1 // Copyright 2019 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 //    (See accompanying file LICENSE-Apache or copy at
7 //     http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 //    (See accompanying file LICENSE-Boost or copy at
12 //     https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17 
18 #include "stdio_private.h"
19 
20 #ifdef RYU_DEBUG
21 #include <inttypes.h>
22 #endif
23 
24 #include "ryu/common.h"
25 #include "ryu/d2s_intrinsics.h"
26 
27 #if __SIZEOF_DOUBLE__ == 8
28 #define FLOAT64 double
29 #elif __SIZEOF_LONG_DOUBLE__ == 8
30 #define FLOAT64 long double
31 #endif
32 
33 #ifdef FLOAT64
34 
35 #define DOUBLE_MANTISSA_BITS 52
36 #define DOUBLE_EXPONENT_BITS 11
37 #define DOUBLE_EXPONENT_BIAS 1023
38 
39 #if defined(_MSC_VER)
40 #include <intrin.h>
41 
floor_log2(const uint64_t value)42 static inline uint32_t floor_log2(const uint64_t value) {
43   long index;
44   return _BitScanReverse64(&index, value) ? index : 64;
45 }
46 
47 #else
48 
floor_log2(const uint64_t value)49 static inline uint32_t floor_log2(const uint64_t value) {
50   return 63 - __builtin_clzll(value);
51 }
52 
53 #endif
54 
55 // The max function is already defined on Windows.
max32(int32_t a,int32_t b)56 static inline int32_t max32(int32_t a, int32_t b) {
57   return a < b ? b : a;
58 }
59 
int64Bits2Double(uint64_t bits)60 static inline FLOAT64 int64Bits2Double(uint64_t bits) {
61   FLOAT64 f;
62   memcpy(&f, &bits, sizeof(FLOAT64));
63   return f;
64 }
65 
66 FLOAT64
__atod_engine(uint64_t m10,int e10)67 __atod_engine(uint64_t m10, int e10)
68 {
69 #ifdef RYU_DEBUG
70     printf("m10 = %ld\n", m10);
71     printf("e10 = %d\n", e10);
72     printf("m10 * 10^e10 = %" PRIu64 " * 10^%d\n", m10, e10);
73 #endif
74 
75     // Convert to binary float m2 * 2^e2, while retaining information about whether the conversion
76     // was exact (trailingZeros).
77     int32_t e2;
78     uint64_t m2;
79     bool trailingZeros;
80     if (e10 >= 0) {
81 	// The length of m * 10^e in bits is:
82 	//   log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
83 	//
84 	// We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for the implicit leading
85 	// one in IEEE format). We therefore choose a binary output exponent of
86 	//   log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
87 	//
88 	// We use floor(log2(5^e10)) so that we get at least this many bits; better to
89 	// have an additional bit than to not have enough bits.
90 	e2 = floor_log2(m10) + e10 + log2pow5(e10) - (DOUBLE_MANTISSA_BITS + 1);
91 
92 	// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
93 	// To that end, we use the DOUBLE_POW5_SPLIT table.
94 	int j = e2 - e10 - ceil_log2pow5(e10) + DOUBLE_POW5_BITCOUNT;
95 	assert(j >= 0);
96 	uint64_t pow5[2];
97 	__double_computePow5(e10, pow5);
98 	m2 = mulShift64(m10, pow5, j);
99 
100 	// We also compute if the result is exact, i.e.,
101 	//   [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
102 	// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn requires that the
103 	// largest power of 2 that divides m10 + e10 is greater than e2. If e2 is less than e10, then
104 	// the result must be exact. Otherwise we use the existing multipleOfPowerOf2 function.
105 	trailingZeros = e2 < e10 || (e2 - e10 < 64 && multipleOfPowerOf2(m10, e2 - e10));
106     } else {
107 	e2 = floor_log2(m10) + e10 - ceil_log2pow5(-e10) - (DOUBLE_MANTISSA_BITS + 1);
108 	int j = e2 - e10 + ceil_log2pow5(-e10) - 1 + DOUBLE_POW5_INV_BITCOUNT;
109 	uint64_t pow5[2];
110 	__double_computeInvPow5(-e10, pow5);
111 	m2 = mulShift64(m10, pow5, j);
112 	trailingZeros = multipleOfPowerOf5(m10, -e10);
113 #ifdef RYU_DEBUG
114 	printf("pow5 %016lx_%016lx j %d trailingZeros %d\n", pow5[0], pow5[1], j, trailingZeros);
115 #endif
116     }
117 
118 #ifdef RYU_DEBUG
119     printf("m2 * 2^e2 = %" PRIu64 " * 2^%d\n", m2, e2);
120 #endif
121 
122     // Compute the final IEEE exponent.
123     uint32_t ieee_e2 = (uint32_t) max32(0, e2 + DOUBLE_EXPONENT_BIAS + floor_log2(m2));
124 
125     if (ieee_e2 > 0x7fe) {
126 	// Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
127 	uint64_t ieee = (0x7ffull << DOUBLE_MANTISSA_BITS);
128 	return int64Bits2Double(ieee);
129     }
130 
131     // We need to figure out how much we need to shift m2. The tricky part is that we need to take
132     // the final IEEE exponent into account, so we need to reverse the bias and also special-case
133     // the value 0.
134     int32_t shift = (ieee_e2 == 0 ? 1 : ieee_e2) - e2 - DOUBLE_EXPONENT_BIAS - DOUBLE_MANTISSA_BITS;
135     assert(shift >= 0);
136 #ifdef RYU_DEBUG
137     printf("ieee_e2 = %d\n", ieee_e2);
138     printf("shift = %d\n", shift);
139 #endif
140 
141     // We need to round up if the exact value is more than 0.5 above the value we computed. That's
142     // equivalent to checking if the last removed bit was 1 and either the value was not just
143     // trailing zeros or the result would otherwise be odd.
144     //
145     // We need to update trailingZeros given that we have the exact output exponent ieee_e2 now.
146     trailingZeros &= (m2 & ((1ull << (shift - 1)) - 1)) == 0;
147     uint64_t lastRemovedBit = (m2 >> (shift - 1)) & 1;
148     bool roundUp = (lastRemovedBit != 0) && (!trailingZeros || (((m2 >> shift) & 1) != 0));
149 
150 #ifdef RYU_DEBUG
151     printf("roundUp = %d\n", roundUp);
152     printf("ieee_m2 = %" PRIu64 "\n", (m2 >> shift) + roundUp);
153 #endif
154     uint64_t ieee_m2 = (m2 >> shift) + roundUp;
155     assert(ieee_m2 <= (1ull << (DOUBLE_MANTISSA_BITS + 1)));
156     ieee_m2 &= (1ull << DOUBLE_MANTISSA_BITS) - 1;
157     if (ieee_m2 == 0 && roundUp) {
158 	// Due to how the IEEE represents +/-Infinity, we don't need to check for overflow here.
159 	ieee_e2++;
160     }
161     uint64_t ieee = (((uint64_t)ieee_e2) << DOUBLE_MANTISSA_BITS) | ieee_m2;
162     return int64Bits2Double(ieee);
163 }
164 
165 #endif /* FLOAT64 */
166