1 /*
2  * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #ifndef XLAT_TABLES_V2_H
8 #define XLAT_TABLES_V2_H
9 
10 #include <lib/xlat_tables/xlat_tables_defs.h>
11 #include <lib/xlat_tables/xlat_tables_v2_helpers.h>
12 
13 #ifndef __ASSEMBLER__
14 #include <stddef.h>
15 #include <stdint.h>
16 
17 #include <lib/xlat_tables/xlat_mmu_helpers.h>
18 
19 /*
20  * Default granularity size for an mmap_region_t.
21  * Useful when no specific granularity is required.
22  *
23  * By default, choose the biggest possible block size allowed by the
24  * architectural state and granule size in order to minimize the number of page
25  * tables required for the mapping.
26  */
27 #define REGION_DEFAULT_GRANULARITY	XLAT_BLOCK_SIZE(MIN_LVL_BLOCK_DESC)
28 
29 /* Helper macro to define an mmap_region_t. */
30 #define MAP_REGION(_pa, _va, _sz, _attr)	\
31 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, REGION_DEFAULT_GRANULARITY)
32 
33 /* Helper macro to define an mmap_region_t with an identity mapping. */
34 #define MAP_REGION_FLAT(_adr, _sz, _attr)			\
35 	MAP_REGION(_adr, _adr, _sz, _attr)
36 
37 /*
38  * Helper macro to define entries for mmap_region_t. It allows to define 'pa'
39  * and sets 'va' to 0 for each region. To be used with mmap_add_alloc_va().
40  */
41 #define MAP_REGION_ALLOC_VA(pa, sz, attr)	MAP_REGION(pa, 0, sz, attr)
42 
43 /*
44  * Helper macro to define an mmap_region_t to map with the desired granularity
45  * of translation tables.
46  *
47  * The granularity value passed to this macro must be a valid block or page
48  * size. When using a 4KB translation granule, this might be 4KB, 2MB or 1GB.
49  * Passing REGION_DEFAULT_GRANULARITY is also allowed and means that the library
50  * is free to choose the granularity for this region. In this case, it is
51  * equivalent to the MAP_REGION() macro.
52  */
53 #define MAP_REGION2(_pa, _va, _sz, _attr, _gr)			\
54 	MAP_REGION_FULL_SPEC(_pa, _va, _sz, _attr, _gr)
55 
56 /*
57  * Shifts and masks to access fields of an mmap attribute
58  */
59 #define MT_TYPE_MASK		U(0x7)
60 #define MT_TYPE(_attr)		((_attr) & MT_TYPE_MASK)
61 /* Access permissions (RO/RW) */
62 #define MT_PERM_SHIFT		U(3)
63 
64 /* Physical address space (SECURE/NS/Root/Realm) */
65 #define	MT_PAS_SHIFT		U(4)
66 #define MT_PAS_MASK		(U(3) << MT_PAS_SHIFT)
67 #define MT_PAS(_attr)		((_attr) & MT_PAS_MASK)
68 
69 /* Access permissions for instruction execution (EXECUTE/EXECUTE_NEVER) */
70 #define MT_EXECUTE_SHIFT	U(6)
71 /* In the EL1&0 translation regime, User (EL0) or Privileged (EL1). */
72 #define MT_USER_SHIFT		U(7)
73 
74 /* Shareability attribute for the memory region */
75 #define MT_SHAREABILITY_SHIFT	U(8)
76 #define MT_SHAREABILITY_MASK	(U(3) << MT_SHAREABILITY_SHIFT)
77 #define MT_SHAREABILITY(_attr)	((_attr) & MT_SHAREABILITY_MASK)
78 
79 /* All other bits are reserved */
80 
81 /*
82  * Memory mapping attributes
83  */
84 
85 /*
86  * Memory types supported.
87  * These are organised so that, going down the list, the memory types are
88  * getting weaker; conversely going up the list the memory types are getting
89  * stronger.
90  */
91 #define MT_DEVICE		U(0)
92 #define MT_NON_CACHEABLE	U(1)
93 #define MT_MEMORY		U(2)
94 /* Values up to 7 are reserved to add new memory types in the future */
95 
96 #define MT_RO			(U(0) << MT_PERM_SHIFT)
97 #define MT_RW			(U(1) << MT_PERM_SHIFT)
98 
99 #define MT_SECURE		(U(0) << MT_PAS_SHIFT)
100 #define MT_NS			(U(1) << MT_PAS_SHIFT)
101 #define MT_ROOT			(U(2) << MT_PAS_SHIFT)
102 #define MT_REALM		(U(3) << MT_PAS_SHIFT)
103 
104 /*
105  * Access permissions for instruction execution are only relevant for normal
106  * read-only memory, i.e. MT_MEMORY | MT_RO. They are ignored (and potentially
107  * overridden) otherwise:
108  *  - Device memory is always marked as execute-never.
109  *  - Read-write normal memory is always marked as execute-never.
110  */
111 #define MT_EXECUTE		(U(0) << MT_EXECUTE_SHIFT)
112 #define MT_EXECUTE_NEVER	(U(1) << MT_EXECUTE_SHIFT)
113 
114 /*
115  * When mapping a region at EL0 or EL1, this attribute will be used to determine
116  * if a User mapping (EL0) will be created or a Privileged mapping (EL1).
117  */
118 #define MT_USER			(U(1) << MT_USER_SHIFT)
119 #define MT_PRIVILEGED		(U(0) << MT_USER_SHIFT)
120 
121 /*
122  * Shareability defines the visibility of any cache changes to
123  * all masters belonging to a shareable domain.
124  *
125  * MT_SHAREABILITY_ISH: For inner shareable domain
126  * MT_SHAREABILITY_OSH: For outer shareable domain
127  * MT_SHAREABILITY_NSH: For non shareable domain
128  */
129 #define MT_SHAREABILITY_ISH	(U(1) << MT_SHAREABILITY_SHIFT)
130 #define MT_SHAREABILITY_OSH	(U(2) << MT_SHAREABILITY_SHIFT)
131 #define MT_SHAREABILITY_NSH	(U(3) << MT_SHAREABILITY_SHIFT)
132 
133 /* Compound attributes for most common usages */
134 #define MT_CODE			(MT_MEMORY | MT_RO | MT_EXECUTE)
135 #define MT_RO_DATA		(MT_MEMORY | MT_RO | MT_EXECUTE_NEVER)
136 #define MT_RW_DATA		(MT_MEMORY | MT_RW | MT_EXECUTE_NEVER)
137 
138 /*
139  * Structure for specifying a single region of memory.
140  */
141 typedef struct mmap_region {
142 	unsigned long long	base_pa;
143 	uintptr_t		base_va;
144 	size_t			size;
145 	unsigned int		attr;
146 	/* Desired granularity. See the MAP_REGION2() macro for more details. */
147 	size_t			granularity;
148 } mmap_region_t;
149 
150 /*
151  * Translation regimes supported by this library. EL_REGIME_INVALID tells the
152  * library to detect it at runtime.
153  */
154 #define EL1_EL0_REGIME		1
155 #define EL2_REGIME		2
156 #define EL3_REGIME		3
157 #define EL_REGIME_INVALID	-1
158 
159 /* Memory type for EL3 regions. With RME, EL3 is in ROOT PAS */
160 #if ENABLE_RME
161 #define EL3_PAS			MT_ROOT
162 #else
163 #define EL3_PAS			MT_SECURE
164 #endif /* ENABLE_RME */
165 
166 /*
167  * Declare the translation context type.
168  * Its definition is private.
169  */
170 typedef struct xlat_ctx xlat_ctx_t;
171 
172 /*
173  * Statically allocate a translation context and associated structures. Also
174  * initialize them.
175  *
176  * _ctx_name:
177  *   Prefix for the translation context variable.
178  *   E.g. If _ctx_name is 'foo', the variable will be called 'foo_xlat_ctx'.
179  *   Useful to distinguish multiple contexts from one another.
180  *
181  * _mmap_count:
182  *   Number of mmap_region_t to allocate.
183  *   Would typically be MAX_MMAP_REGIONS for the translation context describing
184  *   the BL image currently executing.
185  *
186  * _xlat_tables_count:
187  *   Number of sub-translation tables to allocate.
188  *   Would typically be MAX_XLAT_TABLES for the translation context describing
189  *   the BL image currently executing.
190  *   Note that this is only for sub-tables ; at the initial lookup level, there
191  *   is always a single table.
192  *
193  * _virt_addr_space_size, _phy_addr_space_size:
194  *   Size (in bytes) of the virtual (resp. physical) address space.
195  *   Would typically be PLAT_VIRT_ADDR_SPACE_SIZE
196  *   (resp. PLAT_PHY_ADDR_SPACE_SIZE) for the translation context describing the
197  *   BL image currently executing.
198  */
199 #define REGISTER_XLAT_CONTEXT(_ctx_name, _mmap_count, _xlat_tables_count, \
200 			      _virt_addr_space_size, _phy_addr_space_size) \
201 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
202 					 (_xlat_tables_count),		\
203 					 (_virt_addr_space_size),	\
204 					 (_phy_addr_space_size),	\
205 					 EL_REGIME_INVALID,		\
206 					 ".xlat_table", ".base_xlat_table")
207 
208 /*
209  * Same as REGISTER_XLAT_CONTEXT plus the additional parameters:
210  *
211  * _xlat_regime:
212  *   Specify the translation regime managed by this xlat_ctx_t instance. The
213  *   values are the one from the EL*_REGIME definitions.
214  *
215  * _section_name:
216  *   Specify the name of the section where the translation tables have to be
217  *   placed by the linker.
218  *
219  * _base_table_section_name:
220  *   Specify the name of the section where the base translation tables have to
221  *   be placed by the linker.
222  */
223 #define REGISTER_XLAT_CONTEXT2(_ctx_name, _mmap_count, _xlat_tables_count, \
224 			_virt_addr_space_size, _phy_addr_space_size,	\
225 			_xlat_regime, _section_name, _base_table_section_name) \
226 	REGISTER_XLAT_CONTEXT_FULL_SPEC(_ctx_name, (_mmap_count),	\
227 					 (_xlat_tables_count),		\
228 					 (_virt_addr_space_size),	\
229 					 (_phy_addr_space_size),	\
230 					 (_xlat_regime),		\
231 					 (_section_name), (_base_table_section_name) \
232 )
233 
234 /******************************************************************************
235  * Generic translation table APIs.
236  * Each API comes in 2 variants:
237  * - one that acts on the current translation context for this BL image
238  * - another that acts on the given translation context instead. This variant
239  *   is named after the 1st version, with an additional '_ctx' suffix.
240  *****************************************************************************/
241 
242 /*
243  * Initialize translation tables from the current list of mmap regions. Calling
244  * this function marks the transition point after which static regions can no
245  * longer be added.
246  */
247 void init_xlat_tables(void);
248 void init_xlat_tables_ctx(xlat_ctx_t *ctx);
249 
250 /*
251  * Fill all fields of a dynamic translation tables context. It must be done
252  * either statically with REGISTER_XLAT_CONTEXT() or at runtime with this
253  * function.
254  */
255 void xlat_setup_dynamic_ctx(xlat_ctx_t *ctx, unsigned long long pa_max,
256 			    uintptr_t va_max, struct mmap_region *mmap,
257 			    unsigned int mmap_num, uint64_t **tables,
258 			    unsigned int tables_num, uint64_t *base_table,
259 			    int xlat_regime, int *mapped_regions);
260 
261 /*
262  * Add a static region with defined base PA and base VA. This function can only
263  * be used before initializing the translation tables. The region cannot be
264  * removed afterwards.
265  */
266 void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
267 		     size_t size, unsigned int attr);
268 void mmap_add_region_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
269 
270 /*
271  * Add an array of static regions with defined base PA and base VA. This
272  * function can only be used before initializing the translation tables. The
273  * regions cannot be removed afterwards.
274  */
275 void mmap_add(const mmap_region_t *mm);
276 void mmap_add_ctx(xlat_ctx_t *ctx, const mmap_region_t *mm);
277 
278 /*
279  * Add a region with defined base PA. Returns base VA calculated using the
280  * highest existing region in the mmap array even if it fails to allocate the
281  * region.
282  */
283 void mmap_add_region_alloc_va(unsigned long long base_pa, uintptr_t *base_va,
284 			      size_t size, unsigned int attr);
285 void mmap_add_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
286 
287 /*
288  * Add an array of static regions with defined base PA, and fill the base VA
289  * field on the array of structs. This function can only be used before
290  * initializing the translation tables. The regions cannot be removed afterwards.
291  */
292 void mmap_add_alloc_va(mmap_region_t *mm);
293 
294 #if PLAT_XLAT_TABLES_DYNAMIC
295 /*
296  * Add a dynamic region with defined base PA and base VA. This type of region
297  * can be added and removed even after the translation tables are initialized.
298  *
299  * Returns:
300  *        0: Success.
301  *   EINVAL: Invalid values were used as arguments.
302  *   ERANGE: Memory limits were surpassed.
303  *   ENOMEM: Not enough space in the mmap array or not enough free xlat tables.
304  *    EPERM: It overlaps another region in an invalid way.
305  */
306 int mmap_add_dynamic_region(unsigned long long base_pa, uintptr_t base_va,
307 			    size_t size, unsigned int attr);
308 int mmap_add_dynamic_region_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
309 
310 /*
311  * Add a dynamic region with defined base PA. Returns base VA calculated using
312  * the highest existing region in the mmap array even if it fails to allocate
313  * the region.
314  *
315  * mmap_add_dynamic_region_alloc_va() returns the allocated VA in 'base_va'.
316  * mmap_add_dynamic_region_alloc_va_ctx() returns it in 'mm->base_va'.
317  *
318  * It returns the same error values as mmap_add_dynamic_region().
319  */
320 int mmap_add_dynamic_region_alloc_va(unsigned long long base_pa,
321 				     uintptr_t *base_va,
322 				     size_t size, unsigned int attr);
323 int mmap_add_dynamic_region_alloc_va_ctx(xlat_ctx_t *ctx, mmap_region_t *mm);
324 
325 /*
326  * Remove a region with the specified base VA and size. Only dynamic regions can
327  * be removed, and they can be removed even if the translation tables are
328  * initialized.
329  *
330  * Returns:
331  *        0: Success.
332  *   EINVAL: The specified region wasn't found.
333  *    EPERM: Trying to remove a static region.
334  */
335 int mmap_remove_dynamic_region(uintptr_t base_va, size_t size);
336 int mmap_remove_dynamic_region_ctx(xlat_ctx_t *ctx,
337 				uintptr_t base_va,
338 				size_t size);
339 
340 #endif /* PLAT_XLAT_TABLES_DYNAMIC */
341 
342 /*
343  * Change the memory attributes of the memory region starting from a given
344  * virtual address in a set of translation tables.
345  *
346  * This function can only be used after the translation tables have been
347  * initialized.
348  *
349  * The base address of the memory region must be aligned on a page boundary.
350  * The size of this memory region must be a multiple of a page size.
351  * The memory region must be already mapped by the given translation tables
352  * and it must be mapped at the granularity of a page.
353  *
354  * Return 0 on success, a negative value on error.
355  *
356  * In case of error, the memory attributes remain unchanged and this function
357  * has no effect.
358  *
359  * ctx
360  *   Translation context to work on.
361  * base_va:
362  *   Virtual address of the 1st page to change the attributes of.
363  * size:
364  *   Size in bytes of the memory region.
365  * attr:
366  *   New attributes of the page tables. The attributes that can be changed are
367  *   data access (MT_RO/MT_RW), instruction access (MT_EXECUTE_NEVER/MT_EXECUTE)
368  *   and user/privileged access (MT_USER/MT_PRIVILEGED) in the case of contexts
369  *   that are used in the EL1&0 translation regime. Also, note that this
370  *   function doesn't allow to remap a region as RW and executable, or to remap
371  *   device memory as executable.
372  *
373  * NOTE: The caller of this function must be able to write to the translation
374  * tables, i.e. the memory where they are stored must be mapped with read-write
375  * access permissions. This function assumes it is the case. If this is not
376  * the case then this function might trigger a data abort exception.
377  *
378  * NOTE2: The caller is responsible for making sure that the targeted
379  * translation tables are not modified by any other code while this function is
380  * executing.
381  */
382 int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
383 				   size_t size, uint32_t attr);
384 int xlat_change_mem_attributes(uintptr_t base_va, size_t size, uint32_t attr);
385 
386 #if PLAT_RO_XLAT_TABLES
387 /*
388  * Change the memory attributes of the memory region encompassing the higher
389  * level translation tables to secure read-only data.
390  *
391  * Return 0 on success, a negative error code on error.
392  */
393 int xlat_make_tables_readonly(void);
394 #endif
395 
396 /*
397  * Query the memory attributes of a memory page in a set of translation tables.
398  *
399  * Return 0 on success, a negative error code on error.
400  * On success, the attributes are stored into *attr.
401  *
402  * ctx
403  *   Translation context to work on.
404  * base_va
405  *   Virtual address of the page to get the attributes of.
406  *   There are no alignment restrictions on this address. The attributes of the
407  *   memory page it lies within are returned.
408  * attr
409  *   Output parameter where to store the attributes of the targeted memory page.
410  */
411 int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
412 				uint32_t *attr);
413 int xlat_get_mem_attributes(uintptr_t base_va, uint32_t *attr);
414 
415 #endif /*__ASSEMBLER__*/
416 #endif /* XLAT_TABLES_V2_H */
417