1 /*
2  * Copyright (c) 2013-2020, Arm Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stddef.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <context.h>
14 #include <lib/cpus/errata.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <plat/common/platform.h>
17 
18 #include "psci_private.h"
19 
20 /*
21  * Check that PLATFORM_CORE_COUNT fits into the number of cores
22  * that can be represented by PSCI_MAX_CPUS_INDEX.
23  */
24 CASSERT(PLATFORM_CORE_COUNT <= (PSCI_MAX_CPUS_INDEX + 1U), assert_psci_cores_overflow);
25 
26 /*******************************************************************************
27  * Per cpu non-secure contexts used to program the architectural state prior
28  * return to the normal world.
29  * TODO: Use the memory allocator to set aside memory for the contexts instead
30  * of relying on platform defined constants.
31  ******************************************************************************/
32 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
33 
34 /******************************************************************************
35  * Define the psci capability variable.
36  *****************************************************************************/
37 unsigned int psci_caps;
38 
39 /*******************************************************************************
40  * Function which initializes the 'psci_non_cpu_pd_nodes' or the
41  * 'psci_cpu_pd_nodes' corresponding to the power level.
42  ******************************************************************************/
psci_init_pwr_domain_node(uint16_t node_idx,unsigned int parent_idx,unsigned char level)43 static void __init psci_init_pwr_domain_node(uint16_t node_idx,
44 					unsigned int parent_idx,
45 					unsigned char level)
46 {
47 	if (level > PSCI_CPU_PWR_LVL) {
48 		assert(node_idx < PSCI_NUM_NON_CPU_PWR_DOMAINS);
49 
50 		psci_non_cpu_pd_nodes[node_idx].level = level;
51 		psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
52 		psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
53 		psci_non_cpu_pd_nodes[node_idx].local_state =
54 							 PLAT_MAX_OFF_STATE;
55 	} else {
56 		psci_cpu_data_t *svc_cpu_data;
57 
58 		assert(node_idx < PLATFORM_CORE_COUNT);
59 
60 		psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
61 
62 		/* Initialize with an invalid mpidr */
63 		psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
64 
65 		svc_cpu_data =
66 			&(_cpu_data_by_index(node_idx)->psci_svc_cpu_data);
67 
68 		/* Set the Affinity Info for the cores as OFF */
69 		svc_cpu_data->aff_info_state = AFF_STATE_OFF;
70 
71 		/* Invalidate the suspend level for the cpu */
72 		svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL;
73 
74 		/* Set the power state to OFF state */
75 		svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
76 
77 		psci_flush_dcache_range((uintptr_t)svc_cpu_data,
78 						 sizeof(*svc_cpu_data));
79 
80 		cm_set_context_by_index(node_idx,
81 					(void *) &psci_ns_context[node_idx],
82 					NON_SECURE);
83 	}
84 }
85 
86 /*******************************************************************************
87  * This functions updates cpu_start_idx and ncpus field for each of the node in
88  * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
89  * the CPUs and check whether they match with the parent of the previous
90  * CPU. The basic assumption for this work is that children of the same parent
91  * are allocated adjacent indices. The platform should ensure this though proper
92  * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
93  * plat_my_core_pos() APIs.
94  *******************************************************************************/
psci_update_pwrlvl_limits(void)95 static void __init psci_update_pwrlvl_limits(void)
96 {
97 	unsigned int cpu_idx;
98 	int j;
99 	unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
100 	unsigned int temp_index[PLAT_MAX_PWR_LVL];
101 
102 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
103 		psci_get_parent_pwr_domain_nodes(cpu_idx,
104 						 PLAT_MAX_PWR_LVL,
105 						 temp_index);
106 		for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
107 			if (temp_index[j] != nodes_idx[j]) {
108 				nodes_idx[j] = temp_index[j];
109 				psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
110 					= cpu_idx;
111 			}
112 			psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
113 		}
114 	}
115 }
116 
117 /*******************************************************************************
118  * Core routine to populate the power domain tree. The tree descriptor passed by
119  * the platform is populated breadth-first and the first entry in the map
120  * informs the number of root power domains. The parent nodes of the root nodes
121  * will point to an invalid entry(-1).
122  ******************************************************************************/
populate_power_domain_tree(const unsigned char * topology)123 static unsigned int __init populate_power_domain_tree(const unsigned char
124 							*topology)
125 {
126 	unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
127 	unsigned int node_index = 0U, num_children;
128 	unsigned int parent_node_index = 0U;
129 	int level = (int)PLAT_MAX_PWR_LVL;
130 
131 	/*
132 	 * For each level the inputs are:
133 	 * - number of nodes at this level in plat_array i.e. num_nodes_at_level
134 	 *   This is the sum of values of nodes at the parent level.
135 	 * - Index of first entry at this level in the plat_array i.e.
136 	 *   parent_node_index.
137 	 * - Index of first free entry in psci_non_cpu_pd_nodes[] or
138 	 *   psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
139 	 */
140 	while (level >= (int) PSCI_CPU_PWR_LVL) {
141 		num_nodes_at_next_lvl = 0U;
142 		/*
143 		 * For each entry (parent node) at this level in the plat_array:
144 		 * - Find the number of children
145 		 * - Allocate a node in a power domain array for each child
146 		 * - Set the parent of the child to the parent_node_index - 1
147 		 * - Increment parent_node_index to point to the next parent
148 		 * - Accumulate the number of children at next level.
149 		 */
150 		for (i = 0U; i < num_nodes_at_lvl; i++) {
151 			assert(parent_node_index <=
152 					PSCI_NUM_NON_CPU_PWR_DOMAINS);
153 			num_children = topology[parent_node_index];
154 
155 			for (j = node_index;
156 				j < (node_index + num_children); j++)
157 				psci_init_pwr_domain_node((uint16_t)j,
158 						  parent_node_index - 1U,
159 						  (unsigned char)level);
160 
161 			node_index = j;
162 			num_nodes_at_next_lvl += num_children;
163 			parent_node_index++;
164 		}
165 
166 		num_nodes_at_lvl = num_nodes_at_next_lvl;
167 		level--;
168 
169 		/* Reset the index for the cpu power domain array */
170 		if (level == (int) PSCI_CPU_PWR_LVL)
171 			node_index = 0;
172 	}
173 
174 	/* Validate the sanity of array exported by the platform */
175 	assert(j <= PLATFORM_CORE_COUNT);
176 	return j;
177 }
178 
179 /*******************************************************************************
180  * This function does the architectural setup and takes the warm boot
181  * entry-point `mailbox_ep` as an argument. The function also initializes the
182  * power domain topology tree by querying the platform. The power domain nodes
183  * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
184  * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
185  * exports its static topology map through the
186  * populate_power_domain_topology_tree() API. The algorithm populates the
187  * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
188  * topology map.  On a platform that implements two clusters of 2 cpus each,
189  * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
190  * look like this:
191  *
192  * ---------------------------------------------------
193  * | system node | cluster 0 node  | cluster 1 node  |
194  * ---------------------------------------------------
195  *
196  * And populated psci_cpu_pd_nodes would look like this :
197  * <-    cpus cluster0   -><-   cpus cluster1   ->
198  * ------------------------------------------------
199  * |   CPU 0   |   CPU 1   |   CPU 2   |   CPU 3  |
200  * ------------------------------------------------
201  ******************************************************************************/
psci_setup(const psci_lib_args_t * lib_args)202 int __init psci_setup(const psci_lib_args_t *lib_args)
203 {
204 	const unsigned char *topology_tree;
205 
206 	assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
207 
208 	/* Do the Architectural initialization */
209 	psci_arch_setup();
210 
211 	/* Query the topology map from the platform */
212 	topology_tree = plat_get_power_domain_tree_desc();
213 
214 	/* Populate the power domain arrays using the platform topology map */
215 	psci_plat_core_count = populate_power_domain_tree(topology_tree);
216 
217 	/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
218 	psci_update_pwrlvl_limits();
219 
220 	/* Populate the mpidr field of cpu node for this CPU */
221 	psci_cpu_pd_nodes[plat_my_core_pos()].mpidr =
222 		read_mpidr() & MPIDR_AFFINITY_MASK;
223 
224 	psci_init_req_local_pwr_states();
225 
226 	/*
227 	 * Set the requested and target state of this CPU and all the higher
228 	 * power domain levels for this CPU to run.
229 	 */
230 	psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL);
231 
232 	(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
233 				   &psci_plat_pm_ops);
234 	assert(psci_plat_pm_ops != NULL);
235 
236 	/*
237 	 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
238 	 * during warm boot, possibly before data cache is enabled.
239 	 */
240 	psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
241 					sizeof(psci_plat_pm_ops));
242 
243 	/* Initialize the psci capability */
244 	psci_caps = PSCI_GENERIC_CAP;
245 
246 	if (psci_plat_pm_ops->pwr_domain_off != NULL)
247 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
248 	if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
249 	    (psci_plat_pm_ops->pwr_domain_on_finish != NULL))
250 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
251 	if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
252 	    (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
253 		if (psci_plat_pm_ops->validate_power_state != NULL)
254 			psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
255 		if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL)
256 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
257 #if PSCI_OS_INIT_MODE
258 		psci_caps |= define_psci_cap(PSCI_SET_SUSPEND_MODE);
259 #endif
260 	}
261 	if (psci_plat_pm_ops->system_off != NULL)
262 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
263 	if (psci_plat_pm_ops->system_reset != NULL)
264 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
265 	if (psci_plat_pm_ops->get_node_hw_state != NULL)
266 		psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
267 	if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
268 			(psci_plat_pm_ops->write_mem_protect != NULL))
269 		psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
270 	if (psci_plat_pm_ops->mem_protect_chk != NULL)
271 		psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
272 	if (psci_plat_pm_ops->system_reset2 != NULL)
273 		psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
274 
275 #if ENABLE_PSCI_STAT
276 	psci_caps |=  define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
277 	psci_caps |=  define_psci_cap(PSCI_STAT_COUNT_AARCH64);
278 #endif
279 
280 	return 0;
281 }
282 
283 /*******************************************************************************
284  * This duplicates what the primary cpu did after a cold boot in BL1. The same
285  * needs to be done when a cpu is hotplugged in. This function could also over-
286  * ride any EL3 setup done by BL1 as this code resides in rw memory.
287  ******************************************************************************/
psci_arch_setup(void)288 void psci_arch_setup(void)
289 {
290 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
291 	/* Program the counter frequency */
292 	write_cntfrq_el0(plat_get_syscnt_freq2());
293 #endif
294 
295 	/* Initialize the cpu_ops pointer. */
296 	init_cpu_ops();
297 
298 	/* Having initialized cpu_ops, we can now print errata status */
299 	print_errata_status();
300 
301 #if ENABLE_PAUTH
302 	/* Store APIAKey_EL1 key */
303 	set_cpu_data(apiakey[0], read_apiakeylo_el1());
304 	set_cpu_data(apiakey[1], read_apiakeyhi_el1());
305 #endif /* ENABLE_PAUTH */
306 }
307 
308 /******************************************************************************
309  * PSCI Library interface to initialize the cpu context for the next non
310  * secure image during cold boot. The relevant registers in the cpu context
311  * need to be retrieved and programmed on return from this interface.
312  *****************************************************************************/
psci_prepare_next_non_secure_ctx(entry_point_info_t * next_image_info)313 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
314 {
315 	assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
316 	cm_init_my_context(next_image_info);
317 	cm_prepare_el3_exit(NON_SECURE);
318 }
319