1 
2 /* @(#)k_tan.c 5.1 93/09/24 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunPro, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* __kernel_tan( x, y, k )
15  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16  * Input x is assumed to be bounded by ~pi/4 in magnitude.
17  * Input y is the tail of x.
18  * Input k indicates whether tan (if k=1) or
19  * -1/tan (if k= -1) is returned.
20  *
21  * Algorithm
22  *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
23  *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
24  *	3. tan(x) is approximated by a odd polynomial of degree 27 on
25  *	   [0,0.67434]
26  *		  	         3             27
27  *	   	tan(x) ~ x + T1*x + ... + T13*x
28  *	   where
29  *
30  * 	        |tan(x)         2     4            26   |     -59.2
31  * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
32  * 	        |  x 					|
33  *
34  *	   Note: tan(x+y) = tan(x) + tan'(x)*y
35  *		          ~ tan(x) + (1+x*x)*y
36  *	   Therefore, for better accuracy in computing tan(x+y), let
37  *		     3      2      2       2       2
38  *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
39  *	   then
40  *		 		    3    2
41  *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
42  *
43  *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
44  *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
45  *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
46  */
47 
48 #include "fdlibm.h"
49 
50 #ifdef _NEED_FLOAT64
51 
52 static const __float64
53     one = _F_64(1.00000000000000000000e+00), /* 0x3FF00000, 0x00000000 */
54     pio4 = _F_64(7.85398163397448278999e-01), /* 0x3FE921FB, 0x54442D18 */
55     pio4lo = _F_64(3.06161699786838301793e-17), /* 0x3C81A626, 0x33145C07 */
56     T[] = {
57         _F_64(3.33333333333334091986e-01), /* 0x3FD55555, 0x55555563 */
58         _F_64(1.33333333333201242699e-01), /* 0x3FC11111, 0x1110FE7A */
59         _F_64(5.39682539762260521377e-02), /* 0x3FABA1BA, 0x1BB341FE */
60         _F_64(2.18694882948595424599e-02), /* 0x3F9664F4, 0x8406D637 */
61         _F_64(8.86323982359930005737e-03), /* 0x3F8226E3, 0xE96E8493 */
62         _F_64(3.59207910759131235356e-03), /* 0x3F6D6D22, 0xC9560328 */
63         _F_64(1.45620945432529025516e-03), /* 0x3F57DBC8, 0xFEE08315 */
64         _F_64(5.88041240820264096874e-04), /* 0x3F4344D8, 0xF2F26501 */
65         _F_64(2.46463134818469906812e-04), /* 0x3F3026F7, 0x1A8D1068 */
66         _F_64(7.81794442939557092300e-05), /* 0x3F147E88, 0xA03792A6 */
67         _F_64(7.14072491382608190305e-05), /* 0x3F12B80F, 0x32F0A7E9 */
68         _F_64(-1.85586374855275456654e-05), /* 0xBEF375CB, 0xDB605373 */
69         _F_64(2.59073051863633712884e-05), /* 0x3EFB2A70, 0x74BF7AD4 */
70     };
71 
72 __float64
__kernel_tan(__float64 x,__float64 y,int iy)73 __kernel_tan(__float64 x, __float64 y, int iy)
74 {
75     __float64 z, r, v, w, s;
76     __int32_t ix, hx;
77     GET_HIGH_WORD(hx, x);
78     ix = hx & 0x7fffffff; /* high word of |x| */
79     if (ix < 0x3e300000) { /* x < 2**-28 */
80         if ((int)x == 0) { /* generate inexact */
81             __uint32_t low;
82             GET_LOW_WORD(low, x);
83             if (((ix | low) | (iy + 1)) == 0)
84                 return one / fabs64(x);
85             else {
86                 if (iy == 1)
87                     return x;
88                 else {
89                     __float64 a, t;
90                     z = w = x + y;
91                     SET_LOW_WORD(z, 0);
92                     v = y - (z - x);
93                     t = a = -one / w;
94                     SET_LOW_WORD(t, 0);
95                     s = one + t * z;
96                     return t + a * (s + t * v);
97                 }
98             }
99         }
100     }
101     if (ix >= 0x3FE59428) { /* |x|>=0.6744 */
102         if (hx < 0) {
103             x = -x;
104             y = -y;
105         }
106         z = pio4 - x;
107         w = pio4lo - y;
108         x = z + w;
109         y = _F_64(0.0);
110     }
111     z = x * x;
112     w = z * z;
113     /* Break x^5*(T[1]+x^2*T[2]+...) into
114      *	  x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
115      *	  x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
116      */
117     r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
118     v = z *
119         (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
120     s = z * x;
121     r = y + z * (s * (r + v) + y);
122     r += T[0] * s;
123     w = x + r;
124     if (ix >= 0x3FE59428) {
125         v = (__float64)iy;
126         return (__float64)(1 - ((hx >> 30) & 2)) *
127                (v - _F_64(2.0) * (x - (w * w / (w + v) - r)));
128     }
129     if (iy == 1)
130         return w;
131     else { /* if allow error up to 2 ulp,
132 			   simply return -1.0/(x+r) here */
133         /*  compute -1.0/(x+r) accurately */
134         __float64 a, t;
135         z = w;
136         SET_LOW_WORD(z, 0);
137         v = r - (z - x); /* z+v = r+x */
138         t = a = _F_64(-1.0) / w; /* a = _F_64(-1.0)/w */
139         SET_LOW_WORD(t, 0);
140         s = _F_64(1.0) + t * z;
141         return t + a * (s + t * v);
142     }
143 }
144 
145 #endif /* _NEED_FLOAT64 */
146