1 /*
2 * Copyright (c) 2016-2017 Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
8 #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
9
10 #include <zephyr/kernel_structs.h>
11 #include <kernel_internal.h>
12 #include <timeout_q.h>
13 #include <kthread.h>
14 #include <zephyr/tracing/tracing.h>
15 #include <stdbool.h>
16 #include <priority_q.h>
17
18 BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO
19 >= K_HIGHEST_APPLICATION_THREAD_PRIO);
20
21 #ifdef CONFIG_MULTITHREADING
22 #define Z_VALID_PRIO(prio, entry_point) \
23 (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \
24 ((K_LOWEST_APPLICATION_THREAD_PRIO \
25 >= K_HIGHEST_APPLICATION_THREAD_PRIO) \
26 && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \
27 && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO))
28
29 #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \
30 __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \
31 "invalid priority (%d); allowed range: %d to %d", \
32 (prio), \
33 K_LOWEST_APPLICATION_THREAD_PRIO, \
34 K_HIGHEST_APPLICATION_THREAD_PRIO); \
35 } while (false)
36 #else
37 #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1)
38 #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "")
39 #endif /* CONFIG_MULTITHREADING */
40
41 #if (CONFIG_MP_MAX_NUM_CPUS == 1)
42 #define LOCK_SCHED_SPINLOCK
43 #else
44 #define LOCK_SCHED_SPINLOCK K_SPINLOCK(&_sched_spinlock)
45 #endif
46
47 extern struct k_spinlock _sched_spinlock;
48
49 extern struct k_thread _thread_dummy;
50
51 void z_sched_init(void);
52 void z_move_thread_to_end_of_prio_q(struct k_thread *thread);
53 void z_unpend_thread_no_timeout(struct k_thread *thread);
54 struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q);
55 int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
56 _wait_q_t *wait_q, k_timeout_t timeout);
57 void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
58 k_timeout_t timeout);
59 void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key);
60 void z_reschedule_irqlock(uint32_t key);
61 void z_unpend_thread(struct k_thread *thread);
62 int z_unpend_all(_wait_q_t *wait_q);
63 bool z_thread_prio_set(struct k_thread *thread, int prio);
64 void *z_get_next_switch_handle(void *interrupted);
65
66 void z_time_slice(void);
67 void z_reset_time_slice(struct k_thread *curr);
68 void z_sched_ipi(void);
69 void z_sched_start(struct k_thread *thread);
70 void z_ready_thread(struct k_thread *thread);
71 void z_requeue_current(struct k_thread *curr);
72 struct k_thread *z_swap_next_thread(void);
73 void z_thread_abort(struct k_thread *thread);
74 void move_thread_to_end_of_prio_q(struct k_thread *thread);
75 bool thread_is_sliceable(struct k_thread *thread);
76
z_reschedule_unlocked(void)77 static inline void z_reschedule_unlocked(void)
78 {
79 (void) z_reschedule_irqlock(arch_irq_lock());
80 }
81
z_is_under_prio_ceiling(int prio)82 static inline bool z_is_under_prio_ceiling(int prio)
83 {
84 return prio >= CONFIG_PRIORITY_CEILING;
85 }
86
z_get_new_prio_with_ceiling(int prio)87 static inline int z_get_new_prio_with_ceiling(int prio)
88 {
89 return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING;
90 }
91
z_is_prio1_higher_than_or_equal_to_prio2(int prio1,int prio2)92 static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2)
93 {
94 return prio1 <= prio2;
95 }
96
z_is_prio_higher_or_equal(int prio1,int prio2)97 static inline bool z_is_prio_higher_or_equal(int prio1, int prio2)
98 {
99 return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2);
100 }
101
z_is_prio1_lower_than_or_equal_to_prio2(int prio1,int prio2)102 static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2)
103 {
104 return prio1 >= prio2;
105 }
106
z_is_prio1_higher_than_prio2(int prio1,int prio2)107 static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2)
108 {
109 return prio1 < prio2;
110 }
111
z_is_prio_higher(int prio,int test_prio)112 static inline bool z_is_prio_higher(int prio, int test_prio)
113 {
114 return z_is_prio1_higher_than_prio2(prio, test_prio);
115 }
116
z_is_prio_lower_or_equal(int prio1,int prio2)117 static inline bool z_is_prio_lower_or_equal(int prio1, int prio2)
118 {
119 return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2);
120 }
121
_is_valid_prio(int prio,k_thread_entry_t entry_point)122 static inline bool _is_valid_prio(int prio, k_thread_entry_t entry_point)
123 {
124 if ((prio == K_IDLE_PRIO) && z_is_idle_thread_entry(entry_point)) {
125 return true;
126 }
127
128 if (!z_is_prio_higher_or_equal(prio,
129 K_LOWEST_APPLICATION_THREAD_PRIO)) {
130 return false;
131 }
132
133 if (!z_is_prio_lower_or_equal(prio,
134 K_HIGHEST_APPLICATION_THREAD_PRIO)) {
135 return false;
136 }
137
138 return true;
139 }
140
z_sched_lock(void)141 static inline void z_sched_lock(void)
142 {
143 __ASSERT(!arch_is_in_isr(), "");
144 __ASSERT(_current->base.sched_locked != 1U, "");
145
146 --_current->base.sched_locked;
147
148 compiler_barrier();
149 }
150
pended_on_thread(struct k_thread * thread)151 static ALWAYS_INLINE _wait_q_t *pended_on_thread(struct k_thread *thread)
152 {
153 __ASSERT_NO_MSG(thread->base.pended_on);
154
155 return thread->base.pended_on;
156 }
157
158
unpend_thread_no_timeout(struct k_thread * thread)159 static inline void unpend_thread_no_timeout(struct k_thread *thread)
160 {
161 _priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
162 z_mark_thread_as_not_pending(thread);
163 thread->base.pended_on = NULL;
164 }
165
166 /*
167 * In a multiprocessor system, z_unpend_first_thread() must lock the scheduler
168 * spinlock _sched_spinlock. However, in a uniprocessor system, that is not
169 * necessary as the caller has already taken precautions (in the form of
170 * locking interrupts).
171 */
z_unpend_first_thread(_wait_q_t * wait_q)172 static ALWAYS_INLINE struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
173 {
174 struct k_thread *thread = NULL;
175
176 __ASSERT_EVAL(, int key = arch_irq_lock(); arch_irq_unlock(key),
177 !arch_irq_unlocked(key), "");
178
179 LOCK_SCHED_SPINLOCK {
180 thread = _priq_wait_best(&wait_q->waitq);
181 if (unlikely(thread != NULL)) {
182 unpend_thread_no_timeout(thread);
183 z_abort_thread_timeout(thread);
184 }
185 }
186
187 return thread;
188 }
189
190 /*
191 * APIs for working with the Zephyr kernel scheduler. Intended for use in
192 * management of IPC objects, either in the core kernel or other IPC
193 * implemented by OS compatibility layers, providing basic wait/wake operations
194 * with spinlocks used for synchronization.
195 *
196 * These APIs are public and will be treated as contract, even if the
197 * underlying scheduler implementation changes.
198 */
199
200 /**
201 * Wake up a thread pending on the provided wait queue
202 *
203 * Given a wait_q, wake up the highest priority thread on the queue. If the
204 * queue was empty just return false.
205 *
206 * Otherwise, do the following, in order, holding _sched_spinlock the entire
207 * time so that the thread state is guaranteed not to change:
208 * - Set the thread's swap return values to swap_retval and swap_data
209 * - un-pend and ready the thread, but do not invoke the scheduler.
210 *
211 * Repeated calls to this function until it returns false is a suitable
212 * way to wake all threads on the queue.
213 *
214 * It is up to the caller to implement locking such that the return value of
215 * this function (whether a thread was woken up or not) does not immediately
216 * become stale. Calls to wait and wake on the same wait_q object must have
217 * synchronization. Calling this without holding any spinlock is a sign that
218 * this API is not being used properly.
219 *
220 * @param wait_q Wait queue to wake up the highest prio thread
221 * @param swap_retval Swap return value for woken thread
222 * @param swap_data Data return value to supplement swap_retval. May be NULL.
223 * @retval true If a thread was woken up
224 * @retval false If the wait_q was empty
225 */
226 bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data);
227
228 /**
229 * Wakes the specified thread.
230 *
231 * Given a specific thread, wake it up. This routine assumes that the given
232 * thread is not on the timeout queue.
233 *
234 * @param thread Given thread to wake up.
235 * @param is_timeout True if called from the timer ISR; false otherwise.
236 *
237 */
238 void z_sched_wake_thread(struct k_thread *thread, bool is_timeout);
239
240 /**
241 * Wake up all threads pending on the provided wait queue
242 *
243 * Convenience function to invoke z_sched_wake() on all threads in the queue
244 * until there are no more to wake up.
245 *
246 * @param wait_q Wait queue to wake up the highest prio thread
247 * @param swap_retval Swap return value for woken thread
248 * @param swap_data Data return value to supplement swap_retval. May be NULL.
249 * @retval true If any threads were woken up
250 * @retval false If the wait_q was empty
251 */
z_sched_wake_all(_wait_q_t * wait_q,int swap_retval,void * swap_data)252 static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval,
253 void *swap_data)
254 {
255 bool woken = false;
256
257 while (z_sched_wake(wait_q, swap_retval, swap_data)) {
258 woken = true;
259 }
260
261 /* True if we woke at least one thread up */
262 return woken;
263 }
264
265 /**
266 * Atomically put the current thread to sleep on a wait queue, with timeout
267 *
268 * The thread will be added to the provided waitqueue. The lock, which should
269 * be held by the caller with the provided key, will be released once this is
270 * completely done and we have swapped out.
271 *
272 * The return value and data pointer is set by whoever woke us up via
273 * z_sched_wake.
274 *
275 * @param lock Address of spinlock to release when we swap out
276 * @param key Key to the provided spinlock when it was locked
277 * @param wait_q Wait queue to go to sleep on
278 * @param timeout Waiting period to be woken up, or K_FOREVER to wait
279 * indefinitely.
280 * @param data Storage location for data pointer set when thread was woken up.
281 * May be NULL if not used.
282 * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout
283 * expired without being woken up.
284 */
285 int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
286 _wait_q_t *wait_q, k_timeout_t timeout, void **data);
287
288 /**
289 * @brief Walks the wait queue invoking the callback on each waiting thread
290 *
291 * This function walks the wait queue invoking the callback function on each
292 * waiting thread while holding _sched_spinlock. This can be useful for routines
293 * that need to operate on multiple waiting threads.
294 *
295 * CAUTION! As a wait queue is of indeterminate length, the scheduler will be
296 * locked for an indeterminate amount of time. This may impact system
297 * performance. As such, care must be taken when using both this function and
298 * the specified callback.
299 *
300 * @param wait_q Identifies the wait queue to walk
301 * @param func Callback to invoke on each waiting thread
302 * @param data Custom data passed to the callback
303 *
304 * @retval non-zero if walk is terminated by the callback; otherwise 0
305 */
306 int z_sched_waitq_walk(_wait_q_t *wait_q,
307 int (*func)(struct k_thread *, void *), void *data);
308
309 /** @brief Halt thread cycle usage accounting.
310 *
311 * Halts the accumulation of thread cycle usage and adds the current
312 * total to the thread's counter. Called on context switch.
313 *
314 * Note that this function is idempotent. The core kernel code calls
315 * it at the end of interrupt handlers (because that is where we have
316 * a portable hook) where we are context switching, which will include
317 * any cycles spent in the ISR in the per-thread accounting. But
318 * architecture code can also call it earlier out of interrupt entry
319 * to improve measurement fidelity.
320 *
321 * This function assumes local interrupts are masked (so that the
322 * current CPU pointer and current thread are safe to modify), but
323 * requires no other synchronization. Architecture layers don't need
324 * to do anything more.
325 */
326 void z_sched_usage_stop(void);
327
328 void z_sched_usage_start(struct k_thread *thread);
329
330 /**
331 * @brief Retrieves CPU cycle usage data for specified core
332 */
333 void z_sched_cpu_usage(uint8_t core_id, struct k_thread_runtime_stats *stats);
334
335 /**
336 * @brief Retrieves thread cycle usage data for specified thread
337 */
338 void z_sched_thread_usage(struct k_thread *thread,
339 struct k_thread_runtime_stats *stats);
340
z_sched_usage_switch(struct k_thread * thread)341 static inline void z_sched_usage_switch(struct k_thread *thread)
342 {
343 ARG_UNUSED(thread);
344 #ifdef CONFIG_SCHED_THREAD_USAGE
345 z_sched_usage_stop();
346 z_sched_usage_start(thread);
347 #endif /* CONFIG_SCHED_THREAD_USAGE */
348 }
349
350 #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */
351