1 /* Double-precision log2(x) function.
2    Copyright (c) 2018 Arm Ltd.  All rights reserved.
3 
4    SPDX-License-Identifier: BSD-3-Clause
5 
6    Redistribution and use in source and binary forms, with or without
7    modification, are permitted provided that the following conditions
8    are met:
9    1. Redistributions of source code must retain the above copyright
10       notice, this list of conditions and the following disclaimer.
11    2. Redistributions in binary form must reproduce the above copyright
12       notice, this list of conditions and the following disclaimer in the
13       documentation and/or other materials provided with the distribution.
14    3. The name of the company may not be used to endorse or promote
15       products derived from this software without specific prior written
16       permission.
17 
18    THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
19    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21    IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23    TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
25    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
26    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
28 
29 #include "fdlibm.h"
30 #if !__OBSOLETE_MATH_DOUBLE
31 
32 #include <math.h>
33 #include <stdint.h>
34 #include "math_config.h"
35 
36 #define T __log2_data.tab
37 #define T2 __log2_data.tab2
38 #define B __log2_data.poly1
39 #define A __log2_data.poly
40 #define InvLn2hi __log2_data.invln2hi
41 #define InvLn2lo __log2_data.invln2lo
42 #define N (1 << LOG2_TABLE_BITS)
43 #define OFF 0x3fe6000000000000
44 
45 /* Top 16 bits of a double.  */
46 static inline uint32_t
top16(double x)47 top16 (double x)
48 {
49   return asuint64 (x) >> 48;
50 }
51 
52 double
53 (log2) (double x)
54 {
55   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
56   double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
57   uint64_t ix, iz, tmp;
58   uint32_t top;
59   int k, i;
60 
61   ix = asuint64 (x);
62   top = top16 (x);
63 
64 #if LOG2_POLY1_ORDER == 11
65 # define LO asuint64 (1.0 - 0x1.5b51p-5)
66 # define HI asuint64 (1.0 + 0x1.6ab2p-5)
67 #endif
68   if (unlikely (ix - LO < HI - LO))
69     {
70       /* Handle close to 1.0 inputs separately.  */
71       /* Fix sign of zero with downward rounding when x==1.  */
72       if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
73 	return 0;
74       r = x - 1.0;
75 #if _HAVE_FAST_FMA
76       hi = r * InvLn2hi;
77       lo = r * InvLn2lo + fma (r, InvLn2hi, -hi);
78 #else
79       double_t rhi, rlo;
80       rhi = asdouble (asuint64 (r) & -1ULL << 32);
81       rlo = r - rhi;
82       hi = rhi * InvLn2hi;
83       lo = rlo * InvLn2hi + r * InvLn2lo;
84 #endif
85       r2 = r * r; /* rounding error: 0x1p-62.  */
86       r4 = r2 * r2;
87 #if LOG2_POLY1_ORDER == 11
88       /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
89       p = r2 * (B[0] + r * B[1]);
90       y = hi + p;
91       lo += hi - y + p;
92       lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5])
93 		  + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
94       y += lo;
95 #endif
96       return y;
97     }
98   if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
99     {
100       /* x < 0x1p-1022 or inf or nan.  */
101       if (ix * 2 == 0)
102 	return __math_divzero (1);
103       if (ix == asuint64 ((double) INFINITY)) /* log(inf) == inf.  */
104 	return x;
105       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
106 	return __math_invalid (x);
107       /* x is subnormal, normalize it.  */
108       ix = asuint64 (x * 0x1p52);
109       ix -= 52ULL << 52;
110     }
111 
112   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
113      The range is split into N subintervals.
114      The ith subinterval contains z and c is near its center.  */
115   tmp = ix - OFF;
116   i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
117   k = (int64_t) tmp >> 52; /* arithmetic shift */
118   iz = ix - (tmp & 0xfffULL << 52);
119   invc = T[i].invc;
120   logc = T[i].logc;
121   z = asdouble (iz);
122   kd = (double_t) k;
123 
124   /* log2(x) = log2(z/c) + log2(c) + k.  */
125   /* r ~= z/c - 1, |r| < 1/(2*N).  */
126 #if _HAVE_FAST_FMA
127   /* rounding error: 0x1p-55/N.  */
128   r = fma (z, invc, -1.0);
129   t1 = r * InvLn2hi;
130   t2 = r * InvLn2lo + fma (r, InvLn2hi, -t1);
131 #else
132   double_t rhi, rlo;
133   /* rounding error: 0x1p-55/N + 0x1p-65.  */
134   r = (z - T2[i].chi - T2[i].clo) * invc;
135   rhi = asdouble (asuint64 (r) & -1ULL << 32);
136   rlo = r - rhi;
137   t1 = rhi * InvLn2hi;
138   t2 = rlo * InvLn2hi + r * InvLn2lo;
139 #endif
140 
141   /* hi + lo = r/ln2 + log2(c) + k.  */
142   t3 = kd + logc;
143   hi = t3 + t1;
144   lo = t3 - hi + t1 + t2;
145 
146   /* log2(r+1) = r/ln2 + r^2*poly(r).  */
147   /* Evaluation is optimized assuming superscalar pipelined execution.  */
148   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
149   r4 = r2 * r2;
150 #if LOG2_POLY_ORDER == 7
151   /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
152      ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
153   p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
154   y = lo + r2 * p + hi;
155 #endif
156   return y;
157 }
158 
159 _MATH_ALIAS_d_d(log2)
160 
161 #endif
162