1 /*
2 * Copyright (c) 2016-2017 Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
8 #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_
9
10 #include <zephyr/kernel_structs.h>
11 #include <kernel_internal.h>
12 #include <timeout_q.h>
13 #include <kthread.h>
14 #include <zephyr/tracing/tracing.h>
15 #include <stdbool.h>
16 #include <priority_q.h>
17
18 BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO
19 >= K_HIGHEST_APPLICATION_THREAD_PRIO);
20
21 #ifdef CONFIG_MULTITHREADING
22 #define Z_VALID_PRIO(prio, entry_point) \
23 (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \
24 ((K_LOWEST_APPLICATION_THREAD_PRIO \
25 >= K_HIGHEST_APPLICATION_THREAD_PRIO) \
26 && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \
27 && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO))
28
29 #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \
30 __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \
31 "invalid priority (%d); allowed range: %d to %d", \
32 (prio), \
33 K_LOWEST_APPLICATION_THREAD_PRIO, \
34 K_HIGHEST_APPLICATION_THREAD_PRIO); \
35 } while (false)
36 #else
37 #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1)
38 #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "")
39 #endif /* CONFIG_MULTITHREADING */
40
41 #if (CONFIG_MP_MAX_NUM_CPUS == 1)
42 #define LOCK_SCHED_SPINLOCK
43 #else
44 #define LOCK_SCHED_SPINLOCK K_SPINLOCK(&_sched_spinlock)
45 #endif
46
47 extern struct k_spinlock _sched_spinlock;
48
49 extern struct k_thread _thread_dummy;
50
51 void z_sched_init(void);
52 void z_move_thread_to_end_of_prio_q(struct k_thread *thread);
53 void z_unpend_thread_no_timeout(struct k_thread *thread);
54 struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q);
55 int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key,
56 _wait_q_t *wait_q, k_timeout_t timeout);
57 void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q,
58 k_timeout_t timeout);
59 void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key);
60 void z_reschedule_irqlock(uint32_t key);
61 void z_unpend_thread(struct k_thread *thread);
62 int z_unpend_all(_wait_q_t *wait_q);
63 bool z_thread_prio_set(struct k_thread *thread, int prio);
64 void *z_get_next_switch_handle(void *interrupted);
65
66 void z_time_slice(void);
67 void z_reset_time_slice(struct k_thread *curr);
68 void z_sched_ipi(void);
69 void z_sched_start(struct k_thread *thread);
70 void z_ready_thread(struct k_thread *thread);
71 void z_requeue_current(struct k_thread *curr);
72 struct k_thread *z_swap_next_thread(void);
73 void z_thread_abort(struct k_thread *thread);
74 void move_thread_to_end_of_prio_q(struct k_thread *thread);
75 bool thread_is_sliceable(struct k_thread *thread);
76
z_reschedule_unlocked(void)77 static inline void z_reschedule_unlocked(void)
78 {
79 (void) z_reschedule_irqlock(arch_irq_lock());
80 }
81
z_is_under_prio_ceiling(int prio)82 static inline bool z_is_under_prio_ceiling(int prio)
83 {
84 return prio >= CONFIG_PRIORITY_CEILING;
85 }
86
z_get_new_prio_with_ceiling(int prio)87 static inline int z_get_new_prio_with_ceiling(int prio)
88 {
89 return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING;
90 }
91
z_is_prio1_higher_than_or_equal_to_prio2(int prio1,int prio2)92 static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2)
93 {
94 return prio1 <= prio2;
95 }
96
z_is_prio_higher_or_equal(int prio1,int prio2)97 static inline bool z_is_prio_higher_or_equal(int prio1, int prio2)
98 {
99 return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2);
100 }
101
z_is_prio1_lower_than_or_equal_to_prio2(int prio1,int prio2)102 static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2)
103 {
104 return prio1 >= prio2;
105 }
106
z_is_prio1_higher_than_prio2(int prio1,int prio2)107 static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2)
108 {
109 return prio1 < prio2;
110 }
111
z_is_prio_higher(int prio,int test_prio)112 static inline bool z_is_prio_higher(int prio, int test_prio)
113 {
114 return z_is_prio1_higher_than_prio2(prio, test_prio);
115 }
116
z_is_prio_lower_or_equal(int prio1,int prio2)117 static inline bool z_is_prio_lower_or_equal(int prio1, int prio2)
118 {
119 return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2);
120 }
121
122 int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2);
123
_is_valid_prio(int prio,void * entry_point)124 static inline bool _is_valid_prio(int prio, void *entry_point)
125 {
126 if ((prio == K_IDLE_PRIO) && z_is_idle_thread_entry(entry_point)) {
127 return true;
128 }
129
130 if (!z_is_prio_higher_or_equal(prio,
131 K_LOWEST_APPLICATION_THREAD_PRIO)) {
132 return false;
133 }
134
135 if (!z_is_prio_lower_or_equal(prio,
136 K_HIGHEST_APPLICATION_THREAD_PRIO)) {
137 return false;
138 }
139
140 return true;
141 }
142
z_sched_lock(void)143 static inline void z_sched_lock(void)
144 {
145 __ASSERT(!arch_is_in_isr(), "");
146 __ASSERT(arch_current_thread()->base.sched_locked != 1U, "");
147
148 --arch_current_thread()->base.sched_locked;
149
150 compiler_barrier();
151 }
152
pended_on_thread(struct k_thread * thread)153 static ALWAYS_INLINE _wait_q_t *pended_on_thread(struct k_thread *thread)
154 {
155 __ASSERT_NO_MSG(thread->base.pended_on);
156
157 return thread->base.pended_on;
158 }
159
160
unpend_thread_no_timeout(struct k_thread * thread)161 static inline void unpend_thread_no_timeout(struct k_thread *thread)
162 {
163 _priq_wait_remove(&pended_on_thread(thread)->waitq, thread);
164 z_mark_thread_as_not_pending(thread);
165 thread->base.pended_on = NULL;
166 }
167
168 /*
169 * In a multiprocessor system, z_unpend_first_thread() must lock the scheduler
170 * spinlock _sched_spinlock. However, in a uniprocessor system, that is not
171 * necessary as the caller has already taken precautions (in the form of
172 * locking interrupts).
173 */
z_unpend_first_thread(_wait_q_t * wait_q)174 static ALWAYS_INLINE struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q)
175 {
176 struct k_thread *thread = NULL;
177
178 __ASSERT_EVAL(, int key = arch_irq_lock(); arch_irq_unlock(key),
179 !arch_irq_unlocked(key), "");
180
181 LOCK_SCHED_SPINLOCK {
182 thread = _priq_wait_best(&wait_q->waitq);
183 if (unlikely(thread != NULL)) {
184 unpend_thread_no_timeout(thread);
185 (void)z_abort_thread_timeout(thread);
186 }
187 }
188
189 return thread;
190 }
191
192 /*
193 * APIs for working with the Zephyr kernel scheduler. Intended for use in
194 * management of IPC objects, either in the core kernel or other IPC
195 * implemented by OS compatibility layers, providing basic wait/wake operations
196 * with spinlocks used for synchronization.
197 *
198 * These APIs are public and will be treated as contract, even if the
199 * underlying scheduler implementation changes.
200 */
201
202 /**
203 * Wake up a thread pending on the provided wait queue
204 *
205 * Given a wait_q, wake up the highest priority thread on the queue. If the
206 * queue was empty just return false.
207 *
208 * Otherwise, do the following, in order, holding _sched_spinlock the entire
209 * time so that the thread state is guaranteed not to change:
210 * - Set the thread's swap return values to swap_retval and swap_data
211 * - un-pend and ready the thread, but do not invoke the scheduler.
212 *
213 * Repeated calls to this function until it returns false is a suitable
214 * way to wake all threads on the queue.
215 *
216 * It is up to the caller to implement locking such that the return value of
217 * this function (whether a thread was woken up or not) does not immediately
218 * become stale. Calls to wait and wake on the same wait_q object must have
219 * synchronization. Calling this without holding any spinlock is a sign that
220 * this API is not being used properly.
221 *
222 * @param wait_q Wait queue to wake up the highest prio thread
223 * @param swap_retval Swap return value for woken thread
224 * @param swap_data Data return value to supplement swap_retval. May be NULL.
225 * @retval true If a thread was woken up
226 * @retval false If the wait_q was empty
227 */
228 bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data);
229
230 /**
231 * Wakes the specified thread.
232 *
233 * Given a specific thread, wake it up. This routine assumes that the given
234 * thread is not on the timeout queue.
235 *
236 * @param thread Given thread to wake up.
237 * @param is_timeout True if called from the timer ISR; false otherwise.
238 *
239 */
240 void z_sched_wake_thread(struct k_thread *thread, bool is_timeout);
241
242 /**
243 * Wake up all threads pending on the provided wait queue
244 *
245 * Convenience function to invoke z_sched_wake() on all threads in the queue
246 * until there are no more to wake up.
247 *
248 * @param wait_q Wait queue to wake up the highest prio thread
249 * @param swap_retval Swap return value for woken thread
250 * @param swap_data Data return value to supplement swap_retval. May be NULL.
251 * @retval true If any threads were woken up
252 * @retval false If the wait_q was empty
253 */
z_sched_wake_all(_wait_q_t * wait_q,int swap_retval,void * swap_data)254 static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval,
255 void *swap_data)
256 {
257 bool woken = false;
258
259 while (z_sched_wake(wait_q, swap_retval, swap_data)) {
260 woken = true;
261 }
262
263 /* True if we woke at least one thread up */
264 return woken;
265 }
266
267 /**
268 * Atomically put the current thread to sleep on a wait queue, with timeout
269 *
270 * The thread will be added to the provided waitqueue. The lock, which should
271 * be held by the caller with the provided key, will be released once this is
272 * completely done and we have swapped out.
273 *
274 * The return value and data pointer is set by whoever woke us up via
275 * z_sched_wake.
276 *
277 * @param lock Address of spinlock to release when we swap out
278 * @param key Key to the provided spinlock when it was locked
279 * @param wait_q Wait queue to go to sleep on
280 * @param timeout Waiting period to be woken up, or K_FOREVER to wait
281 * indefinitely.
282 * @param data Storage location for data pointer set when thread was woken up.
283 * May be NULL if not used.
284 * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout
285 * expired without being woken up.
286 */
287 int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key,
288 _wait_q_t *wait_q, k_timeout_t timeout, void **data);
289
290 /**
291 * @brief Walks the wait queue invoking the callback on each waiting thread
292 *
293 * This function walks the wait queue invoking the callback function on each
294 * waiting thread while holding _sched_spinlock. This can be useful for routines
295 * that need to operate on multiple waiting threads.
296 *
297 * CAUTION! As a wait queue is of indeterminate length, the scheduler will be
298 * locked for an indeterminate amount of time. This may impact system
299 * performance. As such, care must be taken when using both this function and
300 * the specified callback.
301 *
302 * @param wait_q Identifies the wait queue to walk
303 * @param func Callback to invoke on each waiting thread
304 * @param data Custom data passed to the callback
305 *
306 * @retval non-zero if walk is terminated by the callback; otherwise 0
307 */
308 int z_sched_waitq_walk(_wait_q_t *wait_q,
309 int (*func)(struct k_thread *, void *), void *data);
310
311 /** @brief Halt thread cycle usage accounting.
312 *
313 * Halts the accumulation of thread cycle usage and adds the current
314 * total to the thread's counter. Called on context switch.
315 *
316 * Note that this function is idempotent. The core kernel code calls
317 * it at the end of interrupt handlers (because that is where we have
318 * a portable hook) where we are context switching, which will include
319 * any cycles spent in the ISR in the per-thread accounting. But
320 * architecture code can also call it earlier out of interrupt entry
321 * to improve measurement fidelity.
322 *
323 * This function assumes local interrupts are masked (so that the
324 * current CPU pointer and current thread are safe to modify), but
325 * requires no other synchronization. Architecture layers don't need
326 * to do anything more.
327 */
328 void z_sched_usage_stop(void);
329
330 void z_sched_usage_start(struct k_thread *thread);
331
332 /**
333 * @brief Retrieves CPU cycle usage data for specified core
334 */
335 void z_sched_cpu_usage(uint8_t core_id, struct k_thread_runtime_stats *stats);
336
337 /**
338 * @brief Retrieves thread cycle usage data for specified thread
339 */
340 void z_sched_thread_usage(struct k_thread *thread,
341 struct k_thread_runtime_stats *stats);
342
z_sched_usage_switch(struct k_thread * thread)343 static inline void z_sched_usage_switch(struct k_thread *thread)
344 {
345 ARG_UNUSED(thread);
346 #ifdef CONFIG_SCHED_THREAD_USAGE
347 z_sched_usage_stop();
348 z_sched_usage_start(thread);
349 #endif /* CONFIG_SCHED_THREAD_USAGE */
350 }
351
352 #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */
353