1 /*
2  * Copyright (c) 2010-2014 Wind River Systems, Inc.
3  *
4  * SPDX-License-Identifier: Apache-2.0
5  */
6 
7 /**
8  * @file
9  * @brief Kernel thread support
10  *
11  * This module provides general purpose thread support.
12  */
13 
14 #include <zephyr/kernel.h>
15 #include <zephyr/spinlock.h>
16 #include <zephyr/sys/math_extras.h>
17 #include <zephyr/sys_clock.h>
18 #include <ksched.h>
19 #include <kthread.h>
20 #include <wait_q.h>
21 #include <zephyr/internal/syscall_handler.h>
22 #include <kernel_internal.h>
23 #include <kswap.h>
24 #include <zephyr/init.h>
25 #include <zephyr/tracing/tracing.h>
26 #include <string.h>
27 #include <stdbool.h>
28 #include <zephyr/sys/check.h>
29 #include <zephyr/random/random.h>
30 #include <zephyr/sys/atomic.h>
31 #include <zephyr/logging/log.h>
32 #include <zephyr/llext/symbol.h>
33 #include <zephyr/sys/iterable_sections.h>
34 
35 LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL);
36 
37 #ifdef CONFIG_OBJ_CORE_THREAD
38 static struct k_obj_type  obj_type_thread;
39 
40 #ifdef CONFIG_OBJ_CORE_STATS_THREAD
41 static struct k_obj_core_stats_desc  thread_stats_desc = {
42 	.raw_size = sizeof(struct k_cycle_stats),
43 	.query_size = sizeof(struct k_thread_runtime_stats),
44 	.raw   = z_thread_stats_raw,
45 	.query = z_thread_stats_query,
46 	.reset = z_thread_stats_reset,
47 	.disable = z_thread_stats_disable,
48 	.enable  = z_thread_stats_enable,
49 };
50 #endif /* CONFIG_OBJ_CORE_STATS_THREAD */
51 
init_thread_obj_core_list(void)52 static int init_thread_obj_core_list(void)
53 {
54 	/* Initialize mem_slab object type */
55 
56 #ifdef CONFIG_OBJ_CORE_THREAD
57 	z_obj_type_init(&obj_type_thread, K_OBJ_TYPE_THREAD_ID,
58 			offsetof(struct k_thread, obj_core));
59 #endif /* CONFIG_OBJ_CORE_THREAD */
60 
61 #ifdef CONFIG_OBJ_CORE_STATS_THREAD
62 	k_obj_type_stats_init(&obj_type_thread, &thread_stats_desc);
63 #endif /* CONFIG_OBJ_CORE_STATS_THREAD */
64 
65 	return 0;
66 }
67 
68 SYS_INIT(init_thread_obj_core_list, PRE_KERNEL_1,
69 	 CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
70 #endif /* CONFIG_OBJ_CORE_THREAD */
71 
72 
73 #define _FOREACH_STATIC_THREAD(thread_data)              \
74 	STRUCT_SECTION_FOREACH(_static_thread_data, thread_data)
75 
k_is_in_isr(void)76 bool k_is_in_isr(void)
77 {
78 	return arch_is_in_isr();
79 }
80 EXPORT_SYMBOL(k_is_in_isr);
81 
82 #ifdef CONFIG_THREAD_CUSTOM_DATA
z_impl_k_thread_custom_data_set(void * value)83 void z_impl_k_thread_custom_data_set(void *value)
84 {
85 	arch_current_thread()->custom_data = value;
86 }
87 
88 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_custom_data_set(void * data)89 static inline void z_vrfy_k_thread_custom_data_set(void *data)
90 {
91 	z_impl_k_thread_custom_data_set(data);
92 }
93 #include <zephyr/syscalls/k_thread_custom_data_set_mrsh.c>
94 #endif /* CONFIG_USERSPACE */
95 
z_impl_k_thread_custom_data_get(void)96 void *z_impl_k_thread_custom_data_get(void)
97 {
98 	return arch_current_thread()->custom_data;
99 }
100 
101 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_custom_data_get(void)102 static inline void *z_vrfy_k_thread_custom_data_get(void)
103 {
104 	return z_impl_k_thread_custom_data_get();
105 }
106 #include <zephyr/syscalls/k_thread_custom_data_get_mrsh.c>
107 
108 #endif /* CONFIG_USERSPACE */
109 #endif /* CONFIG_THREAD_CUSTOM_DATA */
110 
z_impl_k_is_preempt_thread(void)111 int z_impl_k_is_preempt_thread(void)
112 {
113 	return !arch_is_in_isr() && thread_is_preemptible(arch_current_thread());
114 }
115 
116 #ifdef CONFIG_USERSPACE
z_vrfy_k_is_preempt_thread(void)117 static inline int z_vrfy_k_is_preempt_thread(void)
118 {
119 	return z_impl_k_is_preempt_thread();
120 }
121 #include <zephyr/syscalls/k_is_preempt_thread_mrsh.c>
122 #endif /* CONFIG_USERSPACE */
123 
z_impl_k_thread_priority_get(k_tid_t thread)124 int z_impl_k_thread_priority_get(k_tid_t thread)
125 {
126 	return thread->base.prio;
127 }
128 
129 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_priority_get(k_tid_t thread)130 static inline int z_vrfy_k_thread_priority_get(k_tid_t thread)
131 {
132 	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
133 	return z_impl_k_thread_priority_get(thread);
134 }
135 #include <zephyr/syscalls/k_thread_priority_get_mrsh.c>
136 #endif /* CONFIG_USERSPACE */
137 
z_impl_k_thread_name_set(k_tid_t thread,const char * str)138 int z_impl_k_thread_name_set(k_tid_t thread, const char *str)
139 {
140 #ifdef CONFIG_THREAD_NAME
141 	if (thread == NULL) {
142 		thread = arch_current_thread();
143 	}
144 
145 	strncpy(thread->name, str, CONFIG_THREAD_MAX_NAME_LEN - 1);
146 	thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
147 
148 #ifdef CONFIG_ARCH_HAS_THREAD_NAME_HOOK
149 	arch_thread_name_set(thread, str);
150 #endif /* CONFIG_ARCH_HAS_THREAD_NAME_HOOK */
151 
152 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, 0);
153 
154 	return 0;
155 #else
156 	ARG_UNUSED(thread);
157 	ARG_UNUSED(str);
158 
159 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, name_set, thread, -ENOSYS);
160 
161 	return -ENOSYS;
162 #endif /* CONFIG_THREAD_NAME */
163 }
164 
165 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_name_set(k_tid_t thread,const char * str)166 static inline int z_vrfy_k_thread_name_set(k_tid_t thread, const char *str)
167 {
168 #ifdef CONFIG_THREAD_NAME
169 	char name[CONFIG_THREAD_MAX_NAME_LEN];
170 
171 	if (thread != NULL) {
172 		if (K_SYSCALL_OBJ(thread, K_OBJ_THREAD) != 0) {
173 			return -EINVAL;
174 		}
175 	}
176 
177 	/* In theory we could copy directly into thread->name, but
178 	 * the current z_vrfy / z_impl split does not provide a
179 	 * means of doing so.
180 	 */
181 	if (k_usermode_string_copy(name, str, sizeof(name)) != 0) {
182 		return -EFAULT;
183 	}
184 
185 	return z_impl_k_thread_name_set(thread, name);
186 #else
187 	return -ENOSYS;
188 #endif /* CONFIG_THREAD_NAME */
189 }
190 #include <zephyr/syscalls/k_thread_name_set_mrsh.c>
191 #endif /* CONFIG_USERSPACE */
192 
k_thread_name_get(k_tid_t thread)193 const char *k_thread_name_get(k_tid_t thread)
194 {
195 #ifdef CONFIG_THREAD_NAME
196 	return (const char *)thread->name;
197 #else
198 	ARG_UNUSED(thread);
199 	return NULL;
200 #endif /* CONFIG_THREAD_NAME */
201 }
202 
z_impl_k_thread_name_copy(k_tid_t thread,char * buf,size_t size)203 int z_impl_k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
204 {
205 #ifdef CONFIG_THREAD_NAME
206 	strncpy(buf, thread->name, size);
207 	return 0;
208 #else
209 	ARG_UNUSED(thread);
210 	ARG_UNUSED(buf);
211 	ARG_UNUSED(size);
212 	return -ENOSYS;
213 #endif /* CONFIG_THREAD_NAME */
214 }
215 
copy_bytes(char * dest,size_t dest_size,const char * src,size_t src_size)216 static size_t copy_bytes(char *dest, size_t dest_size, const char *src, size_t src_size)
217 {
218 	size_t  bytes_to_copy;
219 
220 	bytes_to_copy = MIN(dest_size, src_size);
221 	memcpy(dest, src, bytes_to_copy);
222 
223 	return bytes_to_copy;
224 }
225 
k_thread_state_str(k_tid_t thread_id,char * buf,size_t buf_size)226 const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
227 {
228 	size_t      off = 0;
229 	uint8_t     bit;
230 	uint8_t     thread_state = thread_id->base.thread_state;
231 #define SS_ENT(s) { Z_STATE_STR_##s, _THREAD_##s, sizeof(Z_STATE_STR_##s) - 1 }
232 	static const struct {
233 		const char *str;
234 		uint16_t    bit;
235 		uint16_t    len;
236 	} state_string[] = {
237 		SS_ENT(DUMMY),
238 		SS_ENT(PENDING),
239 		SS_ENT(SLEEPING),
240 		SS_ENT(DEAD),
241 		SS_ENT(SUSPENDED),
242 		SS_ENT(ABORTING),
243 		SS_ENT(SUSPENDING),
244 		SS_ENT(QUEUED),
245 	};
246 #undef SS_ENT
247 
248 	if ((buf == NULL) || (buf_size == 0)) {
249 		return "";
250 	}
251 
252 	buf_size--;   /* Reserve 1 byte for end-of-string character */
253 
254 	/*
255 	 * Loop through each bit in the thread_state. Stop once all have
256 	 * been processed. If more than one thread_state bit is set, then
257 	 * separate the descriptive strings with a '+'.
258 	 */
259 
260 
261 	for (unsigned int index = 0; thread_state != 0; index++) {
262 		bit = state_string[index].bit;
263 		if ((thread_state & bit) == 0) {
264 			continue;
265 		}
266 
267 		off += copy_bytes(buf + off, buf_size - off,
268 				  state_string[index].str,
269 				  state_string[index].len);
270 
271 		thread_state &= ~bit;
272 
273 		if (thread_state != 0) {
274 			off += copy_bytes(buf + off, buf_size - off, "+", 1);
275 		}
276 	}
277 
278 	buf[off] = '\0';
279 
280 	return (const char *)buf;
281 }
282 
283 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_name_copy(k_tid_t thread,char * buf,size_t size)284 static inline int z_vrfy_k_thread_name_copy(k_tid_t thread,
285 					    char *buf, size_t size)
286 {
287 #ifdef CONFIG_THREAD_NAME
288 	size_t len;
289 	struct k_object *ko = k_object_find(thread);
290 
291 	/* Special case: we allow reading the names of initialized threads
292 	 * even if we don't have permission on them
293 	 */
294 	if ((thread == NULL) || (ko->type != K_OBJ_THREAD) ||
295 		((ko->flags & K_OBJ_FLAG_INITIALIZED) == 0)) {
296 		return -EINVAL;
297 	}
298 	if (K_SYSCALL_MEMORY_WRITE(buf, size) != 0) {
299 		return -EFAULT;
300 	}
301 	len = strlen(thread->name);
302 	if ((len + 1) > size) {
303 		return -ENOSPC;
304 	}
305 
306 	return k_usermode_to_copy((void *)buf, thread->name, len + 1);
307 #else
308 	ARG_UNUSED(thread);
309 	ARG_UNUSED(buf);
310 	ARG_UNUSED(size);
311 	return -ENOSYS;
312 #endif /* CONFIG_THREAD_NAME */
313 }
314 #include <zephyr/syscalls/k_thread_name_copy_mrsh.c>
315 #endif /* CONFIG_USERSPACE */
316 
317 #ifdef CONFIG_STACK_SENTINEL
318 /* Check that the stack sentinel is still present
319  *
320  * The stack sentinel feature writes a magic value to the lowest 4 bytes of
321  * the thread's stack when the thread is initialized. This value gets checked
322  * in a few places:
323  *
324  * 1) In k_yield() if the current thread is not swapped out
325  * 2) After servicing a non-nested interrupt
326  * 3) In z_swap(), check the sentinel in the outgoing thread
327  *
328  * Item 2 requires support in arch/ code.
329  *
330  * If the check fails, the thread will be terminated appropriately through
331  * the system fatal error handler.
332  */
z_check_stack_sentinel(void)333 void z_check_stack_sentinel(void)
334 {
335 	uint32_t *stack;
336 
337 	if ((arch_current_thread()->base.thread_state & _THREAD_DUMMY) != 0) {
338 		return;
339 	}
340 
341 	stack = (uint32_t *)arch_current_thread()->stack_info.start;
342 	if (*stack != STACK_SENTINEL) {
343 		/* Restore it so further checks don't trigger this same error */
344 		*stack = STACK_SENTINEL;
345 		z_except_reason(K_ERR_STACK_CHK_FAIL);
346 	}
347 }
348 #endif /* CONFIG_STACK_SENTINEL */
349 
350 #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
351 int z_stack_adjust_initialized;
352 
random_offset(size_t stack_size)353 static size_t random_offset(size_t stack_size)
354 {
355 	size_t random_val;
356 
357 	if (!z_stack_adjust_initialized) {
358 		z_early_rand_get((uint8_t *)&random_val, sizeof(random_val));
359 	} else {
360 		sys_rand_get((uint8_t *)&random_val, sizeof(random_val));
361 	}
362 
363 	/* Don't need to worry about alignment of the size here,
364 	 * arch_new_thread() is required to do it.
365 	 *
366 	 * FIXME: Not the best way to get a random number in a range.
367 	 * See #6493
368 	 */
369 	const size_t fuzz = random_val % CONFIG_STACK_POINTER_RANDOM;
370 
371 	if (unlikely(fuzz * 2 > stack_size)) {
372 		return 0;
373 	}
374 
375 	return fuzz;
376 }
377 #if defined(CONFIG_STACK_GROWS_UP)
378 	/* This is so rare not bothering for now */
379 #error "Stack pointer randomization not implemented for upward growing stacks"
380 #endif /* CONFIG_STACK_GROWS_UP */
381 #endif /* CONFIG_STACK_POINTER_RANDOM */
382 
setup_thread_stack(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size)383 static char *setup_thread_stack(struct k_thread *new_thread,
384 				k_thread_stack_t *stack, size_t stack_size)
385 {
386 	size_t stack_obj_size, stack_buf_size;
387 	char *stack_ptr, *stack_buf_start;
388 	size_t delta = 0;
389 
390 #ifdef CONFIG_USERSPACE
391 	if (z_stack_is_user_capable(stack)) {
392 		stack_obj_size = K_THREAD_STACK_LEN(stack_size);
393 		stack_buf_start = K_THREAD_STACK_BUFFER(stack);
394 		stack_buf_size = stack_obj_size - K_THREAD_STACK_RESERVED;
395 	} else
396 #endif /* CONFIG_USERSPACE */
397 	{
398 		/* Object cannot host a user mode thread */
399 		stack_obj_size = K_KERNEL_STACK_LEN(stack_size);
400 		stack_buf_start = K_KERNEL_STACK_BUFFER(stack);
401 		stack_buf_size = stack_obj_size - K_KERNEL_STACK_RESERVED;
402 
403 		/* Zephyr treats stack overflow as an app bug.  But
404 		 * this particular overflow can be seen by static
405 		 * analysis so needs to be handled somehow.
406 		 */
407 		if (K_KERNEL_STACK_RESERVED > stack_obj_size) {
408 			k_panic();
409 		}
410 
411 	}
412 
413 #ifdef CONFIG_THREAD_STACK_MEM_MAPPED
414 	/* Map the stack into virtual memory and use that as the base to
415 	 * calculate the initial stack pointer at the high end of the stack
416 	 * object. The stack pointer may be reduced later in this function
417 	 * by TLS or random offset.
418 	 *
419 	 * K_MEM_MAP_UNINIT is used to mimic the behavior of non-mapped
420 	 * stack. If CONFIG_INIT_STACKS is enabled, the stack will be
421 	 * cleared below.
422 	 */
423 	void *stack_mapped = k_mem_map_phys_guard((uintptr_t)stack, stack_obj_size,
424 				K_MEM_PERM_RW | K_MEM_CACHE_WB | K_MEM_MAP_UNINIT,
425 				false);
426 
427 	__ASSERT_NO_MSG((uintptr_t)stack_mapped != 0);
428 
429 #ifdef CONFIG_USERSPACE
430 	if (z_stack_is_user_capable(stack)) {
431 		stack_buf_start = K_THREAD_STACK_BUFFER(stack_mapped);
432 	} else
433 #endif /* CONFIG_USERSPACE */
434 	{
435 		stack_buf_start = K_KERNEL_STACK_BUFFER(stack_mapped);
436 	}
437 
438 	stack_ptr = (char *)stack_mapped + stack_obj_size;
439 
440 	/* Need to store the info on mapped stack so we can remove the mappings
441 	 * when the thread ends.
442 	 */
443 	new_thread->stack_info.mapped.addr = stack_mapped;
444 	new_thread->stack_info.mapped.sz = stack_obj_size;
445 
446 #else /* CONFIG_THREAD_STACK_MEM_MAPPED */
447 
448 	/* Initial stack pointer at the high end of the stack object, may
449 	 * be reduced later in this function by TLS or random offset
450 	 */
451 	stack_ptr = (char *)stack + stack_obj_size;
452 
453 #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
454 
455 	LOG_DBG("stack %p for thread %p: obj_size=%zu buf_start=%p "
456 		" buf_size %zu stack_ptr=%p",
457 		stack, new_thread, stack_obj_size, (void *)stack_buf_start,
458 		stack_buf_size, (void *)stack_ptr);
459 
460 #ifdef CONFIG_INIT_STACKS
461 	memset(stack_buf_start, 0xaa, stack_buf_size);
462 #endif /* CONFIG_INIT_STACKS */
463 #ifdef CONFIG_STACK_SENTINEL
464 	/* Put the stack sentinel at the lowest 4 bytes of the stack area.
465 	 * We periodically check that it's still present and kill the thread
466 	 * if it isn't.
467 	 */
468 	*((uint32_t *)stack_buf_start) = STACK_SENTINEL;
469 #endif /* CONFIG_STACK_SENTINEL */
470 #ifdef CONFIG_THREAD_LOCAL_STORAGE
471 	/* TLS is always last within the stack buffer */
472 	delta += arch_tls_stack_setup(new_thread, stack_ptr);
473 #endif /* CONFIG_THREAD_LOCAL_STORAGE */
474 #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
475 	size_t tls_size = sizeof(struct _thread_userspace_local_data);
476 
477 	/* reserve space on highest memory of stack buffer for local data */
478 	delta += tls_size;
479 	new_thread->userspace_local_data =
480 		(struct _thread_userspace_local_data *)(stack_ptr - delta);
481 #endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
482 #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
483 	delta += random_offset(stack_buf_size);
484 #endif /* CONFIG_STACK_POINTER_RANDOM */
485 	delta = ROUND_UP(delta, ARCH_STACK_PTR_ALIGN);
486 #ifdef CONFIG_THREAD_STACK_INFO
487 	/* Initial values. Arches which implement MPU guards that "borrow"
488 	 * memory from the stack buffer (not tracked in K_THREAD_STACK_RESERVED)
489 	 * will need to appropriately update this.
490 	 *
491 	 * The bounds tracked here correspond to the area of the stack object
492 	 * that the thread can access, which includes TLS.
493 	 */
494 	new_thread->stack_info.start = (uintptr_t)stack_buf_start;
495 	new_thread->stack_info.size = stack_buf_size;
496 	new_thread->stack_info.delta = delta;
497 #endif /* CONFIG_THREAD_STACK_INFO */
498 	stack_ptr -= delta;
499 
500 	return stack_ptr;
501 }
502 
503 /*
504  * The provided stack_size value is presumed to be either the result of
505  * K_THREAD_STACK_SIZEOF(stack), or the size value passed to the instance
506  * of K_THREAD_STACK_DEFINE() which defined 'stack'.
507  */
z_setup_new_thread(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size,k_thread_entry_t entry,void * p1,void * p2,void * p3,int prio,uint32_t options,const char * name)508 char *z_setup_new_thread(struct k_thread *new_thread,
509 			 k_thread_stack_t *stack, size_t stack_size,
510 			 k_thread_entry_t entry,
511 			 void *p1, void *p2, void *p3,
512 			 int prio, uint32_t options, const char *name)
513 {
514 	char *stack_ptr;
515 
516 	Z_ASSERT_VALID_PRIO(prio, entry);
517 
518 #ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
519 	k_thread_abort_cleanup_check_reuse(new_thread);
520 #endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
521 
522 #ifdef CONFIG_OBJ_CORE_THREAD
523 	k_obj_core_init_and_link(K_OBJ_CORE(new_thread), &obj_type_thread);
524 #ifdef CONFIG_OBJ_CORE_STATS_THREAD
525 	k_obj_core_stats_register(K_OBJ_CORE(new_thread),
526 				  &new_thread->base.usage,
527 				  sizeof(new_thread->base.usage));
528 #endif /* CONFIG_OBJ_CORE_STATS_THREAD */
529 #endif /* CONFIG_OBJ_CORE_THREAD */
530 
531 #ifdef CONFIG_USERSPACE
532 	__ASSERT((options & K_USER) == 0U || z_stack_is_user_capable(stack),
533 		 "user thread %p with kernel-only stack %p",
534 		 new_thread, stack);
535 	k_object_init(new_thread);
536 	k_object_init(stack);
537 	new_thread->stack_obj = stack;
538 	new_thread->syscall_frame = NULL;
539 
540 	/* Any given thread has access to itself */
541 	k_object_access_grant(new_thread, new_thread);
542 #endif /* CONFIG_USERSPACE */
543 	z_waitq_init(&new_thread->join_queue);
544 
545 	/* Initialize various struct k_thread members */
546 	z_init_thread_base(&new_thread->base, prio, _THREAD_SLEEPING, options);
547 	stack_ptr = setup_thread_stack(new_thread, stack, stack_size);
548 
549 #ifdef CONFIG_KERNEL_COHERENCE
550 	/* Check that the thread object is safe, but that the stack is
551 	 * still cached!
552 	 */
553 	__ASSERT_NO_MSG(arch_mem_coherent(new_thread));
554 
555 	/* When dynamic thread stack is available, the stack may come from
556 	 * uncached area.
557 	 */
558 #ifndef CONFIG_DYNAMIC_THREAD
559 	__ASSERT_NO_MSG(!arch_mem_coherent(stack));
560 #endif  /* CONFIG_DYNAMIC_THREAD */
561 
562 #endif /* CONFIG_KERNEL_COHERENCE */
563 
564 	arch_new_thread(new_thread, stack, stack_ptr, entry, p1, p2, p3);
565 
566 	/* static threads overwrite it afterwards with real value */
567 	new_thread->init_data = NULL;
568 
569 #ifdef CONFIG_USE_SWITCH
570 	/* switch_handle must be non-null except when inside z_swap()
571 	 * for synchronization reasons.  Historically some notional
572 	 * USE_SWITCH architectures have actually ignored the field
573 	 */
574 	__ASSERT(new_thread->switch_handle != NULL,
575 		 "arch layer failed to initialize switch_handle");
576 #endif /* CONFIG_USE_SWITCH */
577 #ifdef CONFIG_THREAD_CUSTOM_DATA
578 	/* Initialize custom data field (value is opaque to kernel) */
579 	new_thread->custom_data = NULL;
580 #endif /* CONFIG_THREAD_CUSTOM_DATA */
581 #ifdef CONFIG_EVENTS
582 	new_thread->no_wake_on_timeout = false;
583 #endif /* CONFIG_EVENTS */
584 #ifdef CONFIG_THREAD_MONITOR
585 	new_thread->entry.pEntry = entry;
586 	new_thread->entry.parameter1 = p1;
587 	new_thread->entry.parameter2 = p2;
588 	new_thread->entry.parameter3 = p3;
589 
590 	k_spinlock_key_t key = k_spin_lock(&z_thread_monitor_lock);
591 
592 	new_thread->next_thread = _kernel.threads;
593 	_kernel.threads = new_thread;
594 	k_spin_unlock(&z_thread_monitor_lock, key);
595 #endif /* CONFIG_THREAD_MONITOR */
596 #ifdef CONFIG_THREAD_NAME
597 	if (name != NULL) {
598 		strncpy(new_thread->name, name,
599 			CONFIG_THREAD_MAX_NAME_LEN - 1);
600 		/* Ensure NULL termination, truncate if longer */
601 		new_thread->name[CONFIG_THREAD_MAX_NAME_LEN - 1] = '\0';
602 #ifdef CONFIG_ARCH_HAS_THREAD_NAME_HOOK
603 		arch_thread_name_set(new_thread, name);
604 #endif /* CONFIG_ARCH_HAS_THREAD_NAME_HOOK */
605 	} else {
606 		new_thread->name[0] = '\0';
607 	}
608 #endif /* CONFIG_THREAD_NAME */
609 #ifdef CONFIG_SCHED_CPU_MASK
610 	if (IS_ENABLED(CONFIG_SCHED_CPU_MASK_PIN_ONLY)) {
611 		new_thread->base.cpu_mask = 1; /* must specify only one cpu */
612 	} else {
613 		new_thread->base.cpu_mask = -1; /* allow all cpus */
614 	}
615 #endif /* CONFIG_SCHED_CPU_MASK */
616 #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
617 	/* arch_current_thread() may be null if the dummy thread is not used */
618 	if (!arch_current_thread()) {
619 		new_thread->resource_pool = NULL;
620 		return stack_ptr;
621 	}
622 #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
623 #ifdef CONFIG_USERSPACE
624 	z_mem_domain_init_thread(new_thread);
625 
626 	if ((options & K_INHERIT_PERMS) != 0U) {
627 		k_thread_perms_inherit(arch_current_thread(), new_thread);
628 	}
629 #endif /* CONFIG_USERSPACE */
630 #ifdef CONFIG_SCHED_DEADLINE
631 	new_thread->base.prio_deadline = 0;
632 #endif /* CONFIG_SCHED_DEADLINE */
633 	new_thread->resource_pool = arch_current_thread()->resource_pool;
634 
635 #ifdef CONFIG_SMP
636 	z_waitq_init(&new_thread->halt_queue);
637 #endif /* CONFIG_SMP */
638 
639 #ifdef CONFIG_SCHED_THREAD_USAGE
640 	new_thread->base.usage = (struct k_cycle_stats) {};
641 	new_thread->base.usage.track_usage =
642 		CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
643 #endif /* CONFIG_SCHED_THREAD_USAGE */
644 
645 	SYS_PORT_TRACING_OBJ_FUNC(k_thread, create, new_thread);
646 
647 	return stack_ptr;
648 }
649 
650 
z_impl_k_thread_create(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size,k_thread_entry_t entry,void * p1,void * p2,void * p3,int prio,uint32_t options,k_timeout_t delay)651 k_tid_t z_impl_k_thread_create(struct k_thread *new_thread,
652 			      k_thread_stack_t *stack,
653 			      size_t stack_size, k_thread_entry_t entry,
654 			      void *p1, void *p2, void *p3,
655 			      int prio, uint32_t options, k_timeout_t delay)
656 {
657 	__ASSERT(!arch_is_in_isr(), "Threads may not be created in ISRs");
658 
659 	z_setup_new_thread(new_thread, stack, stack_size, entry, p1, p2, p3,
660 			  prio, options, NULL);
661 
662 	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
663 		thread_schedule_new(new_thread, delay);
664 	}
665 
666 	return new_thread;
667 }
668 
669 #ifdef CONFIG_USERSPACE
z_stack_is_user_capable(k_thread_stack_t * stack)670 bool z_stack_is_user_capable(k_thread_stack_t *stack)
671 {
672 	return k_object_find(stack) != NULL;
673 }
674 
z_vrfy_k_thread_create(struct k_thread * new_thread,k_thread_stack_t * stack,size_t stack_size,k_thread_entry_t entry,void * p1,void * p2,void * p3,int prio,uint32_t options,k_timeout_t delay)675 k_tid_t z_vrfy_k_thread_create(struct k_thread *new_thread,
676 			       k_thread_stack_t *stack,
677 			       size_t stack_size, k_thread_entry_t entry,
678 			       void *p1, void *p2, void *p3,
679 			       int prio, uint32_t options, k_timeout_t delay)
680 {
681 	size_t total_size, stack_obj_size;
682 	struct k_object *stack_object;
683 
684 	/* The thread and stack objects *must* be in an uninitialized state */
685 	K_OOPS(K_SYSCALL_OBJ_NEVER_INIT(new_thread, K_OBJ_THREAD));
686 
687 	/* No need to check z_stack_is_user_capable(), it won't be in the
688 	 * object table if it isn't
689 	 */
690 	stack_object = k_object_find(stack);
691 	K_OOPS(K_SYSCALL_VERIFY_MSG(k_object_validation_check(stack_object, stack,
692 						K_OBJ_THREAD_STACK_ELEMENT,
693 						_OBJ_INIT_FALSE) == 0,
694 				    "bad stack object"));
695 
696 	/* Verify that the stack size passed in is OK by computing the total
697 	 * size and comparing it with the size value in the object metadata
698 	 */
699 	K_OOPS(K_SYSCALL_VERIFY_MSG(!size_add_overflow(K_THREAD_STACK_RESERVED,
700 						       stack_size, &total_size),
701 				    "stack size overflow (%zu+%zu)",
702 				    stack_size,
703 				    K_THREAD_STACK_RESERVED));
704 
705 	/* Testing less-than-or-equal since additional room may have been
706 	 * allocated for alignment constraints
707 	 */
708 #ifdef CONFIG_GEN_PRIV_STACKS
709 	stack_obj_size = stack_object->data.stack_data->size;
710 #else
711 	stack_obj_size = stack_object->data.stack_size;
712 #endif /* CONFIG_GEN_PRIV_STACKS */
713 	K_OOPS(K_SYSCALL_VERIFY_MSG(total_size <= stack_obj_size,
714 				    "stack size %zu is too big, max is %zu",
715 				    total_size, stack_obj_size));
716 
717 	/* User threads may only create other user threads and they can't
718 	 * be marked as essential
719 	 */
720 	K_OOPS(K_SYSCALL_VERIFY(options & K_USER));
721 	K_OOPS(K_SYSCALL_VERIFY(!(options & K_ESSENTIAL)));
722 
723 	/* Check validity of prio argument; must be the same or worse priority
724 	 * than the caller
725 	 */
726 	K_OOPS(K_SYSCALL_VERIFY(_is_valid_prio(prio, NULL)));
727 	K_OOPS(K_SYSCALL_VERIFY(z_is_prio_lower_or_equal(prio,
728 							arch_current_thread()->base.prio)));
729 
730 	z_setup_new_thread(new_thread, stack, stack_size,
731 			   entry, p1, p2, p3, prio, options, NULL);
732 
733 	if (!K_TIMEOUT_EQ(delay, K_FOREVER)) {
734 		thread_schedule_new(new_thread, delay);
735 	}
736 
737 	return new_thread;
738 }
739 #include <zephyr/syscalls/k_thread_create_mrsh.c>
740 #endif /* CONFIG_USERSPACE */
741 
z_init_thread_base(struct _thread_base * thread_base,int priority,uint32_t initial_state,unsigned int options)742 void z_init_thread_base(struct _thread_base *thread_base, int priority,
743 		       uint32_t initial_state, unsigned int options)
744 {
745 	/* k_q_node is initialized upon first insertion in a list */
746 	thread_base->pended_on = NULL;
747 	thread_base->user_options = (uint8_t)options;
748 	thread_base->thread_state = (uint8_t)initial_state;
749 
750 	thread_base->prio = priority;
751 
752 	thread_base->sched_locked = 0U;
753 
754 #ifdef CONFIG_SMP
755 	thread_base->is_idle = 0;
756 #endif /* CONFIG_SMP */
757 
758 #ifdef CONFIG_TIMESLICE_PER_THREAD
759 	thread_base->slice_ticks = 0;
760 	thread_base->slice_expired = NULL;
761 #endif /* CONFIG_TIMESLICE_PER_THREAD */
762 
763 	/* swap_data does not need to be initialized */
764 
765 	z_init_thread_timeout(thread_base);
766 }
767 
k_thread_user_mode_enter(k_thread_entry_t entry,void * p1,void * p2,void * p3)768 FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry,
769 					    void *p1, void *p2, void *p3)
770 {
771 	SYS_PORT_TRACING_FUNC(k_thread, user_mode_enter);
772 
773 	arch_current_thread()->base.user_options |= K_USER;
774 	z_thread_essential_clear(arch_current_thread());
775 #ifdef CONFIG_THREAD_MONITOR
776 	arch_current_thread()->entry.pEntry = entry;
777 	arch_current_thread()->entry.parameter1 = p1;
778 	arch_current_thread()->entry.parameter2 = p2;
779 	arch_current_thread()->entry.parameter3 = p3;
780 #endif /* CONFIG_THREAD_MONITOR */
781 #ifdef CONFIG_USERSPACE
782 	__ASSERT(z_stack_is_user_capable(arch_current_thread()->stack_obj),
783 		 "dropping to user mode with kernel-only stack object");
784 #ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
785 	memset(arch_current_thread()->userspace_local_data, 0,
786 	       sizeof(struct _thread_userspace_local_data));
787 #endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
788 #ifdef CONFIG_THREAD_LOCAL_STORAGE
789 	arch_tls_stack_setup(arch_current_thread(),
790 			     (char *)(arch_current_thread()->stack_info.start +
791 				      arch_current_thread()->stack_info.size));
792 #endif /* CONFIG_THREAD_LOCAL_STORAGE */
793 	arch_user_mode_enter(entry, p1, p2, p3);
794 #else
795 	/* XXX In this case we do not reset the stack */
796 	z_thread_entry(entry, p1, p2, p3);
797 #endif /* CONFIG_USERSPACE */
798 }
799 
800 #if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
801 #ifdef CONFIG_STACK_GROWS_UP
802 #error "Unsupported configuration for stack analysis"
803 #endif /* CONFIG_STACK_GROWS_UP */
804 
z_stack_space_get(const uint8_t * stack_start,size_t size,size_t * unused_ptr)805 int z_stack_space_get(const uint8_t *stack_start, size_t size, size_t *unused_ptr)
806 {
807 	size_t unused = 0;
808 	const uint8_t *checked_stack = stack_start;
809 	/* Take the address of any local variable as a shallow bound for the
810 	 * stack pointer.  Addresses above it are guaranteed to be
811 	 * accessible.
812 	 */
813 	const uint8_t *stack_pointer = (const uint8_t *)&stack_start;
814 
815 	/* If we are currently running on the stack being analyzed, some
816 	 * memory management hardware will generate an exception if we
817 	 * read unused stack memory.
818 	 *
819 	 * This never happens when invoked from user mode, as user mode
820 	 * will always run this function on the privilege elevation stack.
821 	 */
822 	if ((stack_pointer > stack_start) && (stack_pointer <= (stack_start + size)) &&
823 	    IS_ENABLED(CONFIG_NO_UNUSED_STACK_INSPECTION)) {
824 		/* TODO: We could add an arch_ API call to temporarily
825 		 * disable the stack checking in the CPU, but this would
826 		 * need to be properly managed wrt context switches/interrupts
827 		 */
828 		return -ENOTSUP;
829 	}
830 
831 	if (IS_ENABLED(CONFIG_STACK_SENTINEL)) {
832 		/* First 4 bytes of the stack buffer reserved for the
833 		 * sentinel value, it won't be 0xAAAAAAAA for thread
834 		 * stacks.
835 		 *
836 		 * FIXME: thread->stack_info.start ought to reflect
837 		 * this!
838 		 */
839 		checked_stack += 4;
840 		size -= 4;
841 	}
842 
843 	for (size_t i = 0; i < size; i++) {
844 		if ((checked_stack[i]) == 0xaaU) {
845 			unused++;
846 		} else {
847 			break;
848 		}
849 	}
850 
851 	*unused_ptr = unused;
852 
853 	return 0;
854 }
855 
z_impl_k_thread_stack_space_get(const struct k_thread * thread,size_t * unused_ptr)856 int z_impl_k_thread_stack_space_get(const struct k_thread *thread,
857 				    size_t *unused_ptr)
858 {
859 #ifdef CONFIG_THREAD_STACK_MEM_MAPPED
860 	if (thread->stack_info.mapped.addr == NULL) {
861 		return -EINVAL;
862 	}
863 #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
864 
865 	return z_stack_space_get((const uint8_t *)thread->stack_info.start,
866 				 thread->stack_info.size, unused_ptr);
867 }
868 
869 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_stack_space_get(const struct k_thread * thread,size_t * unused_ptr)870 int z_vrfy_k_thread_stack_space_get(const struct k_thread *thread,
871 				    size_t *unused_ptr)
872 {
873 	size_t unused;
874 	int ret;
875 
876 	ret = K_SYSCALL_OBJ(thread, K_OBJ_THREAD);
877 	CHECKIF(ret != 0) {
878 		return ret;
879 	}
880 
881 	ret = z_impl_k_thread_stack_space_get(thread, &unused);
882 	CHECKIF(ret != 0) {
883 		return ret;
884 	}
885 
886 	ret = k_usermode_to_copy(unused_ptr, &unused, sizeof(size_t));
887 	CHECKIF(ret != 0) {
888 		return ret;
889 	}
890 
891 	return 0;
892 }
893 #include <zephyr/syscalls/k_thread_stack_space_get_mrsh.c>
894 #endif /* CONFIG_USERSPACE */
895 #endif /* CONFIG_INIT_STACKS && CONFIG_THREAD_STACK_INFO */
896 
897 #ifdef CONFIG_USERSPACE
z_vrfy_k_thread_timeout_remaining_ticks(const struct k_thread * thread)898 static inline k_ticks_t z_vrfy_k_thread_timeout_remaining_ticks(
899 						    const struct k_thread *thread)
900 {
901 	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
902 	return z_impl_k_thread_timeout_remaining_ticks(thread);
903 }
904 #include <zephyr/syscalls/k_thread_timeout_remaining_ticks_mrsh.c>
905 
z_vrfy_k_thread_timeout_expires_ticks(const struct k_thread * thread)906 static inline k_ticks_t z_vrfy_k_thread_timeout_expires_ticks(
907 						  const struct k_thread *thread)
908 {
909 	K_OOPS(K_SYSCALL_OBJ(thread, K_OBJ_THREAD));
910 	return z_impl_k_thread_timeout_expires_ticks(thread);
911 }
912 #include <zephyr/syscalls/k_thread_timeout_expires_ticks_mrsh.c>
913 #endif /* CONFIG_USERSPACE */
914 
915 #ifdef CONFIG_INSTRUMENT_THREAD_SWITCHING
z_thread_mark_switched_in(void)916 void z_thread_mark_switched_in(void)
917 {
918 #if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
919 	z_sched_usage_start(arch_current_thread());
920 #endif /* CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */
921 
922 #ifdef CONFIG_TRACING
923 	SYS_PORT_TRACING_FUNC(k_thread, switched_in);
924 #endif /* CONFIG_TRACING */
925 }
926 
z_thread_mark_switched_out(void)927 void z_thread_mark_switched_out(void)
928 {
929 #if defined(CONFIG_SCHED_THREAD_USAGE) && !defined(CONFIG_USE_SWITCH)
930 	z_sched_usage_stop();
931 #endif /*CONFIG_SCHED_THREAD_USAGE && !CONFIG_USE_SWITCH */
932 
933 #ifdef CONFIG_TRACING
934 #ifdef CONFIG_THREAD_LOCAL_STORAGE
935 	/* Dummy thread won't have TLS set up to run arbitrary code */
936 	if (!arch_current_thread() ||
937 	    (arch_current_thread()->base.thread_state & _THREAD_DUMMY) != 0)
938 		return;
939 #endif /* CONFIG_THREAD_LOCAL_STORAGE */
940 	SYS_PORT_TRACING_FUNC(k_thread, switched_out);
941 #endif /* CONFIG_TRACING */
942 }
943 #endif /* CONFIG_INSTRUMENT_THREAD_SWITCHING */
944 
k_thread_runtime_stats_get(k_tid_t thread,k_thread_runtime_stats_t * stats)945 int k_thread_runtime_stats_get(k_tid_t thread,
946 			       k_thread_runtime_stats_t *stats)
947 {
948 	if ((thread == NULL) || (stats == NULL)) {
949 		return -EINVAL;
950 	}
951 
952 #ifdef CONFIG_SCHED_THREAD_USAGE
953 	z_sched_thread_usage(thread, stats);
954 #else
955 	*stats = (k_thread_runtime_stats_t) {};
956 #endif /* CONFIG_SCHED_THREAD_USAGE */
957 
958 	return 0;
959 }
960 
k_thread_runtime_stats_all_get(k_thread_runtime_stats_t * stats)961 int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
962 {
963 #ifdef CONFIG_SCHED_THREAD_USAGE_ALL
964 	k_thread_runtime_stats_t  tmp_stats;
965 #endif /* CONFIG_SCHED_THREAD_USAGE_ALL */
966 
967 	if (stats == NULL) {
968 		return -EINVAL;
969 	}
970 
971 	*stats = (k_thread_runtime_stats_t) {};
972 
973 #ifdef CONFIG_SCHED_THREAD_USAGE_ALL
974 	/* Retrieve the usage stats for each core and amalgamate them. */
975 
976 	unsigned int num_cpus = arch_num_cpus();
977 
978 	for (uint8_t i = 0; i < num_cpus; i++) {
979 		z_sched_cpu_usage(i, &tmp_stats);
980 
981 		stats->execution_cycles += tmp_stats.execution_cycles;
982 		stats->total_cycles     += tmp_stats.total_cycles;
983 #ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
984 		stats->current_cycles   += tmp_stats.current_cycles;
985 		stats->peak_cycles      += tmp_stats.peak_cycles;
986 		stats->average_cycles   += tmp_stats.average_cycles;
987 #endif /* CONFIG_SCHED_THREAD_USAGE_ANALYSIS */
988 		stats->idle_cycles      += tmp_stats.idle_cycles;
989 	}
990 #endif /* CONFIG_SCHED_THREAD_USAGE_ALL */
991 
992 	return 0;
993 }
994 
k_thread_runtime_stats_cpu_get(int cpu,k_thread_runtime_stats_t * stats)995 int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
996 {
997 	if (stats == NULL) {
998 		return -EINVAL;
999 	}
1000 
1001 	*stats = (k_thread_runtime_stats_t) {};
1002 
1003 #ifdef CONFIG_SCHED_THREAD_USAGE_ALL
1004 #ifdef CONFIG_SMP
1005 	z_sched_cpu_usage(cpu, stats);
1006 #else
1007 	__ASSERT(cpu == 0, "cpu filter out of bounds");
1008 	ARG_UNUSED(cpu);
1009 	z_sched_cpu_usage(0, stats);
1010 #endif
1011 #endif
1012 
1013 	return 0;
1014 }
1015 
1016 #ifdef CONFIG_THREAD_ABORT_NEED_CLEANUP
1017 /** Pointer to thread which needs to be cleaned up. */
1018 static struct k_thread *thread_to_cleanup;
1019 
1020 /** Spinlock for thread abort cleanup. */
1021 static struct k_spinlock thread_cleanup_lock;
1022 
1023 #ifdef CONFIG_THREAD_STACK_MEM_MAPPED
1024 static void *thread_cleanup_stack_addr;
1025 static size_t thread_cleanup_stack_sz;
1026 #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
1027 
defer_thread_cleanup(struct k_thread * thread)1028 void defer_thread_cleanup(struct k_thread *thread)
1029 {
1030 	/* Note when adding new deferred cleanup steps:
1031 	 * - The thread object may have been overwritten by the time
1032 	 *   the actual cleanup is being done (e.g. thread object
1033 	 *   allocated on a stack). So stash any necessary data here
1034 	 *   that will be used in the actual cleanup steps.
1035 	 */
1036 	thread_to_cleanup = thread;
1037 
1038 #ifdef CONFIG_THREAD_STACK_MEM_MAPPED
1039 	/* Note that the permission of the stack should have been
1040 	 * stripped of user thread access due to the thread having
1041 	 * already exited from a memory domain. That is done via
1042 	 * k_thread_abort().
1043 	 */
1044 
1045 	/* Stash the address and size so the region can be unmapped
1046 	 * later.
1047 	 */
1048 	thread_cleanup_stack_addr = thread->stack_info.mapped.addr;
1049 	thread_cleanup_stack_sz = thread->stack_info.mapped.sz;
1050 
1051 	/* The stack is now considered un-usable. This should prevent any functions
1052 	 * from looking directly into the mapped stack if they are made to be aware
1053 	 * of memory mapped stacks, e.g., z_stack_space_get().
1054 	 */
1055 	thread->stack_info.mapped.addr = NULL;
1056 	thread->stack_info.mapped.sz = 0;
1057 #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
1058 }
1059 
do_thread_cleanup(struct k_thread * thread)1060 void do_thread_cleanup(struct k_thread *thread)
1061 {
1062 	/* Note when adding new actual cleanup steps:
1063 	 * - The thread object may have been overwritten when this is
1064 	 *   called. So avoid using any data from the thread object.
1065 	 */
1066 	ARG_UNUSED(thread);
1067 
1068 #ifdef CONFIG_THREAD_STACK_MEM_MAPPED
1069 	if (thread_cleanup_stack_addr != NULL) {
1070 		k_mem_unmap_phys_guard(thread_cleanup_stack_addr,
1071 				       thread_cleanup_stack_sz, false);
1072 
1073 		thread_cleanup_stack_addr = NULL;
1074 	}
1075 #endif /* CONFIG_THREAD_STACK_MEM_MAPPED */
1076 }
1077 
k_thread_abort_cleanup(struct k_thread * thread)1078 void k_thread_abort_cleanup(struct k_thread *thread)
1079 {
1080 	K_SPINLOCK(&thread_cleanup_lock) {
1081 		if (thread_to_cleanup != NULL) {
1082 			/* Finish the pending one first. */
1083 			do_thread_cleanup(thread_to_cleanup);
1084 			thread_to_cleanup = NULL;
1085 		}
1086 
1087 		if (thread == arch_current_thread()) {
1088 			/* Need to defer for current running thread as the cleanup
1089 			 * might result in exception. Actual cleanup will be done
1090 			 * at the next time k_thread_abort() is called, or at thread
1091 			 * creation if the same thread object is being reused. This
1092 			 * is to make sure the cleanup code no longer needs this
1093 			 * thread's stack. This is not exactly ideal as the stack
1094 			 * may still be memory mapped for a while. However, this is
1095 			 * a simple solution without a) the need to workaround
1096 			 * the schedule lock during k_thread_abort(), b) creating
1097 			 * another thread to perform the cleanup, and c) does not
1098 			 * require architecture code support (e.g. via exception).
1099 			 */
1100 			defer_thread_cleanup(thread);
1101 		} else {
1102 			/* Not the current running thread, so we are safe to do
1103 			 * cleanups.
1104 			 */
1105 			do_thread_cleanup(thread);
1106 		}
1107 	}
1108 }
1109 
k_thread_abort_cleanup_check_reuse(struct k_thread * thread)1110 void k_thread_abort_cleanup_check_reuse(struct k_thread *thread)
1111 {
1112 	K_SPINLOCK(&thread_cleanup_lock) {
1113 		/* This is to guard reuse of the same thread object and make sure
1114 		 * any pending cleanups of it needs to be finished before the thread
1115 		 * object can be reused.
1116 		 */
1117 		if (thread_to_cleanup == thread) {
1118 			do_thread_cleanup(thread_to_cleanup);
1119 			thread_to_cleanup = NULL;
1120 		}
1121 	}
1122 }
1123 
1124 #endif /* CONFIG_THREAD_ABORT_NEED_CLEANUP */
1125