1 /* Data for log2. 2 Copyright (c) 2018 Arm Ltd. All rights reserved. 3 4 SPDX-License-Identifier: BSD-3-Clause 5 6 Redistribution and use in source and binary forms, with or without 7 modification, are permitted provided that the following conditions 8 are met: 9 1. Redistributions of source code must retain the above copyright 10 notice, this list of conditions and the following disclaimer. 11 2. Redistributions in binary form must reproduce the above copyright 12 notice, this list of conditions and the following disclaimer in the 13 documentation and/or other materials provided with the distribution. 14 3. The name of the company may not be used to endorse or promote 15 products derived from this software without specific prior written 16 permission. 17 18 THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 23 TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ 28 29 #include "fdlibm.h" 30 #if !__OBSOLETE_MATH_DOUBLE 31 32 #include "math_config.h" 33 34 #define N (1 << LOG2_TABLE_BITS) 35 36 const struct log2_data __log2_data = { 37 // First coefficient: 0x1.71547652b82fe1777d0ffda0d24p0 38 .invln2hi = 0x1.7154765200000p+0, 39 .invln2lo = 0x1.705fc2eefa200p-33, 40 .poly1 = { 41 #if LOG2_POLY1_ORDER == 11 42 // relative error: 0x1.2fad8188p-63 43 // in -0x1.5b51p-5 0x1.6ab2p-5 44 -0x1.71547652b82fep-1, 45 0x1.ec709dc3a03f7p-2, 46 -0x1.71547652b7c3fp-2, 47 0x1.2776c50f05be4p-2, 48 -0x1.ec709dd768fe5p-3, 49 0x1.a61761ec4e736p-3, 50 -0x1.7153fbc64a79bp-3, 51 0x1.484d154f01b4ap-3, 52 -0x1.289e4a72c383cp-3, 53 0x1.0b32f285aee66p-3, 54 #endif 55 }, 56 .poly = { 57 #if N == 64 && LOG2_POLY_ORDER == 7 58 // relative error: 0x1.a72c2bf8p-58 59 // abs error: 0x1.67a552c8p-66 60 // in -0x1.f45p-8 0x1.f45p-8 61 -0x1.71547652b8339p-1, 62 0x1.ec709dc3a04bep-2, 63 -0x1.7154764702ffbp-2, 64 0x1.2776c50034c48p-2, 65 -0x1.ec7b328ea92bcp-3, 66 0x1.a6225e117f92ep-3, 67 #endif 68 }, 69 /* Algorithm: 70 71 x = 2^k z 72 log2(x) = k + log2(c) + log2(z/c) 73 log2(z/c) = poly(z/c - 1) 74 75 where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls 76 into the ith one, then table entries are computed as 77 78 tab[i].invc = 1/c 79 tab[i].logc = (double)log2(c) 80 tab2[i].chi = (double)c 81 tab2[i].clo = (double)(c - (double)c) 82 83 where c is near the center of the subinterval and is chosen by trying +-2^29 84 floating point invc candidates around 1/center and selecting one for which 85 86 1) the rounding error in 0x1.8p10 + logc is 0, 87 2) the rounding error in z - chi - clo is < 0x1p-64 and 88 3) the rounding error in (double)log2(c) is minimized (< 0x1p-68). 89 90 Note: 1) ensures that k + logc can be computed without rounding error, 2) 91 ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a 92 single rounding error when there is no fast fma for z*invc - 1, 3) ensures 93 that logc + poly(z/c - 1) has small error, however near x == 1 when 94 |log2(x)| < 0x1p-4, this is not enough so that is special cased. */ 95 .tab = { 96 #if N == 64 97 {0x1.724286bb1acf8p+0, -0x1.1095feecdb000p-1}, 98 {0x1.6e1f766d2cca1p+0, -0x1.08494bd76d000p-1}, 99 {0x1.6a13d0e30d48ap+0, -0x1.00143aee8f800p-1}, 100 {0x1.661ec32d06c85p+0, -0x1.efec5360b4000p-2}, 101 {0x1.623fa951198f8p+0, -0x1.dfdd91ab7e000p-2}, 102 {0x1.5e75ba4cf026cp+0, -0x1.cffae0cc79000p-2}, 103 {0x1.5ac055a214fb8p+0, -0x1.c043811fda000p-2}, 104 {0x1.571ed0f166e1ep+0, -0x1.b0b67323ae000p-2}, 105 {0x1.53909590bf835p+0, -0x1.a152f5a2db000p-2}, 106 {0x1.5014fed61adddp+0, -0x1.9217f5af86000p-2}, 107 {0x1.4cab88e487bd0p+0, -0x1.8304db0719000p-2}, 108 {0x1.49539b4334feep+0, -0x1.74189f9a9e000p-2}, 109 {0x1.460cbdfafd569p+0, -0x1.6552bb5199000p-2}, 110 {0x1.42d664ee4b953p+0, -0x1.56b23a29b1000p-2}, 111 {0x1.3fb01111dd8a6p+0, -0x1.483650f5fa000p-2}, 112 {0x1.3c995b70c5836p+0, -0x1.39de937f6a000p-2}, 113 {0x1.3991c4ab6fd4ap+0, -0x1.2baa1538d6000p-2}, 114 {0x1.3698e0ce099b5p+0, -0x1.1d98340ca4000p-2}, 115 {0x1.33ae48213e7b2p+0, -0x1.0fa853a40e000p-2}, 116 {0x1.30d191985bdb1p+0, -0x1.01d9c32e73000p-2}, 117 {0x1.2e025cab271d7p+0, -0x1.e857da2fa6000p-3}, 118 {0x1.2b404cf13cd82p+0, -0x1.cd3c8633d8000p-3}, 119 {0x1.288b02c7ccb50p+0, -0x1.b26034c14a000p-3}, 120 {0x1.25e2263944de5p+0, -0x1.97c1c2f4fe000p-3}, 121 {0x1.234563d8615b1p+0, -0x1.7d6023f800000p-3}, 122 {0x1.20b46e33eaf38p+0, -0x1.633a71a05e000p-3}, 123 {0x1.1e2eefdcda3ddp+0, -0x1.494f5e9570000p-3}, 124 {0x1.1bb4a580b3930p+0, -0x1.2f9e424e0a000p-3}, 125 {0x1.19453847f2200p+0, -0x1.162595afdc000p-3}, 126 {0x1.16e06c0d5d73cp+0, -0x1.f9c9a75bd8000p-4}, 127 {0x1.1485f47b7e4c2p+0, -0x1.c7b575bf9c000p-4}, 128 {0x1.12358ad0085d1p+0, -0x1.960c60ff48000p-4}, 129 {0x1.0fef00f532227p+0, -0x1.64ce247b60000p-4}, 130 {0x1.0db2077d03a8fp+0, -0x1.33f78b2014000p-4}, 131 {0x1.0b7e6d65980d9p+0, -0x1.0387d1a42c000p-4}, 132 {0x1.0953efe7b408dp+0, -0x1.a6f9208b50000p-5}, 133 {0x1.07325cac53b83p+0, -0x1.47a954f770000p-5}, 134 {0x1.05197e40d1b5cp+0, -0x1.d23a8c50c0000p-6}, 135 {0x1.03091c1208ea2p+0, -0x1.16a2629780000p-6}, 136 {0x1.0101025b37e21p+0, -0x1.720f8d8e80000p-8}, 137 {0x1.fc07ef9caa76bp-1, 0x1.6fe53b1500000p-7}, 138 {0x1.f4465d3f6f184p-1, 0x1.11ccce10f8000p-5}, 139 {0x1.ecc079f84107fp-1, 0x1.c4dfc8c8b8000p-5}, 140 {0x1.e573a99975ae8p-1, 0x1.3aa321e574000p-4}, 141 {0x1.de5d6f0bd3de6p-1, 0x1.918a0d08b8000p-4}, 142 {0x1.d77b681ff38b3p-1, 0x1.e72e9da044000p-4}, 143 {0x1.d0cb5724de943p-1, 0x1.1dcd2507f6000p-3}, 144 {0x1.ca4b2dc0e7563p-1, 0x1.476ab03dea000p-3}, 145 {0x1.c3f8ee8d6cb51p-1, 0x1.7074377e22000p-3}, 146 {0x1.bdd2b4f020c4cp-1, 0x1.98ede8ba94000p-3}, 147 {0x1.b7d6c006015cap-1, 0x1.c0db86ad2e000p-3}, 148 {0x1.b20366e2e338fp-1, 0x1.e840aafcee000p-3}, 149 {0x1.ac57026295039p-1, 0x1.0790ab4678000p-2}, 150 {0x1.a6d01bc2731ddp-1, 0x1.1ac056801c000p-2}, 151 {0x1.a16d3bc3ff18bp-1, 0x1.2db11d4fee000p-2}, 152 {0x1.9c2d14967feadp-1, 0x1.406464ec58000p-2}, 153 {0x1.970e4f47c9902p-1, 0x1.52dbe093af000p-2}, 154 {0x1.920fb3982bcf2p-1, 0x1.651902050d000p-2}, 155 {0x1.8d30187f759f1p-1, 0x1.771d2cdeaf000p-2}, 156 {0x1.886e5ebb9f66dp-1, 0x1.88e9c857d9000p-2}, 157 {0x1.83c97b658b994p-1, 0x1.9a80155e16000p-2}, 158 {0x1.7f405ffc61022p-1, 0x1.abe186ed3d000p-2}, 159 {0x1.7ad22181415cap-1, 0x1.bd0f2aea0e000p-2}, 160 {0x1.767dcf99eff8cp-1, 0x1.ce0a43dbf4000p-2}, 161 #endif 162 }, 163 #if !_HAVE_FAST_FMA 164 .tab2 = { 165 # if N == 64 166 {0x1.6200012b90a8ep-1, 0x1.904ab0644b605p-55}, 167 {0x1.66000045734a6p-1, 0x1.1ff9bea62f7a9p-57}, 168 {0x1.69fffc325f2c5p-1, 0x1.27ecfcb3c90bap-55}, 169 {0x1.6e00038b95a04p-1, 0x1.8ff8856739326p-55}, 170 {0x1.71fffe09994e3p-1, 0x1.afd40275f82b1p-55}, 171 {0x1.7600015590e1p-1, -0x1.2fd75b4238341p-56}, 172 {0x1.7a00012655bd5p-1, 0x1.808e67c242b76p-56}, 173 {0x1.7e0003259e9a6p-1, -0x1.208e426f622b7p-57}, 174 {0x1.81fffedb4b2d2p-1, -0x1.402461ea5c92fp-55}, 175 {0x1.860002dfafcc3p-1, 0x1.df7f4a2f29a1fp-57}, 176 {0x1.89ffff78c6b5p-1, -0x1.e0453094995fdp-55}, 177 {0x1.8e00039671566p-1, -0x1.a04f3bec77b45p-55}, 178 {0x1.91fffe2bf1745p-1, -0x1.7fa34400e203cp-56}, 179 {0x1.95fffcc5c9fd1p-1, -0x1.6ff8005a0695dp-56}, 180 {0x1.9a0003bba4767p-1, 0x1.0f8c4c4ec7e03p-56}, 181 {0x1.9dfffe7b92da5p-1, 0x1.e7fd9478c4602p-55}, 182 {0x1.a1fffd72efdafp-1, -0x1.a0c554dcdae7ep-57}, 183 {0x1.a5fffde04ff95p-1, 0x1.67da98ce9b26bp-55}, 184 {0x1.a9fffca5e8d2bp-1, -0x1.284c9b54c13dep-55}, 185 {0x1.adfffddad03eap-1, 0x1.812c8ea602e3cp-58}, 186 {0x1.b1ffff10d3d4dp-1, -0x1.efaddad27789cp-55}, 187 {0x1.b5fffce21165ap-1, 0x1.3cb1719c61237p-58}, 188 {0x1.b9fffd950e674p-1, 0x1.3f7d94194cep-56}, 189 {0x1.be000139ca8afp-1, 0x1.50ac4215d9bcp-56}, 190 {0x1.c20005b46df99p-1, 0x1.beea653e9c1c9p-57}, 191 {0x1.c600040b9f7aep-1, -0x1.c079f274a70d6p-56}, 192 {0x1.ca0006255fd8ap-1, -0x1.a0b4076e84c1fp-56}, 193 {0x1.cdfffd94c095dp-1, 0x1.8f933f99ab5d7p-55}, 194 {0x1.d1ffff975d6cfp-1, -0x1.82c08665fe1bep-58}, 195 {0x1.d5fffa2561c93p-1, -0x1.b04289bd295f3p-56}, 196 {0x1.d9fff9d228b0cp-1, 0x1.70251340fa236p-55}, 197 {0x1.de00065bc7e16p-1, -0x1.5011e16a4d80cp-56}, 198 {0x1.e200002f64791p-1, 0x1.9802f09ef62ep-55}, 199 {0x1.e600057d7a6d8p-1, -0x1.e0b75580cf7fap-56}, 200 {0x1.ea00027edc00cp-1, -0x1.c848309459811p-55}, 201 {0x1.ee0006cf5cb7cp-1, -0x1.f8027951576f4p-55}, 202 {0x1.f2000782b7dccp-1, -0x1.f81d97274538fp-55}, 203 {0x1.f6000260c450ap-1, -0x1.071002727ffdcp-59}, 204 {0x1.f9fffe88cd533p-1, -0x1.81bdce1fda8bp-58}, 205 {0x1.fdfffd50f8689p-1, 0x1.7f91acb918e6ep-55}, 206 {0x1.0200004292367p+0, 0x1.b7ff365324681p-54}, 207 {0x1.05fffe3e3d668p+0, 0x1.6fa08ddae957bp-55}, 208 {0x1.0a0000a85a757p+0, -0x1.7e2de80d3fb91p-58}, 209 {0x1.0e0001a5f3fccp+0, -0x1.1823305c5f014p-54}, 210 {0x1.11ffff8afbaf5p+0, -0x1.bfabb6680bac2p-55}, 211 {0x1.15fffe54d91adp+0, -0x1.d7f121737e7efp-54}, 212 {0x1.1a00011ac36e1p+0, 0x1.c000a0516f5ffp-54}, 213 {0x1.1e00019c84248p+0, -0x1.082fbe4da5dap-54}, 214 {0x1.220000ffe5e6ep+0, -0x1.8fdd04c9cfb43p-55}, 215 {0x1.26000269fd891p+0, 0x1.cfe2a7994d182p-55}, 216 {0x1.2a00029a6e6dap+0, -0x1.00273715e8bc5p-56}, 217 {0x1.2dfffe0293e39p+0, 0x1.b7c39dab2a6f9p-54}, 218 {0x1.31ffff7dcf082p+0, 0x1.df1336edc5254p-56}, 219 {0x1.35ffff05a8b6p+0, -0x1.e03564ccd31ebp-54}, 220 {0x1.3a0002e0eaeccp+0, 0x1.5f0e74bd3a477p-56}, 221 {0x1.3e000043bb236p+0, 0x1.c7dcb149d8833p-54}, 222 {0x1.4200002d187ffp+0, 0x1.e08afcf2d3d28p-56}, 223 {0x1.460000d387cb1p+0, 0x1.20837856599a6p-55}, 224 {0x1.4a00004569f89p+0, -0x1.9fa5c904fbcd2p-55}, 225 {0x1.4e000043543f3p+0, -0x1.81125ed175329p-56}, 226 {0x1.51fffcc027f0fp+0, 0x1.883d8847754dcp-54}, 227 {0x1.55ffffd87b36fp+0, -0x1.709e731d02807p-55}, 228 {0x1.59ffff21df7bap+0, 0x1.7f79f68727b02p-55}, 229 {0x1.5dfffebfc3481p+0, -0x1.180902e30e93ep-54}, 230 # endif 231 }, 232 #endif /* !_HAVE_FAST_FMA */ 233 }; 234 #endif /* __OBSOLETE_MATH_DOUBLE */ 235