1.44d2b6ccb8000p-3, 0x1.70cc16135783cp-46) 116 A(0x1.2c00000000000p+0, -0x1.44d2b6ccb8000p-3, 0x1.70cc16135783cp-46) 117 A(0x1.2a00000000000p+0, -0x1.371fc201e9000p-3, 0x1.178864d27543ap-48) 118 A(0x1.2800000000000p+0, -0x1.29552f81ff000p-3, -0x1.48d301771c408p-45) 119 A(0x1.2600000000000p+0, -0x1.1b72ad52f6000p-3, -0x1.e80a41811a396p-45) 120 A(0x1.2600000000000p+0, -0x1.1b72ad52f6000p-3, -0x1.e80a41811a396p-45) 121 A(0x1.2400000000000p+0, -0x1.0d77e7cd09000p-3, 0x1.a699688e85bf4p-47) 122 A(0x1.2400000000000p+0, -0x1.0d77e7cd09000p-3, 0x1.a699688e85bf4p-47) 123 A(0x1.2200000000000p+0, -0x1.fec9131dbe000p-4, -0x1.575545ca333f2p-45) 124 A(0x1.2000000000000p+0, -0x1.e27076e2b0000p-4, 0x1.a342c2af0003cp-45) 125 A(0x1.2000000000000p+0, -0x1.e27076e2b0000p-4, 0x1.a342c2af0003cp-45) 126 A(0x1.1e00000000000p+0, -0x1.c5e548f5bc000p-4, -0x1.d0c57585fbe06p-46) 127 A(0x1.1c00000000000p+0, -0x1.a926d3a4ae000p-4, 0x1.53935e85baac8p-45) 128 A(0x1.1c00000000000p+0, -0x1.a926d3a4ae000p-4, 0x1.53935e85baac8p-45) 129 A(0x1.1a00000000000p+0, -0x1.8c345d631a000p-4, 0x1.37c294d2f5668p-46) 130 A(0x1.1a00000000000p+0, -0x1.8c345d631a000p-4, 0x1.37c294d2f5668p-46) 131 A(0x1.1800000000000p+0, -0x1.6f0d28ae56000p-4, -0x1.69737c93373dap-45) 132 A(0x1.1600000000000p+0, -0x1.51b073f062000p-4, 0x1.f025b61c65e57p-46) 133 A(0x1.1600000000000p+0, -0x1.51b073f062000p-4, 0x1.f025b61c65e57p-46) 134 A(0x1.1400000000000p+0, -0x1.341d7961be000p-4, 0x1.c5edaccf913dfp-45) 135 A(0x1.1400000000000p+0, -0x1.341d7961be000p-4, 0x1.c5edaccf913dfp-45) 136 A(0x1.1200000000000p+0, -0x1.16536eea38000p-4, 0x1.47c5e768fa309p-46) 137 A(0x1.1000000000000p+0, -0x1.f0a30c0118000p-5, 0x1.d599e83368e91p-45) 138 A(0x1.1000000000000p+0, -0x1.f0a30c0118000p-5, 0x1.d599e83368e91p-45) 139 A(0x1.0e00000000000p+0, -0x1.b42dd71198000p-5, 0x1.c827ae5d6704cp-46) 140 A(0x1.0e00000000000p+0, -0x1.b42dd71198000p-5, 0x1.c827ae5d6704cp-46) 141 A(0x1.0c00000000000p+0, -0x1.77458f632c000p-5, -0x1.cfc4634f2a1eep-45) 142 A(0x1.0c00000000000p+0, -0x1.77458f632c000p-5, -0x1.cfc4634f2a1eep-45) 143 A(0x1.0a00000000000p+0, -0x1.39e87b9fec000p-5, 0x1.502b7f526feaap-48) 144 A(0x1.0a00000000000p+0, -0x1.39e87b9fec000p-5, 0x1.502b7f526feaap-48) 145 A(0x1.0800000000000p+0, -0x1.f829b0e780000p-6, -0x1.980267c7e09e4p-45) 146 A(0x1.0800000000000p+0, -0x1.f829b0e780000p-6, -0x1.980267c7e09e4p-45) 147 A(0x1.0600000000000p+0, -0x1.7b91b07d58000p-6, -0x1.88d5493faa639p-45) 148 A(0x1.0400000000000p+0, -0x1.fc0a8b0fc0000p-7, -0x1.f1e7cf6d3a69cp-50) 149 A(0x1.0400000000000p+0, -0x1.fc0a8b0fc0000p-7, -0x1.f1e7cf6d3a69cp-50) 150 A(0x1.0200000000000p+0, -0x1.fe02a6b100000p-8, -0x1.9e23f0dda40e4p-46) 151 A(0x1.0200000000000p+0, -0x1.fe02a6b100000p-8, -0x1.9e23f0dda40e4p-46) 152 A(0x1.0000000000000p+0, 0x0.0000000000000p+0, 0x0.0000000000000p+0) 153 A(0x1.0000000000000p+0, 0x0.0000000000000p+0, 0x0.0000000000000p+0) 154 A(0x1.fc00000000000p-1, 0x1.0101575890000p-7, -0x1.0c76b999d2be8p-46) 155 A(0x1.f800000000000p-1, 0x1.0205658938000p-6, -0x1.3dc5b06e2f7d2p-45) 156 A(0x1.f400000000000p-1, 0x1.8492528c90000p-6, -0x1.aa0ba325a0c34p-45) 157 A(0x1.f000000000000p-1, 0x1.0415d89e74000p-5, 0x1.111c05cf1d753p-47) 158 A(0x1.ec00000000000p-1, 0x1.466aed42e0000p-5, -0x1.c167375bdfd28p-45) 159 A(0x1.e800000000000p-1, 0x1.894aa149fc000p-5, -0x1.97995d05a267dp-46) 160 A(0x1.e400000000000p-1, 0x1.ccb73cdddc000p-5, -0x1.a68f247d82807p-46) 161 A(0x1.e200000000000p-1, 0x1.eea31c006c000p-5, -0x1.e113e4fc93b7bp-47) 162 A(0x1.de00000000000p-1, 0x1.1973bd1466000p-4, -0x1.5325d560d9e9bp-45) 163 A(0x1.da00000000000p-1, 0x1.3bdf5a7d1e000p-4, 0x1.cc85ea5db4ed7p-45) 164 A(0x1.d600000000000p-1, 0x1.5e95a4d97a000p-4, -0x1.c69063c5d1d1ep-45) 165 A(0x1.d400000000000p-1, 0x1.700d30aeac000p-4, 0x1.c1e8da99ded32p-49) 166 A(0x1.d000000000000p-1, 0x1.9335e5d594000p-4, 0x1.3115c3abd47dap-45) 167 A(0x1.cc00000000000p-1, 0x1.b6ac88dad6000p-4, -0x1.390802bf768e5p-46) 168 A(0x1.ca00000000000p-1, 0x1.c885801bc4000p-4, 0x1.646d1c65aacd3p-45) 169 A(0x1.c600000000000p-1, 0x1.ec739830a2000p-4, -0x1.dc068afe645e0p-45) 170 A(0x1.c400000000000p-1, 0x1.fe89139dbe000p-4, -0x1.534d64fa10afdp-45) 171 A(0x1.c000000000000p-1, 0x1.1178e8227e000p-3, 0x1.1ef78ce2d07f2p-45) 172 A(0x1.be00000000000p-1, 0x1.1aa2b7e23f000p-3, 0x1.ca78e44389934p-45) 173 A(0x1.ba00000000000p-1, 0x1.2d1610c868000p-3, 0x1.39d6ccb81b4a1p-47) 174 A(0x1.b800000000000p-1, 0x1.365fcb0159000p-3, 0x1.62fa8234b7289p-51) 175 A(0x1.b400000000000p-1, 0x1.4913d8333b000p-3, 0x1.5837954fdb678p-45) 176 A(0x1.b200000000000p-1, 0x1.527e5e4a1b000p-3, 0x1.633e8e5697dc7p-45) 177 A(0x1.ae00000000000p-1, 0x1.6574ebe8c1000p-3, 0x1.9cf8b2c3c2e78p-46) 178 A(0x1.ac00000000000p-1, 0x1.6f0128b757000p-3, -0x1.5118de59c21e1p-45) 179 A(0x1.aa00000000000p-1, 0x1.7898d85445000p-3, -0x1.c661070914305p-46) 180 A(0x1.a600000000000p-1, 0x1.8beafeb390000p-3, -0x1.73d54aae92cd1p-47) 181 A(0x1.a400000000000p-1, 0x1.95a5adcf70000p-3, 0x1.7f22858a0ff6fp-47) 182 A(0x1.a000000000000p-1, 0x1.a93ed3c8ae000p-3, -0x1.8724350562169p-45) 183 A(0x1.9e00000000000p-1, 0x1.b31d8575bd000p-3, -0x1.c358d4eace1aap-47) 184 A(0x1.9c00000000000p-1, 0x1.bd087383be000p-3, -0x1.d4bc4595412b6p-45) 185 A(0x1.9a00000000000p-1, 0x1.c6ffbc6f01000p-3, -0x1.1ec72c5962bd2p-48) 186 A(0x1.9600000000000p-1, 0x1.db13db0d49000p-3, -0x1.aff2af715b035p-45) 187 A(0x1.9400000000000p-1, 0x1.e530effe71000p-3, 0x1.212276041f430p-51) 188 A(0x1.9200000000000p-1, 0x1.ef5ade4dd0000p-3, -0x1.a211565bb8e11p-51) 189 A(0x1.9000000000000p-1, 0x1.f991c6cb3b000p-3, 0x1.bcbecca0cdf30p-46) 190 A(0x1.8c00000000000p-1, 0x1.07138604d5800p-2, 0x1.89cdb16ed4e91p-48) 191 A(0x1.8a00000000000p-1, 0x1.0c42d67616000p-2, 0x1.7188b163ceae9p-45) 192 A(0x1.8800000000000p-1, 0x1.1178e8227e800p-2, -0x1.c210e63a5f01cp-45) 193 A(0x1.8600000000000p-1, 0x1.16b5ccbacf800p-2, 0x1.b9acdf7a51681p-45) 194 A(0x1.8400000000000p-1, 0x1.1bf99635a6800p-2, 0x1.ca6ed5147bdb7p-45) 195 A(0x1.8200000000000p-1, 0x1.214456d0eb800p-2, 0x1.a87deba46baeap-47) 196 A(0x1.7e00000000000p-1, 0x1.2bef07cdc9000p-2, 0x1.a9cfa4a5004f4p-45) 197 A(0x1.7c00000000000p-1, 0x1.314f1e1d36000p-2, -0x1.8e27ad3213cb8p-45) 198 A(0x1.7a00000000000p-1, 0x1.36b6776be1000p-2, 0x1.16ecdb0f177c8p-46) 199 A(0x1.7800000000000p-1, 0x1.3c25277333000p-2, 0x1.83b54b606bd5cp-46) 200 A(0x1.7600000000000p-1, 0x1.419b423d5e800p-2, 0x1.8e436ec90e09dp-47) 201 A(0x1.7400000000000p-1, 0x1.4718dc271c800p-2, -0x1.f27ce0967d675p-45) 202 A(0x1.7200000000000p-1, 0x1.4c9e09e173000p-2, -0x1.e20891b0ad8a4p-45) 203 A(0x1.7000000000000p-1, 0x1.522ae0738a000p-2, 0x1.ebe708164c759p-45) 204 A(0x1.6e00000000000p-1, 0x1.57bf753c8d000p-2, 0x1.fadedee5d40efp-46) 205 A(0x1.6c00000000000p-1, 0x1.5d5bddf596000p-2, -0x1.a0b2a08a465dcp-47) 206 #endif 207 }, 208 }; 209 #endif /* __OBSOLETE_MATH_DOUBLE */ 210