1 /* ec_dsa.c - TinyCrypt implementation of EC-DSA */
2 
3 /* Copyright (c) 2014, Kenneth MacKay
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *  * Redistributions of source code must retain the above copyright notice,
9  *    this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright notice,
11  *    this list of conditions and the following disclaimer in the documentation
12  *    and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
18  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
24  * POSSIBILITY OF SUCH DAMAGE.*/
25 
26 /*
27  *  Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
28  *
29  *  Redistribution and use in source and binary forms, with or without
30  *  modification, are permitted provided that the following conditions are met:
31  *
32  *    - Redistributions of source code must retain the above copyright notice,
33  *     this list of conditions and the following disclaimer.
34  *
35  *    - Redistributions in binary form must reproduce the above copyright
36  *    notice, this list of conditions and the following disclaimer in the
37  *    documentation and/or other materials provided with the distribution.
38  *
39  *    - Neither the name of Intel Corporation nor the names of its contributors
40  *    may be used to endorse or promote products derived from this software
41  *    without specific prior written permission.
42  *
43  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
44  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
47  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
48  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
49  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
50  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
51  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
52  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
53  *  POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include <tinycrypt/constants.h>
57 #include <tinycrypt/ecc.h>
58 #include <tinycrypt/ecc_dsa.h>
59 
60 #if default_RNG_defined
61 static uECC_RNG_Function g_rng_function = &default_CSPRNG;
62 #else
63 static uECC_RNG_Function g_rng_function = 0;
64 #endif
65 
bits2int(uECC_word_t * native,const uint8_t * bits,unsigned bits_size,uECC_Curve curve)66 static void bits2int(uECC_word_t *native, const uint8_t *bits,
67                      unsigned bits_size, uECC_Curve curve)
68 {
69     unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
70     unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
71     int shift;
72     uECC_word_t carry;
73     uECC_word_t *ptr;
74 
75     if (bits_size > num_n_bytes) {
76         bits_size = num_n_bytes;
77     }
78 
79     uECC_vli_clear(native, num_n_words);
80     uECC_vli_bytesToNative(native, bits, bits_size);
81     if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
82         return;
83     }
84     shift = bits_size * 8 - curve->num_n_bits;
85     carry = 0;
86     ptr = native + num_n_words;
87     while (ptr-- > native) {
88         uECC_word_t temp = *ptr;
89         *ptr = (temp >> shift) | carry;
90         carry = temp << (uECC_WORD_BITS - shift);
91     }
92 
93     /* Reduce mod curve_n */
94     if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
95         uECC_vli_sub(native, native, curve->n, num_n_words);
96     }
97 }
98 
uECC_sign_with_k(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,uECC_word_t * k,uint8_t * signature,uECC_Curve curve)99 int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
100                      unsigned hash_size, uECC_word_t *k, uint8_t *signature,
101                      uECC_Curve curve)
102 {
103 
104     uECC_word_t tmp[NUM_ECC_WORDS];
105     uECC_word_t s[NUM_ECC_WORDS];
106     uECC_word_t *k2[2] = {tmp, s};
107     uECC_word_t p[NUM_ECC_WORDS * 2];
108     uECC_word_t carry;
109     wordcount_t num_words = curve->num_words;
110     wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
111     bitcount_t num_n_bits = curve->num_n_bits;
112 
113     /* Make sure 0 < k < curve_n */
114     if (uECC_vli_isZero(k, num_words) ||
115             uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
116         return 0;
117     }
118 
119     carry = regularize_k(k, tmp, s, curve);
120     EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
121     if (uECC_vli_isZero(p, num_words)) {
122         return 0;
123     }
124 
125     /* If an RNG function was specified, get a random number
126     to prevent side channel analysis of k. */
127     if (!g_rng_function) {
128         uECC_vli_clear(tmp, num_n_words);
129         tmp[0] = 1;
130     } else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
131         return 0;
132     }
133 
134     /* Prevent side channel analysis of uECC_vli_modInv() to determine
135     bits of k / the private key by premultiplying by a random number */
136     uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
137     uECC_vli_modInv(k, k, curve->n, num_n_words);       /* k = 1 / k' */
138     uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
139 
140     uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
141 
142     /* tmp = d: */
143     uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
144 
145     s[num_n_words - 1] = 0;
146     uECC_vli_set(s, p, num_words);
147     uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
148 
149     bits2int(tmp, message_hash, hash_size, curve);
150     uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
151     uECC_vli_modMult(s, s, k, curve->n, num_n_words);  /* s = (e + r*d) / k */
152     if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
153         return 0;
154     }
155 
156     uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
157     return 1;
158 }
159 
uECC_sign(const uint8_t * private_key,const uint8_t * message_hash,unsigned hash_size,uint8_t * signature,uECC_Curve curve)160 int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
161               unsigned hash_size, uint8_t *signature, uECC_Curve curve)
162 {
163     uECC_word_t _random[2 * NUM_ECC_WORDS];
164     uECC_word_t k[NUM_ECC_WORDS];
165     uECC_word_t tries;
166 
167     for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
168         /* Generating _random uniformly at random: */
169         uECC_RNG_Function rng_function = uECC_get_rng();
170         if (!rng_function ||
171                 !rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS * uECC_WORD_SIZE)) {
172             return 0;
173         }
174 
175         // computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
176         uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
177 
178         if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
179                              curve)) {
180             return 1;
181         }
182     }
183     return 0;
184 }
185 
smax(bitcount_t a,bitcount_t b)186 static bitcount_t smax(bitcount_t a, bitcount_t b)
187 {
188     return (a > b ? a : b);
189 }
190 
uECC_verify(const uint8_t * public_key,const uint8_t * message_hash,unsigned hash_size,const uint8_t * signature,uECC_Curve curve)191 int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
192                 unsigned hash_size, const uint8_t *signature,
193                 uECC_Curve curve)
194 {
195 
196     uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
197     uECC_word_t z[NUM_ECC_WORDS];
198     uECC_word_t sum[NUM_ECC_WORDS * 2];
199     uECC_word_t rx[NUM_ECC_WORDS];
200     uECC_word_t ry[NUM_ECC_WORDS];
201     uECC_word_t tx[NUM_ECC_WORDS];
202     uECC_word_t ty[NUM_ECC_WORDS];
203     uECC_word_t tz[NUM_ECC_WORDS];
204     const uECC_word_t *points[4];
205     const uECC_word_t *point;
206     bitcount_t num_bits;
207     bitcount_t i;
208 
209     uECC_word_t _public[NUM_ECC_WORDS * 2];
210     uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
211     wordcount_t num_words = curve->num_words;
212     wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
213 
214     rx[num_n_words - 1] = 0;
215     r[num_n_words - 1] = 0;
216     s[num_n_words - 1] = 0;
217 
218     uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
219     uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
220                            curve->num_bytes);
221     uECC_vli_bytesToNative(r, signature, curve->num_bytes);
222     uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
223 
224     /* r, s must not be 0. */
225     if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
226         return 0;
227     }
228 
229     /* r, s must be < n. */
230     if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
231             uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
232         return 0;
233     }
234 
235     /* Calculate u1 and u2. */
236     uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
237     u1[num_n_words - 1] = 0;
238     bits2int(u1, message_hash, hash_size, curve);
239     uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
240     uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
241 
242     /* Calculate sum = G + Q. */
243     uECC_vli_set(sum, _public, num_words);
244     uECC_vli_set(sum + num_words, _public + num_words, num_words);
245     uECC_vli_set(tx, curve->G, num_words);
246     uECC_vli_set(ty, curve->G + num_words, num_words);
247     uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
248     XYcZ_add(tx, ty, sum, sum + num_words, curve);
249     uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
250     apply_z(sum, sum + num_words, z, curve);
251 
252     /* Use Shamir's trick to calculate u1*G + u2*Q */
253     points[0] = 0;
254     points[1] = curve->G;
255     points[2] = _public;
256     points[3] = sum;
257     num_bits = smax(uECC_vli_numBits(u1, num_n_words),
258                     uECC_vli_numBits(u2, num_n_words));
259 
260     point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
261                    ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
262     uECC_vli_set(rx, point, num_words);
263     uECC_vli_set(ry, point + num_words, num_words);
264     uECC_vli_clear(z, num_words);
265     z[0] = 1;
266 
267     for (i = num_bits - 2; i >= 0; --i) {
268         uECC_word_t index;
269         curve->double_jacobian(rx, ry, z, curve);
270 
271         index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
272         point = points[index];
273         if (point) {
274             uECC_vli_set(tx, point, num_words);
275             uECC_vli_set(ty, point + num_words, num_words);
276             apply_z(tx, ty, z, curve);
277             uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
278             XYcZ_add(tx, ty, rx, ry, curve);
279             uECC_vli_modMult_fast(z, z, tz, curve);
280         }
281     }
282 
283     uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
284     apply_z(rx, ry, z, curve);
285 
286     /* v = x1 (mod n) */
287     if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
288         uECC_vli_sub(rx, rx, curve->n, num_n_words);
289     }
290 
291     /* Accept only if v == r. */
292     return (int)(uECC_vli_equal(rx, r, num_words) == 0);
293 }
294