1 // Copyright 2019 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 //    (See accompanying file LICENSE-Apache or copy at
7 //     http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 //    (See accompanying file LICENSE-Boost or copy at
12 //     https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17 
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <ctype.h>
23 
24 #ifdef RYU_DEBUG
25 #include <inttypes.h>
26 #include <stdio.h>
27 #endif
28 
29 #include "ryu/common.h"
30 #include "ryu/d2s_intrinsics.h"
31 
32 #define DOUBLE_MANTISSA_BITS 52
33 #define DOUBLE_EXPONENT_BITS 11
34 #define DOUBLE_EXPONENT_BIAS 1023
35 
36 #if defined(_MSC_VER)
37 #include <intrin.h>
38 
floor_log2(const uint64_t value)39 static inline uint32_t floor_log2(const uint64_t value) {
40   long index;
41   return _BitScanReverse64(&index, value) ? index : 64;
42 }
43 
44 #else
45 
floor_log2(const uint64_t value)46 static inline uint32_t floor_log2(const uint64_t value) {
47   return 63 - __builtin_clzll(value);
48 }
49 
50 #endif
51 
52 // The max function is already defined on Windows.
max32(int32_t a,int32_t b)53 static inline int32_t max32(int32_t a, int32_t b) {
54   return a < b ? b : a;
55 }
56 
int64Bits2Double(uint64_t bits)57 static inline double int64Bits2Double(uint64_t bits) {
58   double f;
59   memcpy(&f, &bits, sizeof(double));
60   return f;
61 }
62 
63 double
__atod_engine(uint64_t m10,int e10)64 __atod_engine(uint64_t m10, int e10)
65 {
66 #ifdef RYU_DEBUG
67     printf("m10 = %ld\n", m10);
68     printf("e10 = %d\n", e10);
69     printf("m10 * 10^e10 = %" PRIu64 " * 10^%d\n", m10, e10);
70 #endif
71 
72     // Convert to binary float m2 * 2^e2, while retaining information about whether the conversion
73     // was exact (trailingZeros).
74     int32_t e2;
75     uint64_t m2;
76     bool trailingZeros;
77     if (e10 >= 0) {
78 	// The length of m * 10^e in bits is:
79 	//   log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
80 	//
81 	// We want to compute the DOUBLE_MANTISSA_BITS + 1 top-most bits (+1 for the implicit leading
82 	// one in IEEE format). We therefore choose a binary output exponent of
83 	//   log2(m10 * 10^e10) - (DOUBLE_MANTISSA_BITS + 1).
84 	//
85 	// We use floor(log2(5^e10)) so that we get at least this many bits; better to
86 	// have an additional bit than to not have enough bits.
87 	e2 = floor_log2(m10) + e10 + log2pow5(e10) - (DOUBLE_MANTISSA_BITS + 1);
88 
89 	// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
90 	// To that end, we use the DOUBLE_POW5_SPLIT table.
91 	int j = e2 - e10 - ceil_log2pow5(e10) + DOUBLE_POW5_BITCOUNT;
92 	assert(j >= 0);
93 	uint64_t pow5[2];
94 	__double_computePow5(e10, pow5);
95 	m2 = mulShift64(m10, pow5, j);
96 
97 	// We also compute if the result is exact, i.e.,
98 	//   [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
99 	// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn requires that the
100 	// largest power of 2 that divides m10 + e10 is greater than e2. If e2 is less than e10, then
101 	// the result must be exact. Otherwise we use the existing multipleOfPowerOf2 function.
102 	trailingZeros = e2 < e10 || (e2 - e10 < 64 && multipleOfPowerOf2(m10, e2 - e10));
103     } else {
104 	e2 = floor_log2(m10) + e10 - ceil_log2pow5(-e10) - (DOUBLE_MANTISSA_BITS + 1);
105 	int j = e2 - e10 + ceil_log2pow5(-e10) - 1 + DOUBLE_POW5_INV_BITCOUNT;
106 	uint64_t pow5[2];
107 	__double_computeInvPow5(-e10, pow5);
108 	m2 = mulShift64(m10, pow5, j);
109 	trailingZeros = multipleOfPowerOf5(m10, -e10);
110 #ifdef RYU_DEBUG
111 	printf("pow5 %016lx_%016lx j %d trailingZeros %d\n", pow5[0], pow5[1], j, trailingZeros);
112 #endif
113     }
114 
115 #ifdef RYU_DEBUG
116     printf("m2 * 2^e2 = %" PRIu64 " * 2^%d\n", m2, e2);
117 #endif
118 
119     // Compute the final IEEE exponent.
120     uint32_t ieee_e2 = (uint32_t) max32(0, e2 + DOUBLE_EXPONENT_BIAS + floor_log2(m2));
121 
122     if (ieee_e2 > 0x7fe) {
123 	// Final IEEE exponent is larger than the maximum representable; return +/-Infinity.
124 	uint64_t ieee = (0x7ffull << DOUBLE_MANTISSA_BITS);
125 	return int64Bits2Double(ieee);
126     }
127 
128     // We need to figure out how much we need to shift m2. The tricky part is that we need to take
129     // the final IEEE exponent into account, so we need to reverse the bias and also special-case
130     // the value 0.
131     int32_t shift = (ieee_e2 == 0 ? 1 : ieee_e2) - e2 - DOUBLE_EXPONENT_BIAS - DOUBLE_MANTISSA_BITS;
132     assert(shift >= 0);
133 #ifdef RYU_DEBUG
134     printf("ieee_e2 = %d\n", ieee_e2);
135     printf("shift = %d\n", shift);
136 #endif
137 
138     // We need to round up if the exact value is more than 0.5 above the value we computed. That's
139     // equivalent to checking if the last removed bit was 1 and either the value was not just
140     // trailing zeros or the result would otherwise be odd.
141     //
142     // We need to update trailingZeros given that we have the exact output exponent ieee_e2 now.
143     trailingZeros &= (m2 & ((1ull << (shift - 1)) - 1)) == 0;
144     uint64_t lastRemovedBit = (m2 >> (shift - 1)) & 1;
145     bool roundUp = (lastRemovedBit != 0) && (!trailingZeros || (((m2 >> shift) & 1) != 0));
146 
147 #ifdef RYU_DEBUG
148     printf("roundUp = %d\n", roundUp);
149     printf("ieee_m2 = %" PRIu64 "\n", (m2 >> shift) + roundUp);
150 #endif
151     uint64_t ieee_m2 = (m2 >> shift) + roundUp;
152     assert(ieee_m2 <= (1ull << (DOUBLE_MANTISSA_BITS + 1)));
153     ieee_m2 &= (1ull << DOUBLE_MANTISSA_BITS) - 1;
154     if (ieee_m2 == 0 && roundUp) {
155 	// Due to how the IEEE represents +/-Infinity, we don't need to check for overflow here.
156 	ieee_e2++;
157     }
158     uint64_t ieee = (((uint64_t)ieee_e2) << DOUBLE_MANTISSA_BITS) | ieee_m2;
159     return int64Bits2Double(ieee);
160 }
161 
162