1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 #define _DEFAULT_SOURCE
34 #include <sys/param.h>
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)hash_bigkey.c	8.3 (Berkeley) 5/31/94";
37 #endif /* LIBC_SCCS and not lint */
38 #include <sys/cdefs.h>
39 
40 /*
41  * PACKAGE: hash
42  * DESCRIPTION:
43  *	Big key/data handling for the hashing package.
44  *
45  * ROUTINES:
46  * External
47  *	__big_keydata
48  *	__big_split
49  *	__big_insert
50  *	__big_return
51  *	__big_delete
52  *	__find_last_page
53  * Internal
54  *	collect_key
55  *	collect_data
56  */
57 
58 #include <sys/param.h>
59 
60 #include <errno.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <string.h>
64 
65 #ifdef DEBUG
66 #include <assert.h>
67 #endif
68 
69 #include "db_local.h"
70 #include "hash.h"
71 #include "page.h"
72 #include "extern.h"
73 
74 static size_t collect_key(HTAB *, BUFHEAD *, size_t, DBT *, int);
75 static size_t collect_data(HTAB *, BUFHEAD *, size_t, int);
76 
77 /*
78  * Big_insert
79  *
80  * You need to do an insert and the key/data pair is too big
81  *
82  * Returns:
83  * 0 ==> OK
84  *-1 ==> ERROR
85  */
86 extern int
__big_insert(HTAB * hashp,BUFHEAD * bufp,const DBT * key,const DBT * val)87 __big_insert(HTAB *hashp,
88              BUFHEAD *bufp,
89              const DBT *key,
90              const DBT *val)
91 {
92 	__uint16_t *p;
93 	size_t key_size, n;
94         size_t val_size;
95 	__uint16_t space, move_bytes, off;
96 	char *cp, *key_data, *val_data;
97 
98 	cp = bufp->page;		/* Character pointer of p. */
99 	p = (__uint16_t *)cp;
100 
101 	key_data = (char *)key->data;
102 	key_size = key->size;
103 	val_data = (char *)val->data;
104 	val_size = val->size;
105 
106 	/* First move the Key */
107 	for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
108 	    space = FREESPACE(p) - BIGOVERHEAD) {
109 		move_bytes = MIN(space, key_size);
110 		off = OFFSET(p) - move_bytes;
111 		memmove(cp + off, key_data, move_bytes);
112 		key_size -= move_bytes;
113 		key_data += move_bytes;
114 		n = p[0];
115 		p[++n] = off;
116 		p[0] = ++n;
117 		FREESPACE(p) = off - PAGE_META(n);
118 		OFFSET(p) = off;
119 		p[n] = PARTIAL_KEY;
120 		bufp = __add_ovflpage(hashp, bufp);
121 		if (!bufp)
122 			return (-1);
123 		n = p[0];
124 		if (!key_size) {
125 			if (FREESPACE(p)) {
126 				move_bytes = MIN(FREESPACE(p), val_size);
127 				off = OFFSET(p) - move_bytes;
128 				p[n] = off;
129 				memmove(cp + off, val_data, move_bytes);
130 				val_data += move_bytes;
131 				val_size -= move_bytes;
132 				p[n - 2] = FULL_KEY_DATA;
133 				FREESPACE(p) = FREESPACE(p) - move_bytes;
134 				OFFSET(p) = off;
135 			} else
136 				p[n - 2] = FULL_KEY;
137 		}
138 		p = (__uint16_t *)bufp->page;
139 		cp = bufp->page;
140 		bufp->flags |= BUF_MOD;
141 	}
142 
143 	/* Now move the data */
144 	for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
145 	    space = FREESPACE(p) - BIGOVERHEAD) {
146 		move_bytes = MIN(space, val_size);
147 		/*
148 		 * Here's the hack to make sure that if the data ends on the
149 		 * same page as the key ends, FREESPACE is at least one.
150 		 */
151 		if (space == val_size && val_size == val->size)
152 			move_bytes--;
153 		off = OFFSET(p) - move_bytes;
154 		memmove(cp + off, val_data, move_bytes);
155 		val_size -= move_bytes;
156 		val_data += move_bytes;
157 		n = p[0];
158 		p[++n] = off;
159 		p[0] = ++n;
160 		FREESPACE(p) = off - PAGE_META(n);
161 		OFFSET(p) = off;
162 		if (val_size) {
163 			p[n] = FULL_KEY;
164 			bufp = __add_ovflpage(hashp, bufp);
165 			if (!bufp)
166 				return (-1);
167 			cp = bufp->page;
168 			p = (__uint16_t *)cp;
169 		} else
170 			p[n] = FULL_KEY_DATA;
171 		bufp->flags |= BUF_MOD;
172 	}
173 	return (0);
174 }
175 
176 /*
177  * Called when bufp's page  contains a partial key (index should be 1)
178  *
179  * All pages in the big key/data pair except bufp are freed.  We cannot
180  * free bufp because the page pointing to it is lost and we can't get rid
181  * of its pointer.
182  *
183  * Returns:
184  * 0 => OK
185  *-1 => ERROR
186  */
187 extern int
__big_delete(HTAB * hashp,BUFHEAD * bufp)188 __big_delete(HTAB *hashp,
189              BUFHEAD *bufp)
190 {
191 	BUFHEAD *last_bfp, *rbufp;
192 	__uint16_t *bp, pageno;
193 	int key_done, n;
194 
195 	rbufp = bufp;
196 	last_bfp = NULL;
197 	bp = (__uint16_t *)bufp->page;
198 	pageno = 0;
199 	key_done = 0;
200 
201 	while (!key_done || (bp[2] != FULL_KEY_DATA)) {
202 		if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
203 			key_done = 1;
204 
205 		/*
206 		 * If there is freespace left on a FULL_KEY_DATA page, then
207 		 * the data is short and fits entirely on this page, and this
208 		 * is the last page.
209 		 */
210 		if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
211 			break;
212 		pageno = bp[bp[0] - 1];
213 		rbufp->flags |= BUF_MOD;
214 		rbufp = __get_buf(hashp, pageno, rbufp, 0);
215 		if (last_bfp)
216 			__free_ovflpage(hashp, last_bfp);
217 		last_bfp = rbufp;
218 		if (!rbufp)
219 			return (-1);		/* Error. */
220 		bp = (__uint16_t *)rbufp->page;
221 	}
222 
223 	/*
224 	 * If we get here then rbufp points to the last page of the big
225 	 * key/data pair.  Bufp points to the first one -- it should now be
226 	 * empty pointing to the next page after this pair.  Can't free it
227 	 * because we don't have the page pointing to it.
228 	 */
229 
230 	/* This is information from the last page of the pair. */
231 	n = bp[0];
232 	pageno = bp[n - 1];
233 
234 	/* Now, bp is the first page of the pair. */
235 	bp = (__uint16_t *)bufp->page;
236 	if (n > 2) {
237 		/* There is an overflow page. */
238 		bp[1] = pageno;
239 		bp[2] = OVFLPAGE;
240 		bufp->ovfl = rbufp->ovfl;
241 	} else
242 		/* This is the last page. */
243 		bufp->ovfl = NULL;
244 	n -= 2;
245 	bp[0] = n;
246 	FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
247 	OFFSET(bp) = hashp->BSIZE - 1;
248 
249 	bufp->flags |= BUF_MOD;
250 	if (rbufp)
251 		__free_ovflpage(hashp, rbufp);
252 	if (last_bfp != rbufp)
253 		__free_ovflpage(hashp, last_bfp);
254 
255 	hashp->NKEYS--;
256 	return (0);
257 }
258 /*
259  * Returns:
260  *  0 = key not found
261  * -1 = get next overflow page
262  * -2 means key not found and this is big key/data
263  * -3 error
264  */
265 extern int
__find_bigpair(HTAB * hashp,BUFHEAD * bufp,int ndx,char * key,int size)266 __find_bigpair(HTAB *hashp,
267                BUFHEAD *bufp,
268                int ndx,
269                char *key,
270                int size)
271 {
272 	__uint16_t *bp;
273 	char *p;
274 	int ksize;
275 	__uint16_t bytes;
276 	char *kkey;
277 
278 	bp = (__uint16_t *)bufp->page;
279 	p = bufp->page;
280 	ksize = size;
281 	kkey = key;
282 
283 	for (bytes = hashp->BSIZE - bp[ndx];
284              (int) bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
285 	    bytes = hashp->BSIZE - bp[ndx]) {
286 		if (memcmp(p + bp[ndx], kkey, bytes))
287 			return (-2);
288 		kkey += bytes;
289 		ksize -= bytes;
290 		bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
291 		if (!bufp)
292 			return (-3);
293 		p = bufp->page;
294 		bp = (__uint16_t *)p;
295 		ndx = 1;
296 	}
297 
298 	if ((int) bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
299 #ifdef HASH_STATISTICS
300 		++hash_collisions;
301 #endif
302 		return (-2);
303 	} else
304 		return (ndx);
305 }
306 
307 /*
308  * Given the buffer pointer of the first overflow page of a big pair,
309  * find the end of the big pair
310  *
311  * This will set bpp to the buffer header of the last page of the big pair.
312  * It will return the pageno of the overflow page following the last page
313  * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
314  * bucket)
315  */
316 extern __uint16_t
__find_last_page(HTAB * hashp,BUFHEAD ** bpp)317 __find_last_page(HTAB *hashp,
318                  BUFHEAD **bpp)
319 {
320 	BUFHEAD *bufp;
321 	__uint16_t *bp, pageno;
322 	int n;
323 
324 	bufp = *bpp;
325 	bp = (__uint16_t *)bufp->page;
326 	for (;;) {
327 		n = bp[0];
328 
329 		/*
330 		 * This is the last page if: the tag is FULL_KEY_DATA and
331 		 * either only 2 entries OVFLPAGE marker is explicit there
332 		 * is freespace on the page.
333 		 */
334 		if (bp[2] == FULL_KEY_DATA &&
335 		    ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
336 			break;
337 
338 		pageno = bp[n - 1];
339 		bufp = __get_buf(hashp, pageno, bufp, 0);
340 		if (!bufp)
341 			return (0);	/* Need to indicate an error! */
342 		bp = (__uint16_t *)bufp->page;
343 	}
344 
345 	*bpp = bufp;
346 	if (bp[0] > 2)
347 		return (bp[3]);
348 	else
349 		return (0);
350 }
351 
352 /*
353  * Return the data for the key/data pair that begins on this page at this
354  * index (index should always be 1).
355  */
356 extern int
__big_return(HTAB * hashp,BUFHEAD * bufp,int ndx,DBT * val,int set_current)357 __big_return(HTAB *hashp,
358              BUFHEAD *bufp,
359              int ndx,
360              DBT *val,
361              int set_current)
362 {
363 	BUFHEAD *save_p;
364 	__uint16_t *bp, len, off, save_addr;
365 	char *tp;
366 
367 	bp = (__uint16_t *)bufp->page;
368 	while (bp[ndx + 1] == PARTIAL_KEY) {
369 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
370 		if (!bufp)
371 			return (-1);
372 		bp = (__uint16_t *)bufp->page;
373 		ndx = 1;
374 	}
375 
376 	if (bp[ndx + 1] == FULL_KEY) {
377 		bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
378 		if (!bufp)
379 			return (-1);
380 		bp = (__uint16_t *)bufp->page;
381 		save_p = bufp;
382 		save_addr = save_p->addr;
383 		off = bp[1];
384 		len = 0;
385 	} else
386 		if (!FREESPACE(bp)) {
387 			/*
388 			 * This is a hack.  We can't distinguish between
389 			 * FULL_KEY_DATA that contains complete data or
390 			 * incomplete data, so we require that if the data
391 			 * is complete, there is at least 1 byte of free
392 			 * space left.
393 			 */
394 			off = bp[bp[0]];
395 			len = bp[1] - off;
396 			save_p = bufp;
397 			save_addr = bufp->addr;
398 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
399 			if (!bufp)
400 				return (-1);
401 			bp = (__uint16_t *)bufp->page;
402 		} else {
403 			/* The data is all on one page. */
404 			tp = (char *)bp;
405 			off = bp[bp[0]];
406 			val->data = (u_char *)tp + off;
407 			val->size = bp[1] - off;
408 			if (set_current) {
409 				if (bp[0] == 2) {	/* No more buckets in
410 							 * chain */
411 					hashp->cpage = NULL;
412 					hashp->cbucket++;
413 					hashp->cndx = 1;
414 				} else {
415 					hashp->cpage = __get_buf(hashp,
416 					    bp[bp[0] - 1], bufp, 0);
417 					if (!hashp->cpage)
418 						return (-1);
419 					hashp->cndx = 1;
420 					if (!((__uint16_t *)
421 					    hashp->cpage->page)[0]) {
422 						hashp->cbucket++;
423 						hashp->cpage = NULL;
424 					}
425 				}
426 			}
427 			return (0);
428 		}
429 
430 	val->size = collect_data(hashp, bufp, len, set_current);
431 	if (val->size == (size_t) -1)
432 		return (-1);
433 	if (save_p->addr != save_addr) {
434 		/* We are pretty short on buffers. */
435 		errno = EINVAL;			/* OUT OF BUFFERS */
436 		return (-1);
437 	}
438 	memmove(hashp->tmp_buf, (save_p->page) + off, len);
439 	val->data = (u_char *)hashp->tmp_buf;
440 	return (0);
441 }
442 /*
443  * Count how big the total datasize is by recursing through the pages.  Then
444  * allocate a buffer and copy the data as you recurse up.
445  */
446 static size_t
collect_data(HTAB * hashp,BUFHEAD * bufp,size_t len,int set)447 collect_data(HTAB *hashp,
448              BUFHEAD *bufp,
449              size_t len,
450              int set)
451 {
452 	__uint16_t *bp;
453 	char *p;
454 	BUFHEAD *xbp;
455 	__uint16_t save_addr;
456 	size_t mylen, totlen;
457 
458 	p = bufp->page;
459 	bp = (__uint16_t *)p;
460 	mylen = hashp->BSIZE - bp[1];
461 	save_addr = bufp->addr;
462 
463 	if (bp[2] == FULL_KEY_DATA) {		/* End of Data */
464 		totlen = len + mylen;
465 		if (hashp->tmp_buf)
466 			free(hashp->tmp_buf);
467 		if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
468 			return (-1);
469 		if (set) {
470 			hashp->cndx = 1;
471 			if (bp[0] == 2) {	/* No more buckets in chain */
472 				hashp->cpage = NULL;
473 				hashp->cbucket++;
474 			} else {
475 				hashp->cpage =
476 				    __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
477 				if (!hashp->cpage)
478 					return (-1);
479 				else if (!((__uint16_t *)hashp->cpage->page)[0]) {
480 					hashp->cbucket++;
481 					hashp->cpage = NULL;
482 				}
483 			}
484 		}
485 	} else {
486 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
487 		if (!xbp || ((totlen =
488 		    collect_data(hashp, xbp, len + mylen, set)) < 1))
489 			return (-1);
490 	}
491 	if (bufp->addr != save_addr) {
492 		errno = EINVAL;			/* Out of buffers. */
493 		return (-1);
494 	}
495 	memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
496 	return (totlen);
497 }
498 
499 /*
500  * Fill in the key and data for this big pair.
501  */
502 extern int
__big_keydata(HTAB * hashp,BUFHEAD * bufp,DBT * key,DBT * val,int set)503 __big_keydata(HTAB *hashp,
504               BUFHEAD *bufp,
505               DBT *key,
506               DBT *val,
507               int set)
508 {
509 	key->size = collect_key(hashp, bufp, 0, val, set);
510 	if (key->size == (size_t) -1)
511 		return (-1);
512 	key->data = (u_char *)hashp->tmp_key;
513 	return (0);
514 }
515 
516 /*
517  * Count how big the total key size is by recursing through the pages.  Then
518  * collect the data, allocate a buffer and copy the key as you recurse up.
519  */
520 static size_t
collect_key(HTAB * hashp,BUFHEAD * bufp,size_t len,DBT * val,int set)521 collect_key(HTAB *hashp,
522             BUFHEAD *bufp,
523             size_t len,
524             DBT *val,
525             int set)
526 {
527 	BUFHEAD *xbp;
528 	char *p;
529 	size_t mylen, totlen;
530 	__uint16_t *bp, save_addr;
531 
532 	p = bufp->page;
533 	bp = (__uint16_t *)p;
534 	mylen = hashp->BSIZE - bp[1];
535 
536 	save_addr = bufp->addr;
537 	totlen = len + mylen;
538 	if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) {    /* End of Key. */
539 		if (hashp->tmp_key != NULL)
540 			free(hashp->tmp_key);
541 		if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
542 			return (-1);
543 		if (__big_return(hashp, bufp, 1, val, set))
544 			return (-1);
545 	} else {
546 		xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
547 		if (!xbp || ((totlen =
548 		    collect_key(hashp, xbp, totlen, val, set)) < 1))
549 			return (-1);
550 	}
551 	if (bufp->addr != save_addr) {
552 		errno = EINVAL;		/* MIS -- OUT OF BUFFERS */
553 		return (-1);
554 	}
555 	memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
556 	return (totlen);
557 }
558 
559 /*
560  * Returns:
561  *  0 => OK
562  * -1 => error
563  */
564 extern int
__big_split(HTAB * hashp,BUFHEAD * op,BUFHEAD * np,BUFHEAD * big_keyp,int addr,__uint32_t obucket,SPLIT_RETURN * ret)565 __big_split(
566     HTAB *hashp,
567     BUFHEAD *op,	/* Pointer to where to put keys that go in old bucket */
568     BUFHEAD *np,	/* Pointer to new bucket page */
569     BUFHEAD *big_keyp,  /* Pointer to first page containing the big key/data */
570     int addr,	        /* Address of big_keyp */
571     __uint32_t obucket, /* Old Bucket */
572     SPLIT_RETURN *ret)
573 {
574 	BUFHEAD *tmpp;
575 	__uint16_t *tp;
576 	BUFHEAD *bp;
577 	DBT key, val;
578 	__uint32_t change;
579 	__uint16_t free_space, n, off;
580 
581 	bp = big_keyp;
582 
583 	/* Now figure out where the big key/data goes */
584 	if (__big_keydata(hashp, big_keyp, &key, &val, 0))
585 		return (-1);
586 	change = (__call_hash(hashp, key.data, key.size) != obucket);
587 
588 	if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
589 		if (!(ret->nextp =
590 		    __get_buf(hashp, ret->next_addr, big_keyp, 0)))
591 			return (-1);;
592 	} else
593 		ret->nextp = NULL;
594 
595 	/* Now make one of np/op point to the big key/data pair */
596 #ifdef DEBUG
597 	assert(np->ovfl == NULL);
598 #endif
599 	if (change)
600 		tmpp = np;
601 	else
602 		tmpp = op;
603 
604 	tmpp->flags |= BUF_MOD;
605 #ifdef DEBUG1
606 	(void)fprintf(stderr,
607 	    "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
608 	    (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
609 #endif
610 	tmpp->ovfl = bp;	/* one of op/np point to big_keyp */
611 	tp = (__uint16_t *)tmpp->page;
612 #ifdef DEBUG
613 	assert(FREESPACE(tp) >= OVFLSIZE);
614 #endif
615 	n = tp[0];
616 	off = OFFSET(tp);
617 	free_space = FREESPACE(tp);
618 	tp[++n] = (__uint16_t)addr;
619 	tp[++n] = OVFLPAGE;
620 	tp[0] = n;
621 	OFFSET(tp) = off;
622 	FREESPACE(tp) = free_space - OVFLSIZE;
623 
624 	/*
625 	 * Finally, set the new and old return values. BIG_KEYP contains a
626 	 * pointer to the last page of the big key_data pair. Make sure that
627 	 * big_keyp has no following page (2 elements) or create an empty
628 	 * following page.
629 	 */
630 
631 	ret->newp = np;
632 	ret->oldp = op;
633 
634 	tp = (__uint16_t *)big_keyp->page;
635 	big_keyp->flags |= BUF_MOD;
636 	if (tp[0] > 2) {
637 		/*
638 		 * There may be either one or two offsets on this page.  If
639 		 * there is one, then the overflow page is linked on normally
640 		 * and tp[4] is OVFLPAGE.  If there are two, tp[4] contains
641 		 * the second offset and needs to get stuffed in after the
642 		 * next overflow page is added.
643 		 */
644 		n = tp[4];
645 		free_space = FREESPACE(tp);
646 		off = OFFSET(tp);
647 		tp[0] -= 2;
648 		FREESPACE(tp) = free_space + OVFLSIZE;
649 		OFFSET(tp) = off;
650 		tmpp = __add_ovflpage(hashp, big_keyp);
651 		if (!tmpp)
652 			return (-1);
653 		tp[4] = n;
654 	} else
655 		tmpp = big_keyp;
656 
657 	if (change)
658 		ret->newp = tmpp;
659 	else
660 		ret->oldp = tmpp;
661 	return (0);
662 }
663