1 // Copyright 2018 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 // (See accompanying file LICENSE-Apache or copy at
7 // http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 // (See accompanying file LICENSE-Boost or copy at
12 // https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17
18 // Runtime compiler options:
19 // -DRYU_DEBUG Generate verbose debugging output to stdout.
20 //
21 // -DRYU_ONLY_64_BIT_OPS Avoid using uint128_t or 64-bit intrinsics. Slower,
22 // depending on your compiler.
23 //
24
25 #include "stdio_private.h"
26
27 #ifdef FLOAT64
28
29 #define _NEED_IO_FLOAT64
30
31 #include "dtoa.h"
32
33 #include "ryu/ryu.h"
34
35 #include <stdbool.h>
36 #include <stdint.h>
37 #include <stdlib.h>
38 #include <string.h>
39
40 #ifdef RYU_DEBUG
41 #include <inttypes.h>
42 #include <stdio.h>
43 #endif
44
45 #include "ryu/common.h"
46 #include "ryu/d2s_intrinsics.h"
47
48 #define DOUBLE_MANTISSA_BITS 52
49 #define DOUBLE_EXPONENT_BITS 11
50 #define DOUBLE_BIAS 1023
51
decimalLength17(const uint64_t v)52 static int decimalLength17(const uint64_t v) {
53 int len = 1;
54 uint64_t c = 10;
55 while (c <= v) {
56 len++;
57 c = (c << 3) + (c << 1);
58 }
59 return len;
60 }
61
62 // A floating decimal representing m * 10^e.
63 typedef struct floating_decimal_64 {
64 uint64_t mantissa;
65 // Decimal exponent's range is -324 to 308
66 // inclusive, and can fit in a short if needed.
67 int16_t exponent;
68 int16_t olength;
69 } floating_decimal_64;
70
71 static inline floating_decimal_64
d2d(const uint64_t ieeeMantissa,const uint32_t ieeeExponent,int max_digits,bool fmode,int max_decimals)72 d2d(const uint64_t ieeeMantissa, const uint32_t ieeeExponent, int max_digits, bool fmode, int max_decimals)
73 {
74 int32_t e2;
75 uint64_t m2;
76 if (ieeeExponent == 0) {
77 // We subtract 2 so that the bounds computation has 2 additional bits.
78 e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
79 m2 = ieeeMantissa;
80 } else {
81 e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
82 m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
83 }
84 const bool even = (m2 & 1) == 0;
85 const bool acceptBounds = even;
86 /* Set if we're truncating more digits to meet format request */
87 bool truncate_max = false;
88
89 #ifdef RYU_DEBUG
90 printf("-> %" PRIu64 " * 2^%d\n", m2, e2 + 2);
91 #endif
92
93 // Step 2: Determine the interval of valid decimal representations.
94 const uint64_t mv = 4 * m2;
95 // Implicit bool -> int conversion. True is 1, false is 0.
96 const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
97 // We would compute mp and mm like this:
98 // uint64_t mp = 4 * m2 + 2;
99 // uint64_t mm = mv - 1 - mmShift;
100
101 // Step 3: Convert to a decimal power base using 128-bit arithmetic.
102 uint64_t vr, vp, vm;
103 int32_t e10;
104 bool vmIsTrailingZeros = false;
105 bool vrIsTrailingZeros = false;
106 if (e2 >= 0) {
107 // I tried special-casing q == 0, but there was no effect on performance.
108 // This expression is slightly faster than max_int(0, log10Pow2(e2) - 1).
109 const uint32_t q = log10Pow2(e2) - (e2 > 3);
110 e10 = (int32_t) q;
111 const int32_t k = DOUBLE_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
112 const int32_t i = -e2 + (int32_t) q + k;
113 uint64_t pow5[2];
114 __double_computeInvPow5(q, pow5);
115 vr = mulShiftAll64(m2, pow5, i, &vp, &vm, mmShift);
116 #ifdef RYU_DEBUG
117 printf("%" PRIu64 " * 2^%d / 10^%u\n", mv, e2, q);
118 printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
119 #endif
120 if (q <= 21) {
121 // This should use q <= 22, but I think 21 is also safe. Smaller values
122 // may still be safe, but it's more difficult to reason about them.
123 // Only one of mp, mv, and mm can be a multiple of 5, if any.
124 const uint32_t mvMod5 = ((uint32_t) mv) - 5 * ((uint32_t) div5(mv));
125 if (mvMod5 == 0) {
126 vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
127 } else if (acceptBounds) {
128 // Same as min_int(e2 + (~mm & 1), pow5Factor(mm)) >= q
129 // <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
130 // <=> true && pow5Factor(mm) >= q, since e2 >= q.
131 vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
132 } else {
133 // Same as min_int(e2 + 1, pow5Factor(mp)) >= q.
134 vp -= multipleOfPowerOf5(mv + 2, q);
135 }
136 }
137 } else {
138 // This expression is slightly faster than max_int(0, log10Pow5(-e2) - 1).
139 const uint32_t q = log10Pow5(-e2) - (-e2 > 1);
140 e10 = (int32_t) q + e2;
141 const int32_t i = -e2 - (int32_t) q;
142 const int32_t k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
143 const int32_t j = (int32_t) q - k;
144 uint64_t pow5[2];
145 __double_computePow5(i, pow5);
146 vr = mulShiftAll64(m2, pow5, j, &vp, &vm, mmShift);
147
148 #ifdef RYU_DEBUG
149 printf("%" PRIu64 " * 5^%d / 10^%u\n", mv, -e2, q);
150 printf("%u %d %d %d\n", q, i, k, j);
151 printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
152 #endif
153 if (q <= 1) {
154 // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
155 // mv = 4 * m2, so it always has at least two trailing 0 bits.
156 vrIsTrailingZeros = true;
157 if (acceptBounds) {
158 // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
159 vmIsTrailingZeros = mmShift == 1;
160 } else {
161 // mp = mv + 2, so it always has at least one trailing 0 bit.
162 --vp;
163 }
164 } else if (q < 63) { // TODO(ulfjack): Use a tighter bound here.
165 // We want to know if the full product has at least q trailing zeros.
166 // We need to compute min_int(p2(mv), p5(mv) - e2) >= q
167 // <=> p2(mv) >= q && p5(mv) - e2 >= q
168 // <=> p2(mv) >= q (because -e2 >= q)
169 vrIsTrailingZeros = multipleOfPowerOf2(mv, q);
170 #ifdef RYU_DEBUG
171 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
172 #endif
173 }
174 }
175 #ifdef RYU_DEBUG
176 printf("e10=%d\n", e10);
177 printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
178 printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
179 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
180 #endif
181
182 // Step 4: Find the shortest decimal representation in the interval of valid representations.
183 int32_t removed = 0;
184 uint8_t lastRemovedDigit = 0;
185 uint64_t output;
186 // On average, we remove ~2 digits.
187 // General case, which happens rarely (~0.7%).
188
189 /* If limiting decimals, then limit the max digits
190 * to no more than the number of digits left of the decimal
191 * plus the number of digits right of the decimal
192 *
193 * exp: exponent value. If negative, there are
194 * -exp - 1 zeros left of the first non-zero
195 * digit in 'f' format. If non-negative,
196 * there are exp digits to the left of
197 * the decimal point
198 *
199 * max_decimals: Only used in 'f' format. Round to this many
200 * digits to the right of the decimal point
201 * (left if negative)
202 *
203 * max_digits: We can't convert more than this number of digits given
204 * the limits of the buffer
205 */
206
207 int save_max_digits = max_digits;
208 if(fmode) {
209 int exp = e10 + decimalLength17(vr) - 1;
210 /*
211 * This covers two cases:
212 *
213 * When exp is < 0, there are -exp-1 zeros taking up
214 * space before we can display any of the real digits,
215 * so we have to subtract those off max_decimals before
216 * we round that (max_decimals - (-exp - 1)). This
217 * may end up less than zero, in which case we have
218 * no digits to display.
219 *
220 * When exp >= 0, there are exp + 1 digits left of the
221 * decimal point *plus* max_decimals right of the
222 * decimal point that need to be generated
223 *
224 * A single expression gives the right answer in both
225 * cases, which is kinda cool
226 */
227 max_digits = min_int(max_digits, max_int(1, max_decimals + exp + 1));
228 }
229
230 for (;;) {
231 const uint64_t vpDiv10 = div10(vp);
232 const uint64_t vmDiv10 = div10(vm);
233 if (vpDiv10 <= vmDiv10) {
234 if (decimalLength17(vr) <= max_digits || (max_digits == 0 && vr == 0))
235 break;
236 else
237 truncate_max = true;
238 }
239 const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
240 const uint64_t vrDiv10 = div10(vr);
241 const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
242 vmIsTrailingZeros &= vmMod10 == 0;
243 vrIsTrailingZeros &= lastRemovedDigit == 0;
244 lastRemovedDigit = (uint8_t) vrMod10;
245 vr = vrDiv10;
246 vp = vpDiv10;
247 vm = vmDiv10;
248 ++removed;
249 }
250 #ifdef RYU_DEBUG
251 printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
252 printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
253 #endif
254 if (vmIsTrailingZeros) {
255 for (;;) {
256 const uint64_t vmDiv10 = div10(vm);
257 const uint32_t vmMod10 = ((uint32_t) vm) - 10 * ((uint32_t) vmDiv10);
258 if (vmMod10 != 0) {
259 break;
260 }
261 const uint64_t vpDiv10 = div10(vp);
262 const uint64_t vrDiv10 = div10(vr);
263 const uint32_t vrMod10 = ((uint32_t) vr) - 10 * ((uint32_t) vrDiv10);
264 vrIsTrailingZeros &= lastRemovedDigit == 0;
265 lastRemovedDigit = (uint8_t) vrMod10;
266 vr = vrDiv10;
267 vp = vpDiv10;
268 vm = vmDiv10;
269 ++removed;
270 }
271 }
272 #ifdef RYU_DEBUG
273 printf("%" PRIu64 " %d\n", vr, lastRemovedDigit);
274 printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
275 #endif
276 if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
277 // Round even if the exact number is .....50..0.
278 lastRemovedDigit = 4;
279 }
280
281 output = vr;
282 e10 += removed;
283
284 // We need to take vr + 1 if vr is outside bounds or we need to round up.
285 // I don't know if the 'truncate_max' case is entirely correct; need some tests
286 uint8_t carry = ((!truncate_max && vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
287 output += carry;
288
289 int len = decimalLength17(output);
290
291 if (carry) {
292 /* This can only happen if output has carried out of the top digit */
293 if (len > max_digits) {
294
295 /* Recompute max digits in this case */
296 if(fmode) {
297 int exp = e10 + len - 1;
298 /* max_decimals comes in biased by 1 to flag the 'f' case */
299 max_digits = min_int(save_max_digits, max_int(0, max_decimals + exp + 1));
300 }
301
302 if (len > max_digits) {
303 output += 5;
304 output /= 10;
305 e10++;
306 len--;
307 }
308 }
309 }
310 if (len > max_digits)
311 len = max_digits;
312
313 #ifdef RYU_DEBUG
314 printf("V+=%" PRIu64 "\nV =%" PRIu64 "\nV-=%" PRIu64 "\n", vp, vr, vm);
315 printf("O=%" PRIu64 "\n", output);
316 printf("EXP=%d\n", exp);
317 #endif
318
319 floating_decimal_64 fd;
320 fd.exponent = e10;
321 fd.olength = len;
322 fd.mantissa = output;
323 return fd;
324 }
325
d2d_small_int(const uint64_t ieeeMantissa,const uint32_t ieeeExponent,floating_decimal_64 * const v)326 static inline bool d2d_small_int(const uint64_t ieeeMantissa, const uint32_t ieeeExponent,
327 floating_decimal_64* const v) {
328 const uint64_t m2 = (1ull << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
329 const int32_t e2 = (int32_t) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
330
331 if (e2 > 0) {
332 // f = m2 * 2^e2 >= 2^53 is an integer.
333 // Ignore this case for now.
334 return false;
335 }
336
337 if (e2 < -52) {
338 // f < 1.
339 return false;
340 }
341
342 // Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52: 1 <= f = m2 / 2^-e2 < 2^53.
343 // Test if the lower -e2 bits of the significand are 0, i.e. whether the fraction is 0.
344 const uint64_t mask = (1ull << -e2) - 1;
345 const uint64_t fraction = m2 & mask;
346 if (fraction != 0) {
347 return false;
348 }
349
350 // f is an integer in the range [1, 2^53).
351 // Note: mantissa might contain trailing (decimal) 0's.
352 // Note: since 2^53 < 10^16, there is no need to adjust decimalLength17().
353 v->mantissa = m2 >> -e2;
354 v->exponent = 0;
355 return true;
356 }
357
358 int
__dtoa_engine(FLOAT64 x,struct dtoa * dtoa,int max_digits,bool fmode,int max_decimals)359 __dtoa_engine(FLOAT64 x, struct dtoa *dtoa, int max_digits, bool fmode, int max_decimals)
360 {
361 // Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
362 const uint64_t bits = ryu64_to_bits(x);
363
364 #ifdef RYU_DEBUG
365 printf("IN=");
366 for (int32_t bit = 63; bit >= 0; --bit) {
367 printf("%d", (int) ((bits >> bit) & 1));
368 }
369 printf("\n");
370 #endif
371
372 // Decode bits into sign, mantissa, and exponent.
373 const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
374 const uint64_t ieeeMantissa = bits & ((1ull << DOUBLE_MANTISSA_BITS) - 1);
375 const uint32_t ieeeExponent = (uint32_t) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
376
377 uint8_t flags = 0;
378
379 if (ieeeSign)
380 flags |= DTOA_MINUS;
381 if (ieeeExponent == 0 && ieeeMantissa == 0) {
382 flags |= DTOA_ZERO;
383 dtoa->digits[0] = '0';
384 dtoa->flags = flags;
385 dtoa->exp = 0;
386 return 1;
387 }
388 if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u)) {
389 if (ieeeMantissa) {
390 flags |= DTOA_NAN;
391 } else {
392 flags |= DTOA_INF;
393 }
394 dtoa->flags = flags;
395 return 0;
396 }
397
398 floating_decimal_64 v;
399 const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
400 if (isSmallInt && 0) {
401 // For small integers in the range [1, 2^53), v.mantissa might contain trailing (decimal) zeros.
402 // For scientific notation we need to move these zeros into the exponent.
403 // (This is not needed for fixed-point notation, so it might be beneficial to trim
404 // trailing zeros in to_chars only if needed - once fixed-point notation output is implemented.)
405 for (;;) {
406 const uint64_t q = div10(v.mantissa);
407 const uint32_t r = ((uint32_t) v.mantissa) - 10 * ((uint32_t) q);
408 if (r != 0) {
409 break;
410 }
411 v.mantissa = q;
412 ++v.exponent;
413 }
414 } else {
415 v = d2d(ieeeMantissa, ieeeExponent, max_digits, fmode, max_decimals);
416 }
417
418 uint64_t mant = v.mantissa;
419 int32_t olength = v.olength;
420 int32_t exp = v.exponent + olength - 1;
421
422 int i;
423
424 for (i = 0; i < olength; i++) {
425 dtoa->digits[olength - i - 1] = (mant % 10) + '0';
426 mant /= 10;
427 }
428
429 dtoa->exp = exp;
430 dtoa->flags = flags;
431 return olength;
432 }
433
434 #endif /* FLOAT64 */
435