1 /* --------------------------------------------------------------  */
2 /* (C)Copyright 2001,2008,                                         */
3 /* International Business Machines Corporation,                    */
4 /* Sony Computer Entertainment, Incorporated,                      */
5 /* Toshiba Corporation,                                            */
6 /*                                                                 */
7 /* All Rights Reserved.                                            */
8 /*                                                                 */
9 /* Redistribution and use in source and binary forms, with or      */
10 /* without modification, are permitted provided that the           */
11 /* following conditions are met:                                   */
12 /*                                                                 */
13 /* - Redistributions of source code must retain the above copyright*/
14 /*   notice, this list of conditions and the following disclaimer. */
15 /*                                                                 */
16 /* - Redistributions in binary form must reproduce the above       */
17 /*   copyright notice, this list of conditions and the following   */
18 /*   disclaimer in the documentation and/or other materials        */
19 /*   provided with the distribution.                               */
20 /*                                                                 */
21 /* - Neither the name of IBM Corporation nor the names of its      */
22 /*   contributors may be used to endorse or promote products       */
23 /*   derived from this software without specific prior written     */
24 /*   permission.                                                   */
25 /*                                                                 */
26 /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
27 /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
28 /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
29 /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
30 /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
31 /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
32 /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
33 /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
34 /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
35 /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
36 /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
37 /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
38 /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
39 /* --------------------------------------------------------------  */
40 /* PROLOG END TAG zYx                                              */
41 #ifdef __SPU__
42 #ifndef _EXPF4_H_
43 #define _EXPF4_H_	1
44 
45 
46 #include "floorf4.h"
47 #include "ldexpf4.h"
48 
49 /*
50  * FUNCTION
51  *	vector float _expf4(vector float x)
52  *
53  * DESCRIPTION
54  *	The _expf4 function computes e raised to the input x for
55  *	each of the element of the float vector.
56  *
57  */
_expf4(vector float x)58 static __inline vector float _expf4(vector float x)
59 {
60 
61   //  log2(e)
62   vec_float4 log2e = spu_splats(1.4426950408889634074f);
63 
64   // Extra precision for the ln2 multiply
65   vec_float4 ln2_hi = spu_splats(0.693359375f);
66   vec_float4 ln2_lo = spu_splats(-2.12194440E-4f);
67 
68   // Coefficents for the Taylor series
69   vec_float4 f02 = spu_splats(5.0000000000000000E-1f); // 1/2!
70   vec_float4 f03 = spu_splats(1.6666666666666667E-1f); // 1/3!
71   vec_float4 f04 = spu_splats(4.1666666666666667E-2f); // 1/4!
72   vec_float4 f05 = spu_splats(8.3333333333333333E-3f); // 1/5!
73   vec_float4 f06 = spu_splats(1.3888888888888889E-3f); // 1/6!
74   vec_float4 f07 = spu_splats(1.9841269841269841E-4f); // 1/7!
75 
76   //  Range reduce input, so that:
77   //  e^x = e^z * 2^n
78   //  e^x = e^z * e^(n * ln(2))
79   //  e^x = e^(z + (n * ln(2)))
80 
81   vec_int4 n;  // exponent of reduction
82   vec_float4 q;  // range reduced result
83 
84   vec_float4 z;
85   vec_float4 r;
86 
87   z = spu_madd(x,log2e,spu_splats(0.5f));
88   z = _floorf4(z);
89   r = spu_nmsub(z,ln2_hi,x);
90   r = spu_nmsub(z,ln2_lo,r);
91   n = spu_convts(z,0);
92   z = spu_mul(r,r);
93 
94   //  Use Horner's method on the Taylor series
95   q = spu_madd(r,f07,f06);
96   q = spu_madd(q,r,f05);
97   q = spu_madd(q,r,f04);
98   q = spu_madd(q,r,f03);
99   q = spu_madd(q,r,f02);
100   q = spu_madd(q,z,r);
101   q = spu_add(q,spu_splats(1.0f));
102 
103   //  Adjust the result by the range reduction
104   r  = _ldexpf4( q, n );
105 
106   return(r);
107 
108 }
109 
110 #endif /* _EXPF4_H_ */
111 #endif /* __SPU__ */
112 
113