1 /*
2  * FreeRTOS Kernel V10.2.1
3  * Copyright (C) 2019 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy of
6  * this software and associated documentation files (the "Software"), to deal in
7  * the Software without restriction, including without limitation the rights to
8  * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9  * the Software, and to permit persons to whom the Software is furnished to do so,
10  * subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in all
13  * copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
17  * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
18  * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
19  * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * http://www.FreeRTOS.org
23  * http://aws.amazon.com/freertos
24  *
25  * 1 tab == 4 spaces!
26  */
27 
28 
29 /*
30  * Message buffers build functionality on top of FreeRTOS stream buffers.
31  * Whereas stream buffers are used to send a continuous stream of data from one
32  * task or interrupt to another, message buffers are used to send variable
33  * length discrete messages from one task or interrupt to another.  Their
34  * implementation is light weight, making them particularly suited for interrupt
35  * to task and core to core communication scenarios.
36  *
37  * ***NOTE***:  Uniquely among FreeRTOS objects, the stream buffer
38  * implementation (so also the message buffer implementation, as message buffers
39  * are built on top of stream buffers) assumes there is only one task or
40  * interrupt that will write to the buffer (the writer), and only one task or
41  * interrupt that will read from the buffer (the reader).  It is safe for the
42  * writer and reader to be different tasks or interrupts, but, unlike other
43  * FreeRTOS objects, it is not safe to have multiple different writers or
44  * multiple different readers.  If there are to be multiple different writers
45  * then the application writer must place each call to a writing API function
46  * (such as xMessageBufferSend()) inside a critical section and set the send
47  * block time to 0.  Likewise, if there are to be multiple different readers
48  * then the application writer must place each call to a reading API function
49  * (such as xMessageBufferRead()) inside a critical section and set the receive
50  * timeout to 0.
51  *
52  * Message buffers hold variable length messages.  To enable that, when a
53  * message is written to the message buffer an additional sizeof( size_t ) bytes
54  * are also written to store the message's length (that happens internally, with
55  * the API function).  sizeof( size_t ) is typically 4 bytes on a 32-bit
56  * architecture, so writing a 10 byte message to a message buffer on a 32-bit
57  * architecture will actually reduce the available space in the message buffer
58  * by 14 bytes (10 byte are used by the message, and 4 bytes to hold the length
59  * of the message).
60  */
61 
62 #ifndef FREERTOS_MESSAGE_BUFFER_H
63 #define FREERTOS_MESSAGE_BUFFER_H
64 
65 #ifndef INC_FREERTOS_H
66 	#error "include FreeRTOS.h must appear in source files before include message_buffer.h"
67 #endif
68 
69 /* Message buffers are built onto of stream buffers. */
70 #include "stream_buffer.h"
71 
72 #if defined( __cplusplus )
73 extern "C" {
74 #endif
75 
76 /**
77  * Type by which message buffers are referenced.  For example, a call to
78  * xMessageBufferCreate() returns an MessageBufferHandle_t variable that can
79  * then be used as a parameter to xMessageBufferSend(), xMessageBufferReceive(),
80  * etc.
81  */
82 typedef void * MessageBufferHandle_t;
83 
84 /*-----------------------------------------------------------*/
85 
86 /**
87  * Creates a new message buffer using dynamically allocated memory.  See
88  * xMessageBufferCreateStatic() for a version that uses statically allocated
89  * memory (memory that is allocated at compile time).
90  *
91  * configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 or left undefined in
92  * FreeRTOSConfig.h for xMessageBufferCreate() to be available.
93  *
94  * @param xBufferSizeBytes The total number of bytes (not messages) the message
95  * buffer will be able to hold at any one time.  When a message is written to
96  * the message buffer an additional sizeof( size_t ) bytes are also written to
97  * store the message's length.  sizeof( size_t ) is typically 4 bytes on a
98  * 32-bit architecture, so on most 32-bit architectures a 10 byte message will
99  * take up 14 bytes of message buffer space.
100  *
101  * @return If NULL is returned, then the message buffer cannot be created
102  * because there is insufficient heap memory available for FreeRTOS to allocate
103  * the message buffer data structures and storage area.  A non-NULL value being
104  * returned indicates that the message buffer has been created successfully -
105  * the returned value should be stored as the handle to the created message
106  * buffer.
107  *
108  * Example use:
109  * @code{c}
110  *
111  * void vAFunction( void )
112  * {
113  * MessageBufferHandle_t xMessageBuffer;
114  * const size_t xMessageBufferSizeBytes = 100;
115  *
116  *   // Create a message buffer that can hold 100 bytes.  The memory used to hold
117  *   // both the message buffer structure and the messages themselves is allocated
118  *   // dynamically.  Each message added to the buffer consumes an additional 4
119  *   // bytes which are used to hold the lengh of the message.
120  *   xMessageBuffer = xMessageBufferCreate( xMessageBufferSizeBytes );
121  *
122  *   if( xMessageBuffer == NULL )
123  *   {
124  *       // There was not enough heap memory space available to create the
125  *       // message buffer.
126  *   }
127  *   else
128  *   {
129  *       // The message buffer was created successfully and can now be used.
130  *   }
131  *
132  * @endcode
133  * \ingroup MessageBufferManagement
134  */
135 #define xMessageBufferCreate( xBufferSizeBytes ) ( MessageBufferHandle_t ) xStreamBufferGenericCreate( xBufferSizeBytes, ( size_t ) 0, pdTRUE )
136 
137 /**
138  * Creates a new message buffer using statically allocated memory.  See
139  * xMessageBufferCreate() for a version that uses dynamically allocated memory.
140  *
141  * @param xBufferSizeBytes The size, in bytes, of the buffer pointed to by the
142  * pucMessageBufferStorageArea parameter.  When a message is written to the
143  * message buffer an additional sizeof( size_t ) bytes are also written to store
144  * the message's length.  sizeof( size_t ) is typically 4 bytes on a 32-bit
145  * architecture, so on most 32-bit architecture a 10 byte message will take up
146  * 14 bytes of message buffer space.  The maximum number of bytes that can be
147  * stored in the message buffer is actually (xBufferSizeBytes - 1).
148  *
149  * @param pucMessageBufferStorageArea Must point to a uint8_t array that is at
150  * least xBufferSizeBytes + 1 big.  This is the array to which messages are
151  * copied when they are written to the message buffer.
152  *
153  * @param pxStaticMessageBuffer Must point to a variable of type
154  * StaticMessageBuffer_t, which will be used to hold the message buffer's data
155  * structure.
156  *
157  * @return If the message buffer is created successfully then a handle to the
158  * created message buffer is returned. If either pucMessageBufferStorageArea or
159  * pxStaticmessageBuffer are NULL then NULL is returned.
160  *
161  * Example use:
162  * @code{c}
163  *
164  * // Used to dimension the array used to hold the messages.  The available space
165  * // will actually be one less than this, so 999.
166  * #define STORAGE_SIZE_BYTES 1000
167  *
168  * // Defines the memory that will actually hold the messages within the message
169  * // buffer.
170  * static uint8_t ucStorageBuffer[ STORAGE_SIZE_BYTES ];
171  *
172  * // The variable used to hold the message buffer structure.
173  * StaticMessageBuffer_t xMessageBufferStruct;
174  *
175  * void MyFunction( void )
176  * {
177  * MessageBufferHandle_t xMessageBuffer;
178  *
179  *   xMessageBuffer = xMessageBufferCreateStatic( sizeof( ucBufferStorage ),
180  *                                                ucBufferStorage,
181  *                                                &xMessageBufferStruct );
182  *
183  *   // As neither the pucMessageBufferStorageArea or pxStaticMessageBuffer
184  *   // parameters were NULL, xMessageBuffer will not be NULL, and can be used to
185  *   // reference the created message buffer in other message buffer API calls.
186  *
187  *   // Other code that uses the message buffer can go here.
188  * }
189  *
190  * @endcode
191  * \ingroup MessageBufferManagement
192  */
193 #define xMessageBufferCreateStatic( xBufferSizeBytes, pucMessageBufferStorageArea, pxStaticMessageBuffer ) ( MessageBufferHandle_t ) xStreamBufferGenericCreateStatic( xBufferSizeBytes, 0, pdTRUE, pucMessageBufferStorageArea, pxStaticMessageBuffer )
194 
195 /**
196  * Sends a discrete message to the message buffer.  The message can be any
197  * length that fits within the buffer's free space, and is copied into the
198  * buffer.
199  *
200  * ***NOTE***:  Uniquely among FreeRTOS objects, the stream buffer
201  * implementation (so also the message buffer implementation, as message buffers
202  * are built on top of stream buffers) assumes there is only one task or
203  * interrupt that will write to the buffer (the writer), and only one task or
204  * interrupt that will read from the buffer (the reader).  It is safe for the
205  * writer and reader to be different tasks or interrupts, but, unlike other
206  * FreeRTOS objects, it is not safe to have multiple different writers or
207  * multiple different readers.  If there are to be multiple different writers
208  * then the application writer must place each call to a writing API function
209  * (such as xMessageBufferSend()) inside a critical section and set the send
210  * block time to 0.  Likewise, if there are to be multiple different readers
211  * then the application writer must place each call to a reading API function
212  * (such as xMessageBufferRead()) inside a critical section and set the receive
213  * block time to 0.
214  *
215  * Use xMessageBufferSend() to write to a message buffer from a task.  Use
216  * xMessageBufferSendFromISR() to write to a message buffer from an interrupt
217  * service routine (ISR).
218  *
219  * @param xMessageBuffer The handle of the message buffer to which a message is
220  * being sent.
221  *
222  * @param pvTxData A pointer to the message that is to be copied into the
223  * message buffer.
224  *
225  * @param xDataLengthBytes The length of the message.  That is, the number of
226  * bytes to copy from pvTxData into the message buffer.  When a message is
227  * written to the message buffer an additional sizeof( size_t ) bytes are also
228  * written to store the message's length.  sizeof( size_t ) is typically 4 bytes
229  * on a 32-bit architecture, so on most 32-bit architecture setting
230  * xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
231  * bytes (20 bytes of message data and 4 bytes to hold the message length).
232  *
233  * @param xTicksToWait The maximum amount of time the calling task should remain
234  * in the Blocked state to wait for enough space to become available in the
235  * message buffer, should the message buffer have insufficient space when
236  * xMessageBufferSend() is called.  The calling task will never block if
237  * xTicksToWait is zero.  The block time is specified in tick periods, so the
238  * absolute time it represents is dependent on the tick frequency.  The macro
239  * pdMS_TO_TICKS() can be used to convert a time specified in milliseconds into
240  * a time specified in ticks.  Setting xTicksToWait to portMAX_DELAY will cause
241  * the task to wait indefinitely (without timing out), provided
242  * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.  Tasks do not use any
243  * CPU time when they are in the Blocked state.
244  *
245  * @return The number of bytes written to the message buffer.  If the call to
246  * xMessageBufferSend() times out before there was enough space to write the
247  * message into the message buffer then zero is returned.  If the call did not
248  * time out then xDataLengthBytes is returned.
249  *
250  * Example use:
251  * @code{c}
252  * void vAFunction( MessageBufferHandle_t xMessageBuffer )
253  * {
254  * size_t xBytesSent;
255  * uint8_t ucArrayToSend[] = { 0, 1, 2, 3 };
256  * char *pcStringToSend = "String to send";
257  * const TickType_t x100ms = pdMS_TO_TICKS( 100 );
258  *
259  *   // Send an array to the message buffer, blocking for a maximum of 100ms to
260  *   // wait for enough space to be available in the message buffer.
261  *   xBytesSent = xMessageBufferSend( xMessageBuffer, ( void * ) ucArrayToSend, sizeof( ucArrayToSend ), x100ms );
262  *
263  *   if( xBytesSent != sizeof( ucArrayToSend ) )
264  *   {
265  *       // The call to xMessageBufferSend() times out before there was enough
266  *       // space in the buffer for the data to be written.
267  *   }
268  *
269  *   // Send the string to the message buffer.  Return immediately if there is
270  *   // not enough space in the buffer.
271  *   xBytesSent = xMessageBufferSend( xMessageBuffer, ( void * ) pcStringToSend, strlen( pcStringToSend ), 0 );
272  *
273  *   if( xBytesSent != strlen( pcStringToSend ) )
274  *   {
275  *       // The string could not be added to the message buffer because there was
276  *       // not enough free space in the buffer.
277  *   }
278  * }
279  * @endcode
280  * \ingroup MessageBufferManagement
281  */
282 #define xMessageBufferSend( xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait ) xStreamBufferSend( ( StreamBufferHandle_t ) xMessageBuffer, pvTxData, xDataLengthBytes, xTicksToWait )
283 
284 /**
285  * Interrupt safe version of the API function that sends a discrete message to
286  * the message buffer.  The message can be any length that fits within the
287  * buffer's free space, and is copied into the buffer.
288  *
289  * ***NOTE***:  Uniquely among FreeRTOS objects, the stream buffer
290  * implementation (so also the message buffer implementation, as message buffers
291  * are built on top of stream buffers) assumes there is only one task or
292  * interrupt that will write to the buffer (the writer), and only one task or
293  * interrupt that will read from the buffer (the reader).  It is safe for the
294  * writer and reader to be different tasks or interrupts, but, unlike other
295  * FreeRTOS objects, it is not safe to have multiple different writers or
296  * multiple different readers.  If there are to be multiple different writers
297  * then the application writer must place each call to a writing API function
298  * (such as xMessageBufferSend()) inside a critical section and set the send
299  * block time to 0.  Likewise, if there are to be multiple different readers
300  * then the application writer must place each call to a reading API function
301  * (such as xMessageBufferRead()) inside a critical section and set the receive
302  * block time to 0.
303  *
304  * Use xMessageBufferSend() to write to a message buffer from a task.  Use
305  * xMessageBufferSendFromISR() to write to a message buffer from an interrupt
306  * service routine (ISR).
307  *
308  * @param xMessageBuffer The handle of the message buffer to which a message is
309  * being sent.
310  *
311  * @param pvTxData A pointer to the message that is to be copied into the
312  * message buffer.
313  *
314  * @param xDataLengthBytes The length of the message.  That is, the number of
315  * bytes to copy from pvTxData into the message buffer.  When a message is
316  * written to the message buffer an additional sizeof( size_t ) bytes are also
317  * written to store the message's length.  sizeof( size_t ) is typically 4 bytes
318  * on a 32-bit architecture, so on most 32-bit architecture setting
319  * xDataLengthBytes to 20 will reduce the free space in the message buffer by 24
320  * bytes (20 bytes of message data and 4 bytes to hold the message length).
321  *
322  * @param pxHigherPriorityTaskWoken  It is possible that a message buffer will
323  * have a task blocked on it waiting for data.  Calling
324  * xMessageBufferSendFromISR() can make data available, and so cause a task that
325  * was waiting for data to leave the Blocked state.  If calling
326  * xMessageBufferSendFromISR() causes a task to leave the Blocked state, and the
327  * unblocked task has a priority higher than the currently executing task (the
328  * task that was interrupted), then, internally, xMessageBufferSendFromISR()
329  * will set *pxHigherPriorityTaskWoken to pdTRUE.  If
330  * xMessageBufferSendFromISR() sets this value to pdTRUE, then normally a
331  * context switch should be performed before the interrupt is exited.  This will
332  * ensure that the interrupt returns directly to the highest priority Ready
333  * state task.  *pxHigherPriorityTaskWoken should be set to pdFALSE before it
334  * is passed into the function.  See the code example below for an example.
335  *
336  * @return The number of bytes actually written to the message buffer.  If the
337  * message buffer didn't have enough free space for the message to be stored
338  * then 0 is returned, otherwise xDataLengthBytes is returned.
339  *
340  * Example use:
341  * @code{c}
342  * // A message buffer that has already been created.
343  * MessageBufferHandle_t xMessageBuffer;
344  *
345  * void vAnInterruptServiceRoutine( void )
346  * {
347  * size_t xBytesSent;
348  * char *pcStringToSend = "String to send";
349  * BaseType_t xHigherPriorityTaskWoken = pdFALSE; // Initialised to pdFALSE.
350  *
351  *   // Attempt to send the string to the message buffer.
352  *   xBytesSent = xMessageBufferSendFromISR( xMessageBuffer,
353  *                                           ( void * ) pcStringToSend,
354  *                                           strlen( pcStringToSend ),
355  *                                           &xHigherPriorityTaskWoken );
356  *
357  *   if( xBytesSent != strlen( pcStringToSend ) )
358  *   {
359  *       // The string could not be added to the message buffer because there was
360  *       // not enough free space in the buffer.
361  *   }
362  *
363  *   // If xHigherPriorityTaskWoken was set to pdTRUE inside
364  *   // xMessageBufferSendFromISR() then a task that has a priority above the
365  *   // priority of the currently executing task was unblocked and a context
366  *   // switch should be performed to ensure the ISR returns to the unblocked
367  *   // task.  In most FreeRTOS ports this is done by simply passing
368  *   // xHigherPriorityTaskWoken into portYIELD_FROM_ISR(), which will test the
369  *   // variables value, and perform the context switch if necessary.  Check the
370  *   // documentation for the port in use for port specific instructions.
371  *   portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
372  * }
373  * @endcode
374  * \ingroup MessageBufferManagement
375  */
376 #define xMessageBufferSendFromISR( xMessageBuffer, pvTxData, xDataLengthBytes, pxHigherPriorityTaskWoken ) xStreamBufferSendFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pvTxData, xDataLengthBytes, pxHigherPriorityTaskWoken )
377 
378 /**
379  * Receives a discrete message from a message buffer.  Messages can be of
380  * variable length and are copied out of the buffer.
381  *
382  * ***NOTE***:  Uniquely among FreeRTOS objects, the stream buffer
383  * implementation (so also the message buffer implementation, as message buffers
384  * are built on top of stream buffers) assumes there is only one task or
385  * interrupt that will write to the buffer (the writer), and only one task or
386  * interrupt that will read from the buffer (the reader).  It is safe for the
387  * writer and reader to be different tasks or interrupts, but, unlike other
388  * FreeRTOS objects, it is not safe to have multiple different writers or
389  * multiple different readers.  If there are to be multiple different writers
390  * then the application writer must place each call to a writing API function
391  * (such as xMessageBufferSend()) inside a critical section and set the send
392  * block time to 0.  Likewise, if there are to be multiple different readers
393  * then the application writer must place each call to a reading API function
394  * (such as xMessageBufferRead()) inside a critical section and set the receive
395  * block time to 0.
396  *
397  * Use xMessageBufferReceive() to read from a message buffer from a task.  Use
398  * xMessageBufferReceiveFromISR() to read from a message buffer from an
399  * interrupt service routine (ISR).
400  *
401  * @param xMessageBuffer The handle of the message buffer from which a message
402  * is being received.
403  *
404  * @param pvRxData A pointer to the buffer into which the received message is
405  * to be copied.
406  *
407  * @param xBufferLengthBytes The length of the buffer pointed to by the pvRxData
408  * parameter.  This sets the maximum length of the message that can be received.
409  * If xBufferLengthBytes is too small to hold the next message then the message
410  * will be left in the message buffer and 0 will be returned.
411  *
412  * @param xTicksToWait The maximum amount of time the task should remain in the
413  * Blocked state to wait for a message, should the message buffer be empty.
414  * xMessageBufferReceive() will return immediately if xTicksToWait is zero and
415  * the message buffer is empty.  The block time is specified in tick periods, so
416  * the absolute time it represents is dependent on the tick frequency.  The
417  * macro pdMS_TO_TICKS() can be used to convert a time specified in milliseconds
418  * into a time specified in ticks.  Setting xTicksToWait to portMAX_DELAY will
419  * cause the task to wait indefinitely (without timing out), provided
420  * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h.  Tasks do not use any
421  * CPU time when they are in the Blocked state.
422  *
423  * @return The length, in bytes, of the message read from the message buffer, if
424  * any.  If xMessageBufferReceive() times out before a message became available
425  * then zero is returned.  If the length of the message is greater than
426  * xBufferLengthBytes then the message will be left in the message buffer and
427  * zero is returned.
428  *
429  * Example use:
430  * @code{c}
431  * void vAFunction( MessageBuffer_t xMessageBuffer )
432  * {
433  * uint8_t ucRxData[ 20 ];
434  * size_t xReceivedBytes;
435  * const TickType_t xBlockTime = pdMS_TO_TICKS( 20 );
436  *
437  *   // Receive the next message from the message buffer.  Wait in the Blocked
438  *   // state (so not using any CPU processing time) for a maximum of 100ms for
439  *   // a message to become available.
440  *   xReceivedBytes = xMessageBufferReceive( xMessageBuffer,
441  *                                           ( void * ) ucRxData,
442  *                                           sizeof( ucRxData ),
443  *                                           xBlockTime );
444  *
445  *   if( xReceivedBytes > 0 )
446  *   {
447  *       // A ucRxData contains a message that is xReceivedBytes long.  Process
448  *       // the message here....
449  *   }
450  * }
451  * @endcode
452  * \ingroup MessageBufferManagement
453  */
454 #define xMessageBufferReceive( xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait ) xStreamBufferReceive( ( StreamBufferHandle_t ) xMessageBuffer, pvRxData, xBufferLengthBytes, xTicksToWait )
455 
456 
457 /**
458  * An interrupt safe version of the API function that receives a discrete
459  * message from a message buffer.  Messages can be of variable length and are
460  * copied out of the buffer.
461  *
462  * ***NOTE***:  Uniquely among FreeRTOS objects, the stream buffer
463  * implementation (so also the message buffer implementation, as message buffers
464  * are built on top of stream buffers) assumes there is only one task or
465  * interrupt that will write to the buffer (the writer), and only one task or
466  * interrupt that will read from the buffer (the reader).  It is safe for the
467  * writer and reader to be different tasks or interrupts, but, unlike other
468  * FreeRTOS objects, it is not safe to have multiple different writers or
469  * multiple different readers.  If there are to be multiple different writers
470  * then the application writer must place each call to a writing API function
471  * (such as xMessageBufferSend()) inside a critical section and set the send
472  * block time to 0.  Likewise, if there are to be multiple different readers
473  * then the application writer must place each call to a reading API function
474  * (such as xMessageBufferRead()) inside a critical section and set the receive
475  * block time to 0.
476  *
477  * Use xMessageBufferReceive() to read from a message buffer from a task.  Use
478  * xMessageBufferReceiveFromISR() to read from a message buffer from an
479  * interrupt service routine (ISR).
480  *
481  * @param xMessageBuffer The handle of the message buffer from which a message
482  * is being received.
483  *
484  * @param pvRxData A pointer to the buffer into which the received message is
485  * to be copied.
486  *
487  * @param xBufferLengthBytes The length of the buffer pointed to by the pvRxData
488  * parameter.  This sets the maximum length of the message that can be received.
489  * If xBufferLengthBytes is too small to hold the next message then the message
490  * will be left in the message buffer and 0 will be returned.
491  *
492  * @param pxHigherPriorityTaskWoken  It is possible that a message buffer will
493  * have a task blocked on it waiting for space to become available.  Calling
494  * xMessageBufferReceiveFromISR() can make space available, and so cause a task
495  * that is waiting for space to leave the Blocked state.  If calling
496  * xMessageBufferReceiveFromISR() causes a task to leave the Blocked state, and
497  * the unblocked task has a priority higher than the currently executing task
498  * (the task that was interrupted), then, internally,
499  * xMessageBufferReceiveFromISR() will set *pxHigherPriorityTaskWoken to pdTRUE.
500  * If xMessageBufferReceiveFromISR() sets this value to pdTRUE, then normally a
501  * context switch should be performed before the interrupt is exited.  That will
502  * ensure the interrupt returns directly to the highest priority Ready state
503  * task.  *pxHigherPriorityTaskWoken should be set to pdFALSE before it is
504  * passed into the function.  See the code example below for an example.
505  *
506  * @return The length, in bytes, of the message read from the message buffer, if
507  * any.
508  *
509  * Example use:
510  * @code{c}
511  * // A message buffer that has already been created.
512  * MessageBuffer_t xMessageBuffer;
513  *
514  * void vAnInterruptServiceRoutine( void )
515  * {
516  * uint8_t ucRxData[ 20 ];
517  * size_t xReceivedBytes;
518  * BaseType_t xHigherPriorityTaskWoken = pdFALSE;  // Initialised to pdFALSE.
519  *
520  *   // Receive the next message from the message buffer.
521  *   xReceivedBytes = xMessageBufferReceiveFromISR( xMessageBuffer,
522  *                                                 ( void * ) ucRxData,
523  *                                                 sizeof( ucRxData ),
524  *                                                 &xHigherPriorityTaskWoken );
525  *
526  *   if( xReceivedBytes > 0 )
527  *   {
528  *       // A ucRxData contains a message that is xReceivedBytes long.  Process
529  *       // the message here....
530  *   }
531  *
532  *   // If xHigherPriorityTaskWoken was set to pdTRUE inside
533  *   // xMessageBufferReceiveFromISR() then a task that has a priority above the
534  *   // priority of the currently executing task was unblocked and a context
535  *   // switch should be performed to ensure the ISR returns to the unblocked
536  *   // task.  In most FreeRTOS ports this is done by simply passing
537  *   // xHigherPriorityTaskWoken into portYIELD_FROM_ISR(), which will test the
538  *   // variables value, and perform the context switch if necessary.  Check the
539  *   // documentation for the port in use for port specific instructions.
540  *   portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
541  * }
542  * @endcode
543  * \ingroup MessageBufferManagement
544  */
545 #define xMessageBufferReceiveFromISR( xMessageBuffer, pvRxData, xBufferLengthBytes, pxHigherPriorityTaskWoken ) xStreamBufferReceiveFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pvRxData, xBufferLengthBytes, pxHigherPriorityTaskWoken )
546 
547 /**
548  * Deletes a message buffer that was previously created using a call to
549  * xMessageBufferCreate() or xMessageBufferCreateStatic().  If the message
550  * buffer was created using dynamic memory (that is, by xMessageBufferCreate()),
551  * then the allocated memory is freed.
552  *
553  * A message buffer handle must not be used after the message buffer has been
554  * deleted.
555  *
556  * @param xMessageBuffer The handle of the message buffer to be deleted.
557  *
558  */
559 #define vMessageBufferDelete( xMessageBuffer ) vStreamBufferDelete( ( StreamBufferHandle_t ) xMessageBuffer )
560 
561 /**
562  * Tests to see if a message buffer is full.  A message buffer is full if it
563  * cannot accept any more messages, of any size, until space is made available
564  * by a message being removed from the message buffer.
565  *
566  * @param xMessageBuffer The handle of the message buffer being queried.
567  *
568  * @return If the message buffer referenced by xMessageBuffer is full then
569  * pdTRUE is returned.  Otherwise pdFALSE is returned.
570  */
571 #define xMessageBufferIsFull( xMessageBuffer ) xStreamBufferIsFull( ( StreamBufferHandle_t ) xMessageBuffer )
572 
573 /**
574  * Tests to see if a message buffer is empty (does not contain any messages).
575  *
576  * @param xMessageBuffer The handle of the message buffer being queried.
577  *
578  * @return If the message buffer referenced by xMessageBuffer is empty then
579  * pdTRUE is returned.  Otherwise pdFALSE is returned.
580  *
581  */
582 #define xMessageBufferIsEmpty( xMessageBuffer ) xStreamBufferIsEmpty( ( StreamBufferHandle_t ) xMessageBuffer )
583 
584 /**
585  * Resets a message buffer to its initial empty state, discarding any message it
586  * contained.
587  *
588  * A message buffer can only be reset if there are no tasks blocked on it.
589  *
590  * @param xMessageBuffer The handle of the message buffer being reset.
591  *
592  * @return If the message buffer was reset then pdPASS is returned.  If the
593  * message buffer could not be reset because either there was a task blocked on
594  * the message queue to wait for space to become available, or to wait for a
595  * a message to be available, then pdFAIL is returned.
596  *
597  * \ingroup MessageBufferManagement
598  */
599 #define xMessageBufferReset( xMessageBuffer ) xStreamBufferReset( ( StreamBufferHandle_t ) xMessageBuffer )
600 
601 
602 /**
603  * Returns the number of bytes of free space in the message buffer.
604  *
605  * @param xMessageBuffer The handle of the message buffer being queried.
606  *
607  * @return The number of bytes that can be written to the message buffer before
608  * the message buffer would be full.  When a message is written to the message
609  * buffer an additional sizeof( size_t ) bytes are also written to store the
610  * message's length.  sizeof( size_t ) is typically 4 bytes on a 32-bit
611  * architecture, so if xMessageBufferSpacesAvailable() returns 10, then the size
612  * of the largest message that can be written to the message buffer is 6 bytes.
613  *
614  * \ingroup MessageBufferManagement
615  */
616 #define xMessageBufferSpaceAvailable( xMessageBuffer ) xStreamBufferSpacesAvailable( ( StreamBufferHandle_t ) xMessageBuffer )
617 #define xMessageBufferSpacesAvailable( xMessageBuffer ) xStreamBufferSpacesAvailable( ( StreamBufferHandle_t ) xMessageBuffer ) /* Corrects typo in original macro name. */
618 
619 /**
620  * Returns the length (in bytes) of the next message in a message buffer.
621  * Useful if xMessageBufferReceive() returned 0 because the size of the buffer
622  * passed into xMessageBufferReceive() was too small to hold the next message.
623  *
624  * @param xMessageBuffer The handle of the message buffer being queried.
625  *
626  * @return The length (in bytes) of the next message in the message buffer, or 0
627  * if the message buffer is empty.
628  *
629  * \ingroup MessageBufferManagement
630  */
631 #define xMessageBufferNextLengthBytes( xMessageBuffer ) xStreamBufferNextMessageLengthBytes( ( StreamBufferHandle_t ) xMessageBuffer ) PRIVILEGED_FUNCTION;
632 
633 /**
634  * For advanced users only.
635  *
636  * The sbSEND_COMPLETED() macro is called from within the FreeRTOS APIs when
637  * data is sent to a message buffer or stream buffer.  If there was a task that
638  * was blocked on the message or stream buffer waiting for data to arrive then
639  * the sbSEND_COMPLETED() macro sends a notification to the task to remove it
640  * from the Blocked state.  xMessageBufferSendCompletedFromISR() does the same
641  * thing.  It is provided to enable application writers to implement their own
642  * version of sbSEND_COMPLETED(), and MUST NOT BE USED AT ANY OTHER TIME.
643  *
644  * See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
645  * additional information.
646  *
647  * @param xMessageBuffer The handle of the stream buffer to which data was
648  * written.
649  *
650  * @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
651  * initialised to pdFALSE before it is passed into
652  * xMessageBufferSendCompletedFromISR().  If calling
653  * xMessageBufferSendCompletedFromISR() removes a task from the Blocked state,
654  * and the task has a priority above the priority of the currently running task,
655  * then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
656  * context switch should be performed before exiting the ISR.
657  *
658  * @return If a task was removed from the Blocked state then pdTRUE is returned.
659  * Otherwise pdFALSE is returned.
660  *
661  * \ingroup StreamBufferManagement
662  */
663 #define xMessageBufferSendCompletedFromISR( xMessageBuffer, pxHigherPriorityTaskWoken ) xStreamBufferSendCompletedFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pxHigherPriorityTaskWoken )
664 
665 /**
666  * For advanced users only.
667  *
668  * The sbRECEIVE_COMPLETED() macro is called from within the FreeRTOS APIs when
669  * data is read out of a message buffer or stream buffer.  If there was a task
670  * that was blocked on the message or stream buffer waiting for data to arrive
671  * then the sbRECEIVE_COMPLETED() macro sends a notification to the task to
672  * remove it from the Blocked state.  xMessageBufferReceiveCompletedFromISR()
673  * does the same thing.  It is provided to enable application writers to
674  * implement their own version of sbRECEIVE_COMPLETED(), and MUST NOT BE USED AT
675  * ANY OTHER TIME.
676  *
677  * See the example implemented in FreeRTOS/Demo/Minimal/MessageBufferAMP.c for
678  * additional information.
679  *
680  * @param xMessageBuffer The handle of the stream buffer from which data was
681  * read.
682  *
683  * @param pxHigherPriorityTaskWoken *pxHigherPriorityTaskWoken should be
684  * initialised to pdFALSE before it is passed into
685  * xMessageBufferReceiveCompletedFromISR().  If calling
686  * xMessageBufferReceiveCompletedFromISR() removes a task from the Blocked state,
687  * and the task has a priority above the priority of the currently running task,
688  * then *pxHigherPriorityTaskWoken will get set to pdTRUE indicating that a
689  * context switch should be performed before exiting the ISR.
690  *
691  * @return If a task was removed from the Blocked state then pdTRUE is returned.
692  * Otherwise pdFALSE is returned.
693  *
694  * \ingroup StreamBufferManagement
695  */
696 #define xMessageBufferReceiveCompletedFromISR( xMessageBuffer, pxHigherPriorityTaskWoken ) xStreamBufferReceiveCompletedFromISR( ( StreamBufferHandle_t ) xMessageBuffer, pxHigherPriorityTaskWoken )
697 
698 #if defined( __cplusplus )
699 } /* extern "C" */
700 #endif
701 
702 #endif	/* !defined( FREERTOS_MESSAGE_BUFFER_H ) */
703