1 /*
2 * Copyright (c) 2016-2017 Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
8 #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
9
10 #include <kernel_structs.h>
11 #include <kernel_internal.h>
12 #include <timeout_q.h>
13 #include <tracing/tracing.h>
14 #include <stdbool.h>
15
16 BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO
17 >= K_HIGHEST_APPLICATION_THREAD_PRIO);
18
19 #ifdef CONFIG_MULTITHREADING
20 #define Z_VALID_PRIO(prio, entry_point) \
21 (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \
22 ((K_LOWEST_APPLICATION_THREAD_PRIO \
23 >= K_HIGHEST_APPLICATION_THREAD_PRIO) \
24 && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \
25 && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO))
26
27 #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \
28 __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \
29 "invalid priority (%d); allowed range: %d to %d", \
30 (prio), \
31 K_LOWEST_APPLICATION_THREAD_PRIO, \
32 K_HIGHEST_APPLICATION_THREAD_PRIO); \
33 } while (false)
34 #else
35 #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1)
36 #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "")
37 #endif
38
39 void z_sched_init(void);
40 void z_move_thread_to_end_of_prio_q(struct k_thread *thread);
41 int z_is_thread_time_slicing(struct k_thread *thread);
42 void z_unpend_thread_no_timeout(struct k_thread *thread);
43 struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q);
44 int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
45 _wait_q_t *wait_q, k_timeout_t timeout);
46 int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout);
47 void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
48 k_timeout_t timeout);
49 void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key);
50 void z_reschedule_irqlock(uint32_t key);
51 struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q);
52 void z_unpend_thread(struct k_thread *thread);
53 int z_unpend_all(_wait_q_t *wait_q);
54 void z_thread_priority_set(struct k_thread *thread, int prio);
55 bool z_set_prio(struct k_thread *thread, int prio);
56 void *z_get_next_switch_handle(void *interrupted);
57 void idle(void *unused1, void *unused2, void *unused3);
58 void z_time_slice(int ticks);
59 void z_reset_time_slice(void);
60 void z_sched_abort(struct k_thread *thread);
61 void z_sched_ipi(void);
62 void z_sched_start(struct k_thread *thread);
63 void z_ready_thread(struct k_thread *thread);
64 void z_requeue_current(struct k_thread *curr);
65 struct k_thread *z_swap_next_thread(void);
66 void z_thread_abort(struct k_thread *thread);
67
z_pend_curr_unlocked(_wait_q_t * wait_q,k_timeout_t timeout)68 static inline void z_pend_curr_unlocked(_wait_q_t *wait_q, k_timeout_t timeout)
69 {
70 (void) z_pend_curr_irqlock(arch_irq_lock(), wait_q, timeout);
71 }
72
z_reschedule_unlocked(void)73 static inline void z_reschedule_unlocked(void)
74 {
75 (void) z_reschedule_irqlock(arch_irq_lock());
76 }
77
z_is_idle_thread_entry(void * entry_point)78 static inline bool z_is_idle_thread_entry(void *entry_point)
79 {
80 return entry_point == idle;
81 }
82
z_is_idle_thread_object(struct k_thread * thread)83 static inline bool z_is_idle_thread_object(struct k_thread *thread)
84 {
85 #ifdef CONFIG_MULTITHREADING
86 #ifdef CONFIG_SMP
87 return thread->base.is_idle;
88 #else
89 return thread == &z_idle_threads[0];
90 #endif
91 #else
92 return false;
93 #endif /* CONFIG_MULTITHREADING */
94 }
95
z_is_thread_suspended(struct k_thread * thread)96 static inline bool z_is_thread_suspended(struct k_thread *thread)
97 {
98 return (thread->base.thread_state & _THREAD_SUSPENDED) != 0U;
99 }
100
z_is_thread_pending(struct k_thread * thread)101 static inline bool z_is_thread_pending(struct k_thread *thread)
102 {
103 return (thread->base.thread_state & _THREAD_PENDING) != 0U;
104 }
105
z_is_thread_prevented_from_running(struct k_thread * thread)106 static inline bool z_is_thread_prevented_from_running(struct k_thread *thread)
107 {
108 uint8_t state = thread->base.thread_state;
109
110 return (state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD |
111 _THREAD_DUMMY | _THREAD_SUSPENDED)) != 0U;
112
113 }
114
z_is_thread_timeout_active(struct k_thread * thread)115 static inline bool z_is_thread_timeout_active(struct k_thread *thread)
116 {
117 return !z_is_inactive_timeout(&thread->base.timeout);
118 }
119
z_is_thread_ready(struct k_thread * thread)120 static inline bool z_is_thread_ready(struct k_thread *thread)
121 {
122 return !((z_is_thread_prevented_from_running(thread)) != 0U ||
123 z_is_thread_timeout_active(thread));
124 }
125
z_has_thread_started(struct k_thread * thread)126 static inline bool z_has_thread_started(struct k_thread *thread)
127 {
128 return (thread->base.thread_state & _THREAD_PRESTART) == 0U;
129 }
130
z_is_thread_state_set(struct k_thread * thread,uint32_t state)131 static inline bool z_is_thread_state_set(struct k_thread *thread, uint32_t state)
132 {
133 return (thread->base.thread_state & state) != 0U;
134 }
135
z_is_thread_queued(struct k_thread * thread)136 static inline bool z_is_thread_queued(struct k_thread *thread)
137 {
138 return z_is_thread_state_set(thread, _THREAD_QUEUED);
139 }
140
z_mark_thread_as_suspended(struct k_thread * thread)141 static inline void z_mark_thread_as_suspended(struct k_thread *thread)
142 {
143 thread->base.thread_state |= _THREAD_SUSPENDED;
144
145 SYS_PORT_TRACING_FUNC(k_thread, sched_suspend, thread);
146 }
147
z_mark_thread_as_not_suspended(struct k_thread * thread)148 static inline void z_mark_thread_as_not_suspended(struct k_thread *thread)
149 {
150 thread->base.thread_state &= ~_THREAD_SUSPENDED;
151
152 SYS_PORT_TRACING_FUNC(k_thread, sched_resume, thread);
153 }
154
z_mark_thread_as_started(struct k_thread * thread)155 static inline void z_mark_thread_as_started(struct k_thread *thread)
156 {
157 thread->base.thread_state &= ~_THREAD_PRESTART;
158 }
159
z_mark_thread_as_pending(struct k_thread * thread)160 static inline void z_mark_thread_as_pending(struct k_thread *thread)
161 {
162 thread->base.thread_state |= _THREAD_PENDING;
163 }
164
z_mark_thread_as_not_pending(struct k_thread * thread)165 static inline void z_mark_thread_as_not_pending(struct k_thread *thread)
166 {
167 thread->base.thread_state &= ~_THREAD_PENDING;
168 }
169
z_set_thread_states(struct k_thread * thread,uint32_t states)170 static inline void z_set_thread_states(struct k_thread *thread, uint32_t states)
171 {
172 thread->base.thread_state |= states;
173 }
174
z_reset_thread_states(struct k_thread * thread,uint32_t states)175 static inline void z_reset_thread_states(struct k_thread *thread,
176 uint32_t states)
177 {
178 thread->base.thread_state &= ~states;
179 }
180
z_is_under_prio_ceiling(int prio)181 static inline bool z_is_under_prio_ceiling(int prio)
182 {
183 return prio >= CONFIG_PRIORITY_CEILING;
184 }
185
z_get_new_prio_with_ceiling(int prio)186 static inline int z_get_new_prio_with_ceiling(int prio)
187 {
188 return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING;
189 }
190
z_is_prio1_higher_than_or_equal_to_prio2(int prio1,int prio2)191 static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2)
192 {
193 return prio1 <= prio2;
194 }
195
z_is_prio_higher_or_equal(int prio1,int prio2)196 static inline bool z_is_prio_higher_or_equal(int prio1, int prio2)
197 {
198 return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2);
199 }
200
z_is_prio1_lower_than_or_equal_to_prio2(int prio1,int prio2)201 static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2)
202 {
203 return prio1 >= prio2;
204 }
205
z_is_prio1_higher_than_prio2(int prio1,int prio2)206 static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2)
207 {
208 return prio1 < prio2;
209 }
210
z_is_prio_higher(int prio,int test_prio)211 static inline bool z_is_prio_higher(int prio, int test_prio)
212 {
213 return z_is_prio1_higher_than_prio2(prio, test_prio);
214 }
215
z_is_prio_lower_or_equal(int prio1,int prio2)216 static inline bool z_is_prio_lower_or_equal(int prio1, int prio2)
217 {
218 return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2);
219 }
220
221 int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2);
222
_is_valid_prio(int prio,void * entry_point)223 static inline bool _is_valid_prio(int prio, void *entry_point)
224 {
225 if (prio == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) {
226 return true;
227 }
228
229 if (!z_is_prio_higher_or_equal(prio,
230 K_LOWEST_APPLICATION_THREAD_PRIO)) {
231 return false;
232 }
233
234 if (!z_is_prio_lower_or_equal(prio,
235 K_HIGHEST_APPLICATION_THREAD_PRIO)) {
236 return false;
237 }
238
239 return true;
240 }
241
_ready_one_thread(_wait_q_t * wq)242 static inline void _ready_one_thread(_wait_q_t *wq)
243 {
244 struct k_thread *thread = z_unpend_first_thread(wq);
245
246 if (thread != NULL) {
247 z_ready_thread(thread);
248 }
249 }
250
z_sched_lock(void)251 static inline void z_sched_lock(void)
252 {
253 __ASSERT(!arch_is_in_isr(), "");
254 __ASSERT(_current->base.sched_locked != 1U, "");
255
256 --_current->base.sched_locked;
257
258 compiler_barrier();
259 }
260
z_sched_unlock_no_reschedule(void)261 static ALWAYS_INLINE void z_sched_unlock_no_reschedule(void)
262 {
263 __ASSERT(!arch_is_in_isr(), "");
264 __ASSERT(_current->base.sched_locked != 0U, "");
265
266 compiler_barrier();
267
268 ++_current->base.sched_locked;
269 }
270
z_is_thread_timeout_expired(struct k_thread * thread)271 static ALWAYS_INLINE bool z_is_thread_timeout_expired(struct k_thread *thread)
272 {
273 #ifdef CONFIG_SYS_CLOCK_EXISTS
274 return thread->base.timeout.dticks == _EXPIRED;
275 #else
276 return 0;
277 #endif
278 }
279
280 /*
281 * APIs for working with the Zephyr kernel scheduler. Intended for use in
282 * management of IPC objects, either in the core kernel or other IPC
283 * implemented by OS compatibility layers, providing basic wait/wake operations
284 * with spinlocks used for synchronization.
285 *
286 * These APIs are public and will be treated as contract, even if the
287 * underlying scheduler implementation changes.
288 */
289
290 /**
291 * Wake up a thread pending on the provided wait queue
292 *
293 * Given a wait_q, wake up the highest priority thread on the queue. If the
294 * queue was empty just return false.
295 *
296 * Otherwise, do the following, in order, holding sched_spinlock the entire
297 * time so that the thread state is guaranteed not to change:
298 * - Set the thread's swap return values to swap_retval and swap_data
299 * - un-pend and ready the thread, but do not invoke the scheduler.
300 *
301 * Repeated calls to this function until it returns false is a suitable
302 * way to wake all threads on the queue.
303 *
304 * It is up to the caller to implement locking such that the return value of
305 * this function (whether a thread was woken up or not) does not immediately
306 * become stale. Calls to wait and wake on the same wait_q object must have
307 * synchronization. Calling this without holding any spinlock is a sign that
308 * this API is not being used properly.
309 *
310 * @param wait_q Wait queue to wake up the highest prio thread
311 * @param swap_retval Swap return value for woken thread
312 * @param swap_data Data return value to supplement swap_retval. May be NULL.
313 * @retval true If a thread was woken up
314 * @retval false If the wait_q was empty
315 */
316 bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data);
317
318 /**
319 * Wake up all threads pending on the provided wait queue
320 *
321 * Convenience function to invoke z_sched_wake() on all threads in the queue
322 * until there are no more to wake up.
323 *
324 * @param wait_q Wait queue to wake up the highest prio thread
325 * @param swap_retval Swap return value for woken thread
326 * @param swap_data Data return value to supplement swap_retval. May be NULL.
327 * @retval true If any threads were woken up
328 * @retval false If the wait_q was empty
329 */
z_sched_wake_all(_wait_q_t * wait_q,int swap_retval,void * swap_data)330 static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval,
331 void *swap_data)
332 {
333 bool woken = false;
334
335 while (z_sched_wake(wait_q, swap_retval, swap_data)) {
336 woken = true;
337 }
338
339 /* True if we woke at least one thread up */
340 return woken;
341 }
342
343 /**
344 * Atomically put the current thread to sleep on a wait queue, with timeout
345 *
346 * The thread will be added to the provided waitqueue. The lock, which should
347 * be held by the caller with the provided key, will be released once this is
348 * completely done and we have swapped out.
349 *
350 * The return value and data pointer is set by whoever woke us up via
351 * z_sched_wake.
352 *
353 * @param lock Address of spinlock to release when we swap out
354 * @param key Key to the provided spinlock when it was locked
355 * @param wait_q Wait queue to go to sleep on
356 * @param timeout Waiting period to be woken up, or K_FOREVER to wait
357 * indefinitely.
358 * @param data Storage location for data pointer set when thread was woken up.
359 * May be NULL if not used.
360 * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout
361 * expired without being woken up.
362 */
363 int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
364 _wait_q_t *wait_q, k_timeout_t timeout, void **data);
365
366 #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */
367