1 #include "../lv_conf_internal.h"
2 #if LV_MEM_CUSTOM == 0
3
4 #include <limits.h>
5 #include "lv_tlsf.h"
6 #include "lv_mem.h"
7 #include "lv_log.h"
8 #include "lv_assert.h"
9
10 #undef printf
11 #define printf LV_LOG_ERROR
12
13 #define TLSF_MAX_POOL_SIZE LV_MEM_SIZE
14
15 #if !defined(_DEBUG)
16 #define _DEBUG 0
17 #endif
18
19 #if defined(__cplusplus)
20 #define tlsf_decl inline
21 #else
22 #define tlsf_decl static
23 #endif
24
25 /*
26 ** Architecture-specific bit manipulation routines.
27 **
28 ** TLSF achieves O(1) cost for malloc and free operations by limiting
29 ** the search for a free block to a free list of guaranteed size
30 ** adequate to fulfill the request, combined with efficient free list
31 ** queries using bitmasks and architecture-specific bit-manipulation
32 ** routines.
33 **
34 ** Most modern processors provide instructions to count leading zeroes
35 ** in a word, find the lowest and highest set bit, etc. These
36 ** specific implementations will be used when available, falling back
37 ** to a reasonably efficient generic implementation.
38 **
39 ** NOTE: TLSF spec relies on ffs/fls returning value 0..31.
40 ** ffs/fls return 1-32 by default, returning 0 for error.
41 */
42
43 /*
44 ** Detect whether or not we are building for a 32- or 64-bit (LP/LLP)
45 ** architecture. There is no reliable portable method at compile-time.
46 */
47 #if defined (__alpha__) || defined (__ia64__) || defined (__x86_64__) \
48 || defined (_WIN64) || defined (__LP64__) || defined (__LLP64__)
49 #define TLSF_64BIT
50 #endif
51
52 /*
53 ** Returns one plus the index of the most significant 1-bit of n,
54 ** or if n is zero, returns zero.
55 */
56 #ifdef TLSF_64BIT
57 #define TLSF_FLS(n) ((n) & 0xffffffff00000000ull ? 32 + TLSF_FLS32((size_t)(n) >> 32) : TLSF_FLS32(n))
58 #else
59 #define TLSF_FLS(n) TLSF_FLS32(n)
60 #endif
61
62 #define TLSF_FLS32(n) ((n) & 0xffff0000 ? 16 + TLSF_FLS16((n) >> 16) : TLSF_FLS16(n))
63 #define TLSF_FLS16(n) ((n) & 0xff00 ? 8 + TLSF_FLS8 ((n) >> 8) : TLSF_FLS8 (n))
64 #define TLSF_FLS8(n) ((n) & 0xf0 ? 4 + TLSF_FLS4 ((n) >> 4) : TLSF_FLS4 (n))
65 #define TLSF_FLS4(n) ((n) & 0xc ? 2 + TLSF_FLS2 ((n) >> 2) : TLSF_FLS2 (n))
66 #define TLSF_FLS2(n) ((n) & 0x2 ? 1 + TLSF_FLS1 ((n) >> 1) : TLSF_FLS1 (n))
67 #define TLSF_FLS1(n) ((n) & 0x1 ? 1 : 0)
68
69 /*
70 ** Returns round up value of log2(n).
71 ** Note: it is used at compile time.
72 */
73 #define TLSF_LOG2_CEIL(n) ((n) & (n - 1) ? TLSF_FLS(n) : TLSF_FLS(n) - 1)
74
75 /*
76 ** gcc 3.4 and above have builtin support, specialized for architecture.
77 ** Some compilers masquerade as gcc; patchlevel test filters them out.
78 */
79 #if defined (__GNUC__) && (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) \
80 && defined (__GNUC_PATCHLEVEL__)
81
82 #if defined (__SNC__)
83 /* SNC for Playstation 3. */
84
tlsf_ffs(unsigned int word)85 tlsf_decl int tlsf_ffs(unsigned int word)
86 {
87 const unsigned int reverse = word & (~word + 1);
88 const int bit = 32 - __builtin_clz(reverse);
89 return bit - 1;
90 }
91
92 #else
93
tlsf_ffs(unsigned int word)94 tlsf_decl int tlsf_ffs(unsigned int word)
95 {
96 return __builtin_ffs(word) - 1;
97 }
98
99 #endif
100
tlsf_fls(unsigned int word)101 tlsf_decl int tlsf_fls(unsigned int word)
102 {
103 const int bit = word ? 32 - __builtin_clz(word) : 0;
104 return bit - 1;
105 }
106
107 #elif defined (_MSC_VER) && (_MSC_VER >= 1400) && (defined (_M_IX86) || defined (_M_X64))
108 /* Microsoft Visual C++ support on x86/X64 architectures. */
109
110 #include <intrin.h>
111
112 #pragma intrinsic(_BitScanReverse)
113 #pragma intrinsic(_BitScanForward)
114
tlsf_fls(unsigned int word)115 tlsf_decl int tlsf_fls(unsigned int word)
116 {
117 unsigned long index;
118 return _BitScanReverse(&index, word) ? index : -1;
119 }
120
tlsf_ffs(unsigned int word)121 tlsf_decl int tlsf_ffs(unsigned int word)
122 {
123 unsigned long index;
124 return _BitScanForward(&index, word) ? index : -1;
125 }
126
127 #elif defined (_MSC_VER) && defined (_M_PPC)
128 /* Microsoft Visual C++ support on PowerPC architectures. */
129
130 #include <ppcintrinsics.h>
131
tlsf_fls(unsigned int word)132 tlsf_decl int tlsf_fls(unsigned int word)
133 {
134 const int bit = 32 - _CountLeadingZeros(word);
135 return bit - 1;
136 }
137
tlsf_ffs(unsigned int word)138 tlsf_decl int tlsf_ffs(unsigned int word)
139 {
140 const unsigned int reverse = word & (~word + 1);
141 const int bit = 32 - _CountLeadingZeros(reverse);
142 return bit - 1;
143 }
144
145 #elif defined (__ARMCC_VERSION)
146 /* RealView Compilation Tools for ARM */
147
tlsf_ffs(unsigned int word)148 tlsf_decl int tlsf_ffs(unsigned int word)
149 {
150 const unsigned int reverse = word & (~word + 1);
151 const int bit = 32 - __clz(reverse);
152 return bit - 1;
153 }
154
tlsf_fls(unsigned int word)155 tlsf_decl int tlsf_fls(unsigned int word)
156 {
157 const int bit = word ? 32 - __clz(word) : 0;
158 return bit - 1;
159 }
160
161 #elif defined (__ghs__)
162 /* Green Hills support for PowerPC */
163
164 #include <ppc_ghs.h>
165
tlsf_ffs(unsigned int word)166 tlsf_decl int tlsf_ffs(unsigned int word)
167 {
168 const unsigned int reverse = word & (~word + 1);
169 const int bit = 32 - __CLZ32(reverse);
170 return bit - 1;
171 }
172
tlsf_fls(unsigned int word)173 tlsf_decl int tlsf_fls(unsigned int word)
174 {
175 const int bit = word ? 32 - __CLZ32(word) : 0;
176 return bit - 1;
177 }
178
179 #else
180 /* Fall back to generic implementation. */
181
182 /* Implement ffs in terms of fls. */
tlsf_ffs(unsigned int word)183 tlsf_decl int tlsf_ffs(unsigned int word)
184 {
185 const unsigned int reverse = word & (~word + 1);
186 return TLSF_FLS32(reverse) - 1;
187 }
188
tlsf_fls(unsigned int word)189 tlsf_decl int tlsf_fls(unsigned int word)
190 {
191 return TLSF_FLS32(word) - 1;
192 }
193
194 #endif
195
196 /* Possibly 64-bit version of tlsf_fls. */
197 #if defined (TLSF_64BIT)
tlsf_fls_sizet(size_t size)198 tlsf_decl int tlsf_fls_sizet(size_t size)
199 {
200 int high = (int)(size >> 32);
201 int bits = 0;
202 if(high) {
203 bits = 32 + tlsf_fls(high);
204 }
205 else {
206 bits = tlsf_fls((int)size & 0xffffffff);
207
208 }
209 return bits;
210 }
211 #else
212 #define tlsf_fls_sizet tlsf_fls
213 #endif
214
215 #undef tlsf_decl
216
217 /*
218 ** Constants.
219 */
220
221 /* Public constants: may be modified. */
222 enum tlsf_public {
223 /* log2 of number of linear subdivisions of block sizes. Larger
224 ** values require more memory in the control structure. Values of
225 ** 4 or 5 are typical.
226 */
227 SL_INDEX_COUNT_LOG2 = 5,
228 };
229
230 /* Private constants: do not modify. */
231 enum tlsf_private {
232 #if defined (TLSF_64BIT)
233 /* All allocation sizes and addresses are aligned to 8 bytes. */
234 ALIGN_SIZE_LOG2 = 3,
235 #else
236 /* All allocation sizes and addresses are aligned to 4 bytes. */
237 ALIGN_SIZE_LOG2 = 2,
238 #endif
239 ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
240
241 /*
242 ** We support allocations of sizes up to (1 << FL_INDEX_MAX) bits.
243 ** However, because we linearly subdivide the second-level lists, and
244 ** our minimum size granularity is 4 bytes, it doesn't make sense to
245 ** create first-level lists for sizes smaller than SL_INDEX_COUNT * 4,
246 ** or (1 << (SL_INDEX_COUNT_LOG2 + 2)) bytes, as there we will be
247 ** trying to split size ranges into more slots than we have available.
248 ** Instead, we calculate the minimum threshold size, and place all
249 ** blocks below that size into the 0th first-level list.
250 */
251
252 #if defined (TLSF_MAX_POOL_SIZE)
253 FL_INDEX_MAX = TLSF_LOG2_CEIL(TLSF_MAX_POOL_SIZE),
254 #elif defined (TLSF_64BIT)
255 /*
256 ** TODO: We can increase this to support larger sizes, at the expense
257 ** of more overhead in the TLSF structure.
258 */
259 FL_INDEX_MAX = 32,
260 #else
261 FL_INDEX_MAX = 30,
262 #endif
263 SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
264 FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
265 FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
266
267 SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
268 };
269
270 /*
271 ** Cast and min/max macros.
272 */
273
274 #define tlsf_cast(t, exp) ((t) (exp))
275 #define tlsf_min(a, b) ((a) < (b) ? (a) : (b))
276 #define tlsf_max(a, b) ((a) > (b) ? (a) : (b))
277
278 /*
279 ** Set assert macro, if it has not been provided by the user.
280 */
281 #define tlsf_assert LV_ASSERT
282
283 #if !defined (tlsf_assert)
284 #define tlsf_assert assert
285 #endif
286
287 /*
288 ** Static assertion mechanism.
289 */
290
291 #define _tlsf_glue2(x, y) x ## y
292 #define _tlsf_glue(x, y) _tlsf_glue2(x, y)
293 #define tlsf_static_assert(exp) \
294 typedef char _tlsf_glue(static_assert, __LINE__) [(exp) ? 1 : -1]
295
296 /* This code has been tested on 32- and 64-bit (LP/LLP) architectures. */
297 tlsf_static_assert(sizeof(int) * CHAR_BIT == 32);
298 tlsf_static_assert(sizeof(size_t) * CHAR_BIT >= 32);
299 tlsf_static_assert(sizeof(size_t) * CHAR_BIT <= 64);
300
301 /* SL_INDEX_COUNT must be <= number of bits in sl_bitmap's storage type. */
302 tlsf_static_assert(sizeof(unsigned int) * CHAR_BIT >= SL_INDEX_COUNT);
303
304 /* Ensure we've properly tuned our sizes. */
305 tlsf_static_assert(ALIGN_SIZE == SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
306
307 /*
308 ** Data structures and associated constants.
309 */
310
311 /*
312 ** Block header structure.
313 **
314 ** There are several implementation subtleties involved:
315 ** - The prev_phys_block field is only valid if the previous block is free.
316 ** - The prev_phys_block field is actually stored at the end of the
317 ** previous block. It appears at the beginning of this structure only to
318 ** simplify the implementation.
319 ** - The next_free / prev_free fields are only valid if the block is free.
320 */
321 typedef struct block_header_t {
322 /* Points to the previous physical block. */
323 struct block_header_t * prev_phys_block;
324
325 /* The size of this block, excluding the block header. */
326 size_t size;
327
328 /* Next and previous free blocks. */
329 struct block_header_t * next_free;
330 struct block_header_t * prev_free;
331 } block_header_t;
332
333 /*
334 ** Since block sizes are always at least a multiple of 4, the two least
335 ** significant bits of the size field are used to store the block status:
336 ** - bit 0: whether block is busy or free
337 ** - bit 1: whether previous block is busy or free
338 */
339 static const size_t block_header_free_bit = 1 << 0;
340 static const size_t block_header_prev_free_bit = 1 << 1;
341
342 /*
343 ** The size of the block header exposed to used blocks is the size field.
344 ** The prev_phys_block field is stored *inside* the previous free block.
345 */
346 static const size_t block_header_overhead = sizeof(size_t);
347
348 /* User data starts directly after the size field in a used block. */
349 static const size_t block_start_offset =
350 offsetof(block_header_t, size) + sizeof(size_t);
351
352 /*
353 ** A free block must be large enough to store its header minus the size of
354 ** the prev_phys_block field, and no larger than the number of addressable
355 ** bits for FL_INDEX.
356 */
357 static const size_t block_size_min =
358 sizeof(block_header_t) - sizeof(block_header_t *);
359 static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX;
360
361
362 /* The TLSF control structure. */
363 typedef struct control_t {
364 /* Empty lists point at this block to indicate they are free. */
365 block_header_t block_null;
366
367 /* Bitmaps for free lists. */
368 unsigned int fl_bitmap;
369 unsigned int sl_bitmap[FL_INDEX_COUNT];
370
371 /* Head of free lists. */
372 block_header_t * blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
373 } control_t;
374
375 /* A type used for casting when doing pointer arithmetic. */
376 typedef ptrdiff_t tlsfptr_t;
377
378 /*
379 ** block_header_t member functions.
380 */
381
block_size(const block_header_t * block)382 static size_t block_size(const block_header_t * block)
383 {
384 return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
385 }
386
block_set_size(block_header_t * block,size_t size)387 static void block_set_size(block_header_t * block, size_t size)
388 {
389 const size_t oldsize = block->size;
390 block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
391 }
392
block_is_last(const block_header_t * block)393 static int block_is_last(const block_header_t * block)
394 {
395 return block_size(block) == 0;
396 }
397
block_is_free(const block_header_t * block)398 static int block_is_free(const block_header_t * block)
399 {
400 return tlsf_cast(int, block->size & block_header_free_bit);
401 }
402
block_set_free(block_header_t * block)403 static void block_set_free(block_header_t * block)
404 {
405 block->size |= block_header_free_bit;
406 }
407
block_set_used(block_header_t * block)408 static void block_set_used(block_header_t * block)
409 {
410 block->size &= ~block_header_free_bit;
411 }
412
block_is_prev_free(const block_header_t * block)413 static int block_is_prev_free(const block_header_t * block)
414 {
415 return tlsf_cast(int, block->size & block_header_prev_free_bit);
416 }
417
block_set_prev_free(block_header_t * block)418 static void block_set_prev_free(block_header_t * block)
419 {
420 block->size |= block_header_prev_free_bit;
421 }
422
block_set_prev_used(block_header_t * block)423 static void block_set_prev_used(block_header_t * block)
424 {
425 block->size &= ~block_header_prev_free_bit;
426 }
427
block_from_ptr(const void * ptr)428 static block_header_t * block_from_ptr(const void * ptr)
429 {
430 return tlsf_cast(block_header_t *,
431 tlsf_cast(unsigned char *, ptr) - block_start_offset);
432 }
433
block_to_ptr(const block_header_t * block)434 static void * block_to_ptr(const block_header_t * block)
435 {
436 return tlsf_cast(void *,
437 tlsf_cast(unsigned char *, block) + block_start_offset);
438 }
439
440 /* Return location of next block after block of given size. */
offset_to_block(const void * ptr,size_t size)441 static block_header_t * offset_to_block(const void * ptr, size_t size)
442 {
443 return tlsf_cast(block_header_t *, tlsf_cast(tlsfptr_t, ptr) + size);
444 }
445
446 /* Return location of previous block. */
block_prev(const block_header_t * block)447 static block_header_t * block_prev(const block_header_t * block)
448 {
449 tlsf_assert(block_is_prev_free(block) && "previous block must be free");
450 return block->prev_phys_block;
451 }
452
453 /* Return location of next existing block. */
block_next(const block_header_t * block)454 static block_header_t * block_next(const block_header_t * block)
455 {
456 block_header_t * next = offset_to_block(block_to_ptr(block),
457 block_size(block) - block_header_overhead);
458 tlsf_assert(!block_is_last(block));
459 return next;
460 }
461
462 /* Link a new block with its physical neighbor, return the neighbor. */
block_link_next(block_header_t * block)463 static block_header_t * block_link_next(block_header_t * block)
464 {
465 block_header_t * next = block_next(block);
466 next->prev_phys_block = block;
467 return next;
468 }
469
block_mark_as_free(block_header_t * block)470 static void block_mark_as_free(block_header_t * block)
471 {
472 /* Link the block to the next block, first. */
473 block_header_t * next = block_link_next(block);
474 block_set_prev_free(next);
475 block_set_free(block);
476 }
477
block_mark_as_used(block_header_t * block)478 static void block_mark_as_used(block_header_t * block)
479 {
480 block_header_t * next = block_next(block);
481 block_set_prev_used(next);
482 block_set_used(block);
483 }
484
align_up(size_t x,size_t align)485 static size_t align_up(size_t x, size_t align)
486 {
487 tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
488 return (x + (align - 1)) & ~(align - 1);
489 }
490
align_down(size_t x,size_t align)491 static size_t align_down(size_t x, size_t align)
492 {
493 tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
494 return x - (x & (align - 1));
495 }
496
align_ptr(const void * ptr,size_t align)497 static void * align_ptr(const void * ptr, size_t align)
498 {
499 const tlsfptr_t aligned =
500 (tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
501 tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
502 return tlsf_cast(void *, aligned);
503 }
504
505 /*
506 ** Adjust an allocation size to be aligned to word size, and no smaller
507 ** than internal minimum.
508 */
adjust_request_size(size_t size,size_t align)509 static size_t adjust_request_size(size_t size, size_t align)
510 {
511 size_t adjust = 0;
512 if(size) {
513 const size_t aligned = align_up(size, align);
514
515 /* aligned sized must not exceed block_size_max or we'll go out of bounds on sl_bitmap */
516 if(aligned < block_size_max) {
517 adjust = tlsf_max(aligned, block_size_min);
518 }
519 }
520 return adjust;
521 }
522
523 /*
524 ** TLSF utility functions. In most cases, these are direct translations of
525 ** the documentation found in the white paper.
526 */
527
mapping_insert(size_t size,int * fli,int * sli)528 static void mapping_insert(size_t size, int * fli, int * sli)
529 {
530 int fl, sl;
531 if(size < SMALL_BLOCK_SIZE) {
532 /* Store small blocks in first list. */
533 fl = 0;
534 sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
535 }
536 else {
537 fl = tlsf_fls_sizet(size);
538 sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
539 fl -= (FL_INDEX_SHIFT - 1);
540 }
541 *fli = fl;
542 *sli = sl;
543 }
544
545 /* This version rounds up to the next block size (for allocations) */
mapping_search(size_t size,int * fli,int * sli)546 static void mapping_search(size_t size, int * fli, int * sli)
547 {
548 if(size >= SMALL_BLOCK_SIZE) {
549 const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1;
550 size += round;
551 }
552 mapping_insert(size, fli, sli);
553 }
554
search_suitable_block(control_t * control,int * fli,int * sli)555 static block_header_t * search_suitable_block(control_t * control, int * fli, int * sli)
556 {
557 int fl = *fli;
558 int sl = *sli;
559
560 /*
561 ** First, search for a block in the list associated with the given
562 ** fl/sl index.
563 */
564 unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
565 if(!sl_map) {
566 /* No block exists. Search in the next largest first-level list. */
567 const unsigned int fl_map = control->fl_bitmap & (~0U << (fl + 1));
568 if(!fl_map) {
569 /* No free blocks available, memory has been exhausted. */
570 return 0;
571 }
572
573 fl = tlsf_ffs(fl_map);
574 *fli = fl;
575 sl_map = control->sl_bitmap[fl];
576 }
577 tlsf_assert(sl_map && "internal error - second level bitmap is null");
578 sl = tlsf_ffs(sl_map);
579 *sli = sl;
580
581 /* Return the first block in the free list. */
582 return control->blocks[fl][sl];
583 }
584
585 /* Remove a free block from the free list.*/
remove_free_block(control_t * control,block_header_t * block,int fl,int sl)586 static void remove_free_block(control_t * control, block_header_t * block, int fl, int sl)
587 {
588 block_header_t * prev = block->prev_free;
589 block_header_t * next = block->next_free;
590 tlsf_assert(prev && "prev_free field can not be null");
591 tlsf_assert(next && "next_free field can not be null");
592 next->prev_free = prev;
593 prev->next_free = next;
594
595 /* If this block is the head of the free list, set new head. */
596 if(control->blocks[fl][sl] == block) {
597 control->blocks[fl][sl] = next;
598
599 /* If the new head is null, clear the bitmap. */
600 if(next == &control->block_null) {
601 control->sl_bitmap[fl] &= ~(1U << sl);
602
603 /* If the second bitmap is now empty, clear the fl bitmap. */
604 if(!control->sl_bitmap[fl]) {
605 control->fl_bitmap &= ~(1U << fl);
606 }
607 }
608 }
609 }
610
611 /* Insert a free block into the free block list. */
insert_free_block(control_t * control,block_header_t * block,int fl,int sl)612 static void insert_free_block(control_t * control, block_header_t * block, int fl, int sl)
613 {
614 block_header_t * current = control->blocks[fl][sl];
615 tlsf_assert(current && "free list cannot have a null entry");
616 tlsf_assert(block && "cannot insert a null entry into the free list");
617 block->next_free = current;
618 block->prev_free = &control->block_null;
619 current->prev_free = block;
620
621 tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE)
622 && "block not aligned properly");
623 /*
624 ** Insert the new block at the head of the list, and mark the first-
625 ** and second-level bitmaps appropriately.
626 */
627 control->blocks[fl][sl] = block;
628 control->fl_bitmap |= (1U << fl);
629 control->sl_bitmap[fl] |= (1U << sl);
630 }
631
632 /* Remove a given block from the free list. */
block_remove(control_t * control,block_header_t * block)633 static void block_remove(control_t * control, block_header_t * block)
634 {
635 int fl, sl;
636 mapping_insert(block_size(block), &fl, &sl);
637 remove_free_block(control, block, fl, sl);
638 }
639
640 /* Insert a given block into the free list. */
block_insert(control_t * control,block_header_t * block)641 static void block_insert(control_t * control, block_header_t * block)
642 {
643 int fl, sl;
644 mapping_insert(block_size(block), &fl, &sl);
645 insert_free_block(control, block, fl, sl);
646 }
647
block_can_split(block_header_t * block,size_t size)648 static int block_can_split(block_header_t * block, size_t size)
649 {
650 return block_size(block) >= sizeof(block_header_t) + size;
651 }
652
653 /* Split a block into two, the second of which is free. */
block_split(block_header_t * block,size_t size)654 static block_header_t * block_split(block_header_t * block, size_t size)
655 {
656 /* Calculate the amount of space left in the remaining block. */
657 block_header_t * remaining =
658 offset_to_block(block_to_ptr(block), size - block_header_overhead);
659
660 const size_t remain_size = block_size(block) - (size + block_header_overhead);
661
662 tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE)
663 && "remaining block not aligned properly");
664
665 tlsf_assert(block_size(block) == remain_size + size + block_header_overhead);
666 block_set_size(remaining, remain_size);
667 tlsf_assert(block_size(remaining) >= block_size_min && "block split with invalid size");
668
669 block_set_size(block, size);
670 block_mark_as_free(remaining);
671
672 return remaining;
673 }
674
675 /* Absorb a free block's storage into an adjacent previous free block. */
block_absorb(block_header_t * prev,block_header_t * block)676 static block_header_t * block_absorb(block_header_t * prev, block_header_t * block)
677 {
678 tlsf_assert(!block_is_last(prev) && "previous block can't be last");
679 /* Note: Leaves flags untouched. */
680 prev->size += block_size(block) + block_header_overhead;
681 block_link_next(prev);
682 return prev;
683 }
684
685 /* Merge a just-freed block with an adjacent previous free block. */
block_merge_prev(control_t * control,block_header_t * block)686 static block_header_t * block_merge_prev(control_t * control, block_header_t * block)
687 {
688 if(block_is_prev_free(block)) {
689 block_header_t * prev = block_prev(block);
690 tlsf_assert(prev && "prev physical block can't be null");
691 tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
692 block_remove(control, prev);
693 block = block_absorb(prev, block);
694 }
695
696 return block;
697 }
698
699 /* Merge a just-freed block with an adjacent free block. */
block_merge_next(control_t * control,block_header_t * block)700 static block_header_t * block_merge_next(control_t * control, block_header_t * block)
701 {
702 block_header_t * next = block_next(block);
703 tlsf_assert(next && "next physical block can't be null");
704
705 if(block_is_free(next)) {
706 tlsf_assert(!block_is_last(block) && "previous block can't be last");
707 block_remove(control, next);
708 block = block_absorb(block, next);
709 }
710
711 return block;
712 }
713
714 /* Trim any trailing block space off the end of a block, return to pool. */
block_trim_free(control_t * control,block_header_t * block,size_t size)715 static void block_trim_free(control_t * control, block_header_t * block, size_t size)
716 {
717 tlsf_assert(block_is_free(block) && "block must be free");
718 if(block_can_split(block, size)) {
719 block_header_t * remaining_block = block_split(block, size);
720 block_link_next(block);
721 block_set_prev_free(remaining_block);
722 block_insert(control, remaining_block);
723 }
724 }
725
726 /* Trim any trailing block space off the end of a used block, return to pool. */
block_trim_used(control_t * control,block_header_t * block,size_t size)727 static void block_trim_used(control_t * control, block_header_t * block, size_t size)
728 {
729 tlsf_assert(!block_is_free(block) && "block must be used");
730 if(block_can_split(block, size)) {
731 /* If the next block is free, we must coalesce. */
732 block_header_t * remaining_block = block_split(block, size);
733 block_set_prev_used(remaining_block);
734
735 remaining_block = block_merge_next(control, remaining_block);
736 block_insert(control, remaining_block);
737 }
738 }
739
block_trim_free_leading(control_t * control,block_header_t * block,size_t size)740 static block_header_t * block_trim_free_leading(control_t * control, block_header_t * block, size_t size)
741 {
742 block_header_t * remaining_block = block;
743 if(block_can_split(block, size)) {
744 /* We want the 2nd block. */
745 remaining_block = block_split(block, size - block_header_overhead);
746 block_set_prev_free(remaining_block);
747
748 block_link_next(block);
749 block_insert(control, block);
750 }
751
752 return remaining_block;
753 }
754
block_locate_free(control_t * control,size_t size)755 static block_header_t * block_locate_free(control_t * control, size_t size)
756 {
757 int fl = 0, sl = 0;
758 block_header_t * block = 0;
759
760 if(size) {
761 mapping_search(size, &fl, &sl);
762
763 /*
764 ** mapping_search can futz with the size, so for excessively large sizes it can sometimes wind up
765 ** with indices that are off the end of the block array.
766 ** So, we protect against that here, since this is the only callsite of mapping_search.
767 ** Note that we don't need to check sl, since it comes from a modulo operation that guarantees it's always in range.
768 */
769 if(fl < FL_INDEX_COUNT) {
770 block = search_suitable_block(control, &fl, &sl);
771 }
772 }
773
774 if(block) {
775 tlsf_assert(block_size(block) >= size);
776 remove_free_block(control, block, fl, sl);
777 }
778
779 return block;
780 }
781
block_prepare_used(control_t * control,block_header_t * block,size_t size)782 static void * block_prepare_used(control_t * control, block_header_t * block, size_t size)
783 {
784 void * p = 0;
785 if(block) {
786 tlsf_assert(size && "size must be non-zero");
787 block_trim_free(control, block, size);
788 block_mark_as_used(block);
789 p = block_to_ptr(block);
790 }
791 return p;
792 }
793
794 /* Clear structure and point all empty lists at the null block. */
control_constructor(control_t * control)795 static void control_constructor(control_t * control)
796 {
797 int i, j;
798
799 control->block_null.next_free = &control->block_null;
800 control->block_null.prev_free = &control->block_null;
801
802 control->fl_bitmap = 0;
803 for(i = 0; i < FL_INDEX_COUNT; ++i) {
804 control->sl_bitmap[i] = 0;
805 for(j = 0; j < SL_INDEX_COUNT; ++j) {
806 control->blocks[i][j] = &control->block_null;
807 }
808 }
809 }
810
811 /*
812 ** Debugging utilities.
813 */
814
815 typedef struct integrity_t {
816 int prev_status;
817 int status;
818 } integrity_t;
819
820 #define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }
821
integrity_walker(void * ptr,size_t size,int used,void * user)822 static void integrity_walker(void * ptr, size_t size, int used, void * user)
823 {
824 block_header_t * block = block_from_ptr(ptr);
825 integrity_t * integ = tlsf_cast(integrity_t *, user);
826 const int this_prev_status = block_is_prev_free(block) ? 1 : 0;
827 const int this_status = block_is_free(block) ? 1 : 0;
828 const size_t this_block_size = block_size(block);
829
830 int status = 0;
831 LV_UNUSED(used);
832 tlsf_insist(integ->prev_status == this_prev_status && "prev status incorrect");
833 tlsf_insist(size == this_block_size && "block size incorrect");
834
835 integ->prev_status = this_status;
836 integ->status += status;
837 }
838
lv_tlsf_check(lv_tlsf_t tlsf)839 int lv_tlsf_check(lv_tlsf_t tlsf)
840 {
841 int i, j;
842
843 control_t * control = tlsf_cast(control_t *, tlsf);
844 int status = 0;
845
846 /* Check that the free lists and bitmaps are accurate. */
847 for(i = 0; i < FL_INDEX_COUNT; ++i) {
848 for(j = 0; j < SL_INDEX_COUNT; ++j) {
849 const int fl_map = control->fl_bitmap & (1U << i);
850 const int sl_list = control->sl_bitmap[i];
851 const int sl_map = sl_list & (1U << j);
852 const block_header_t * block = control->blocks[i][j];
853
854 /* Check that first- and second-level lists agree. */
855 if(!fl_map) {
856 tlsf_insist(!sl_map && "second-level map must be null");
857 }
858
859 if(!sl_map) {
860 tlsf_insist(block == &control->block_null && "block list must be null");
861 continue;
862 }
863
864 /* Check that there is at least one free block. */
865 tlsf_insist(sl_list && "no free blocks in second-level map");
866 tlsf_insist(block != &control->block_null && "block should not be null");
867
868 while(block != &control->block_null) {
869 int fli, sli;
870 tlsf_insist(block_is_free(block) && "block should be free");
871 tlsf_insist(!block_is_prev_free(block) && "blocks should have coalesced");
872 tlsf_insist(!block_is_free(block_next(block)) && "blocks should have coalesced");
873 tlsf_insist(block_is_prev_free(block_next(block)) && "block should be free");
874 tlsf_insist(block_size(block) >= block_size_min && "block not minimum size");
875
876 mapping_insert(block_size(block), &fli, &sli);
877 tlsf_insist(fli == i && sli == j && "block size indexed in wrong list");
878 block = block->next_free;
879 }
880 }
881 }
882
883 return status;
884 }
885
886 #undef tlsf_insist
887
default_walker(void * ptr,size_t size,int used,void * user)888 static void default_walker(void * ptr, size_t size, int used, void * user)
889 {
890 LV_UNUSED(user);
891 printf("\t%p %s size: %x (%p)\n", ptr, used ? "used" : "free", (unsigned int)size, (void *)block_from_ptr(ptr));
892 }
893
lv_tlsf_walk_pool(lv_pool_t pool,lv_tlsf_walker walker,void * user)894 void lv_tlsf_walk_pool(lv_pool_t pool, lv_tlsf_walker walker, void * user)
895 {
896 lv_tlsf_walker pool_walker = walker ? walker : default_walker;
897 block_header_t * block =
898 offset_to_block(pool, -(int)block_header_overhead);
899
900 while(block && !block_is_last(block)) {
901 pool_walker(
902 block_to_ptr(block),
903 block_size(block),
904 !block_is_free(block),
905 user);
906 block = block_next(block);
907 }
908 }
909
lv_tlsf_block_size(void * ptr)910 size_t lv_tlsf_block_size(void * ptr)
911 {
912 size_t size = 0;
913 if(ptr) {
914 const block_header_t * block = block_from_ptr(ptr);
915 size = block_size(block);
916 }
917 return size;
918 }
919
lv_tlsf_check_pool(lv_pool_t pool)920 int lv_tlsf_check_pool(lv_pool_t pool)
921 {
922 /* Check that the blocks are physically correct. */
923 integrity_t integ = { 0, 0 };
924 lv_tlsf_walk_pool(pool, integrity_walker, &integ);
925
926 return integ.status;
927 }
928
929 /*
930 ** Size of the TLSF structures in a given memory block passed to
931 ** lv_tlsf_create, equal to the size of a control_t
932 */
lv_tlsf_size(void)933 size_t lv_tlsf_size(void)
934 {
935 return sizeof(control_t);
936 }
937
lv_tlsf_align_size(void)938 size_t lv_tlsf_align_size(void)
939 {
940 return ALIGN_SIZE;
941 }
942
lv_tlsf_block_size_min(void)943 size_t lv_tlsf_block_size_min(void)
944 {
945 return block_size_min;
946 }
947
lv_tlsf_block_size_max(void)948 size_t lv_tlsf_block_size_max(void)
949 {
950 return block_size_max;
951 }
952
953 /*
954 ** Overhead of the TLSF structures in a given memory block passed to
955 ** lv_tlsf_add_pool, equal to the overhead of a free block and the
956 ** sentinel block.
957 */
lv_tlsf_pool_overhead(void)958 size_t lv_tlsf_pool_overhead(void)
959 {
960 return 2 * block_header_overhead;
961 }
962
lv_tlsf_alloc_overhead(void)963 size_t lv_tlsf_alloc_overhead(void)
964 {
965 return block_header_overhead;
966 }
967
lv_tlsf_add_pool(lv_tlsf_t tlsf,void * mem,size_t bytes)968 lv_pool_t lv_tlsf_add_pool(lv_tlsf_t tlsf, void * mem, size_t bytes)
969 {
970 block_header_t * block;
971 block_header_t * next;
972
973 const size_t pool_overhead = lv_tlsf_pool_overhead();
974 const size_t pool_bytes = align_down(bytes - pool_overhead, ALIGN_SIZE);
975
976 if(((ptrdiff_t)mem % ALIGN_SIZE) != 0) {
977 printf("lv_tlsf_add_pool: Memory must be aligned by %u bytes.\n",
978 (unsigned int)ALIGN_SIZE);
979 return 0;
980 }
981
982 if(pool_bytes < block_size_min || pool_bytes > block_size_max) {
983 #if defined (TLSF_64BIT)
984 printf("lv_tlsf_add_pool: Memory size must be between 0x%x and 0x%x00 bytes.\n",
985 (unsigned int)(pool_overhead + block_size_min),
986 (unsigned int)((pool_overhead + block_size_max) / 256));
987 #else
988 printf("lv_tlsf_add_pool: Memory size must be between %u and %u bytes.\n",
989 (unsigned int)(pool_overhead + block_size_min),
990 (unsigned int)(pool_overhead + block_size_max));
991 #endif
992 return 0;
993 }
994
995 /*
996 ** Create the main free block. Offset the start of the block slightly
997 ** so that the prev_phys_block field falls outside of the pool -
998 ** it will never be used.
999 */
1000 block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
1001 block_set_size(block, pool_bytes);
1002 block_set_free(block);
1003 block_set_prev_used(block);
1004 block_insert(tlsf_cast(control_t *, tlsf), block);
1005
1006 /* Split the block to create a zero-size sentinel block. */
1007 next = block_link_next(block);
1008 block_set_size(next, 0);
1009 block_set_used(next);
1010 block_set_prev_free(next);
1011
1012 return mem;
1013 }
1014
lv_tlsf_remove_pool(lv_tlsf_t tlsf,lv_pool_t pool)1015 void lv_tlsf_remove_pool(lv_tlsf_t tlsf, lv_pool_t pool)
1016 {
1017 control_t * control = tlsf_cast(control_t *, tlsf);
1018 block_header_t * block = offset_to_block(pool, -(int)block_header_overhead);
1019
1020 int fl = 0, sl = 0;
1021
1022 tlsf_assert(block_is_free(block) && "block should be free");
1023 tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
1024 tlsf_assert(block_size(block_next(block)) == 0 && "next block size should be zero");
1025
1026 mapping_insert(block_size(block), &fl, &sl);
1027 remove_free_block(control, block, fl, sl);
1028 }
1029
1030 /*
1031 ** TLSF main interface.
1032 */
1033
1034 #if _DEBUG
test_ffs_fls()1035 int test_ffs_fls()
1036 {
1037 /* Verify ffs/fls work properly. */
1038 int rv = 0;
1039 rv += (tlsf_ffs(0) == -1) ? 0 : 0x1;
1040 rv += (tlsf_fls(0) == -1) ? 0 : 0x2;
1041 rv += (tlsf_ffs(1) == 0) ? 0 : 0x4;
1042 rv += (tlsf_fls(1) == 0) ? 0 : 0x8;
1043 rv += (tlsf_ffs(0x80000000) == 31) ? 0 : 0x10;
1044 rv += (tlsf_ffs(0x80008000) == 15) ? 0 : 0x20;
1045 rv += (tlsf_fls(0x80000008) == 31) ? 0 : 0x40;
1046 rv += (tlsf_fls(0x7FFFFFFF) == 30) ? 0 : 0x80;
1047
1048 #if defined (TLSF_64BIT)
1049 rv += (tlsf_fls_sizet(0x80000000) == 31) ? 0 : 0x100;
1050 rv += (tlsf_fls_sizet(0x100000000) == 32) ? 0 : 0x200;
1051 rv += (tlsf_fls_sizet(0xffffffffffffffff) == 63) ? 0 : 0x400;
1052 #endif
1053
1054 if(rv) {
1055 printf("test_ffs_fls: %x ffs/fls tests failed.\n", rv);
1056 }
1057 return rv;
1058 }
1059 #endif
1060
lv_tlsf_create(void * mem)1061 lv_tlsf_t lv_tlsf_create(void * mem)
1062 {
1063 #if _DEBUG
1064 if(test_ffs_fls()) {
1065 return 0;
1066 }
1067 #endif
1068
1069 if(((tlsfptr_t)mem % ALIGN_SIZE) != 0) {
1070 printf("lv_tlsf_create: Memory must be aligned to %u bytes.\n",
1071 (unsigned int)ALIGN_SIZE);
1072 return 0;
1073 }
1074
1075 control_constructor(tlsf_cast(control_t *, mem));
1076
1077 return tlsf_cast(lv_tlsf_t, mem);
1078 }
1079
lv_tlsf_create_with_pool(void * mem,size_t bytes)1080 lv_tlsf_t lv_tlsf_create_with_pool(void * mem, size_t bytes)
1081 {
1082 lv_tlsf_t tlsf = lv_tlsf_create(mem);
1083 lv_tlsf_add_pool(tlsf, (char *)mem + lv_tlsf_size(), bytes - lv_tlsf_size());
1084 return tlsf;
1085 }
1086
lv_tlsf_destroy(lv_tlsf_t tlsf)1087 void lv_tlsf_destroy(lv_tlsf_t tlsf)
1088 {
1089 /* Nothing to do. */
1090 LV_UNUSED(tlsf);
1091 }
1092
lv_tlsf_get_pool(lv_tlsf_t tlsf)1093 lv_pool_t lv_tlsf_get_pool(lv_tlsf_t tlsf)
1094 {
1095 return tlsf_cast(lv_pool_t, (char *)tlsf + lv_tlsf_size());
1096 }
1097
lv_tlsf_malloc(lv_tlsf_t tlsf,size_t size)1098 void * lv_tlsf_malloc(lv_tlsf_t tlsf, size_t size)
1099 {
1100 control_t * control = tlsf_cast(control_t *, tlsf);
1101 const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
1102 block_header_t * block = block_locate_free(control, adjust);
1103 return block_prepare_used(control, block, adjust);
1104 }
1105
lv_tlsf_memalign(lv_tlsf_t tlsf,size_t align,size_t size)1106 void * lv_tlsf_memalign(lv_tlsf_t tlsf, size_t align, size_t size)
1107 {
1108 control_t * control = tlsf_cast(control_t *, tlsf);
1109 const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
1110
1111 /*
1112 ** We must allocate an additional minimum block size bytes so that if
1113 ** our free block will leave an alignment gap which is smaller, we can
1114 ** trim a leading free block and release it back to the pool. We must
1115 ** do this because the previous physical block is in use, therefore
1116 ** the prev_phys_block field is not valid, and we can't simply adjust
1117 ** the size of that block.
1118 */
1119 const size_t gap_minimum = sizeof(block_header_t);
1120 const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align);
1121
1122 /*
1123 ** If alignment is less than or equals base alignment, we're done.
1124 ** If we requested 0 bytes, return null, as lv_tlsf_malloc(0) does.
1125 */
1126 const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
1127
1128 block_header_t * block = block_locate_free(control, aligned_size);
1129
1130 /* This can't be a static assert. */
1131 tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
1132
1133 if(block) {
1134 void * ptr = block_to_ptr(block);
1135 void * aligned = align_ptr(ptr, align);
1136 size_t gap = tlsf_cast(size_t,
1137 tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
1138
1139 /* If gap size is too small, offset to next aligned boundary. */
1140 if(gap && gap < gap_minimum) {
1141 const size_t gap_remain = gap_minimum - gap;
1142 const size_t offset = tlsf_max(gap_remain, align);
1143 const void * next_aligned = tlsf_cast(void *,
1144 tlsf_cast(tlsfptr_t, aligned) + offset);
1145
1146 aligned = align_ptr(next_aligned, align);
1147 gap = tlsf_cast(size_t,
1148 tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
1149 }
1150
1151 if(gap) {
1152 tlsf_assert(gap >= gap_minimum && "gap size too small");
1153 block = block_trim_free_leading(control, block, gap);
1154 }
1155 }
1156
1157 return block_prepare_used(control, block, adjust);
1158 }
1159
lv_tlsf_free(lv_tlsf_t tlsf,const void * ptr)1160 void lv_tlsf_free(lv_tlsf_t tlsf, const void * ptr)
1161 {
1162 /* Don't attempt to free a NULL pointer. */
1163 if(ptr) {
1164 control_t * control = tlsf_cast(control_t *, tlsf);
1165 block_header_t * block = block_from_ptr(ptr);
1166 tlsf_assert(!block_is_free(block) && "block already marked as free");
1167 block_mark_as_free(block);
1168 block = block_merge_prev(control, block);
1169 block = block_merge_next(control, block);
1170 block_insert(control, block);
1171 }
1172 }
1173
1174 /*
1175 ** The TLSF block information provides us with enough information to
1176 ** provide a reasonably intelligent implementation of realloc, growing or
1177 ** shrinking the currently allocated block as required.
1178 **
1179 ** This routine handles the somewhat esoteric edge cases of realloc:
1180 ** - a non-zero size with a null pointer will behave like malloc
1181 ** - a zero size with a non-null pointer will behave like free
1182 ** - a request that cannot be satisfied will leave the original buffer
1183 ** untouched
1184 ** - an extended buffer size will leave the newly-allocated area with
1185 ** contents undefined
1186 */
lv_tlsf_realloc(lv_tlsf_t tlsf,void * ptr,size_t size)1187 void * lv_tlsf_realloc(lv_tlsf_t tlsf, void * ptr, size_t size)
1188 {
1189 control_t * control = tlsf_cast(control_t *, tlsf);
1190 void * p = 0;
1191
1192 /* Zero-size requests are treated as free. */
1193 if(ptr && size == 0) {
1194 lv_tlsf_free(tlsf, ptr);
1195 }
1196 /* Requests with NULL pointers are treated as malloc. */
1197 else if(!ptr) {
1198 p = lv_tlsf_malloc(tlsf, size);
1199 }
1200 else {
1201 block_header_t * block = block_from_ptr(ptr);
1202 block_header_t * next = block_next(block);
1203
1204 const size_t cursize = block_size(block);
1205 const size_t combined = cursize + block_size(next) + block_header_overhead;
1206 const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
1207
1208 tlsf_assert(!block_is_free(block) && "block already marked as free");
1209
1210 /*
1211 ** If the next block is used, or when combined with the current
1212 ** block, does not offer enough space, we must reallocate and copy.
1213 */
1214 if(adjust > cursize && (!block_is_free(next) || adjust > combined)) {
1215 p = lv_tlsf_malloc(tlsf, size);
1216 if(p) {
1217 const size_t minsize = tlsf_min(cursize, size);
1218 lv_memcpy(p, ptr, minsize);
1219 lv_tlsf_free(tlsf, ptr);
1220 }
1221 }
1222 else {
1223 /* Do we need to expand to the next block? */
1224 if(adjust > cursize) {
1225 block_merge_next(control, block);
1226 block_mark_as_used(block);
1227 }
1228
1229 /* Trim the resulting block and return the original pointer. */
1230 block_trim_used(control, block, adjust);
1231 p = ptr;
1232 }
1233 }
1234
1235 return p;
1236 }
1237
1238 #endif /* LV_MEM_CUSTOM == 0 */
1239