1 /*
2 * SPDX-FileCopyrightText: 2018-2021 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include "freertos/FreeRTOS.h"
8 #include "freertos/task.h"
9 #include "esp_psram.h"
10 #include "esp_private/esp_psram_extram.h"
11 #include "esp32/rom/cache.h"
12 #include "sdkconfig.h"
13 #include "esp32/himem.h"
14 #include "soc/soc.h"
15 #include "esp_log.h"
16 #include "esp_check.h"
17 #include "../esp_psram_impl.h"
18
19 /*
20 So, why does the API look this way and is so inflexible to not allow any maps beyond the full 32K chunks? Most of
21 it has to do with the fact that the cache works on the *virtual* addresses What this comes down to is that while it's
22 allowed to map a range of physical memory into the address space two times, there's no cache consistency between the
23 two regions.
24
25 This means that a write to region A may or may not show up, perhaps delayed, in region B, as it depends on
26 the time that the writeback to SPI RAM is done on A and the time before the corresponding cache line is invalidated
27 on B. Note that this goes for every 32-byte cache line: this implies that if a program writes to address X and Y within
28 A, the write to Y may show up before the write to X does.
29
30 It gets even worse when both A and B are written: theoretically, a write to a 32-byte cache line in A can be entirely
31 undone because of a write to a different addres in B that happens to be in the same 32-byte cache line.
32
33 Because of these reasons, we do not allow double mappings at all. This, however, has other implications that make
34 supporting ranges not really useful. Because the lack of double mappings, applications will need to do their own
35 management of mapped regions, meaning they will normally map in and out blocks at a time anyway, as mapping more
36 fluent regions would result in the chance of accidentally mapping two overlapping regions. As this is the case,
37 to keep the code simple, at the moment we just force these blocks to be equal to the 32K MMU page size. The API
38 itself does allow for more granular allocations, so if there's a pressing need for a more complex solution in the
39 future, we can do this.
40
41 Note: In the future, we can expand on this api to do a memcpy() between SPI RAM and (internal) memory using the SPI1
42 peripheral. This needs support for SPI1 to be in the SPI driver, however.
43 */
44
45 #if CONFIG_SPIRAM_BANKSWITCH_ENABLE
46 #define SPIRAM_BANKSWITCH_RESERVE CONFIG_SPIRAM_BANKSWITCH_RESERVE
47 #else
48 #define SPIRAM_BANKSWITCH_RESERVE 0
49 #endif
50
51 #define CACHE_BLOCKSIZE (32*1024)
52
53 //Start of the virtual address range reserved for himem use
54 #define VIRT_HIMEM_RANGE_START (SOC_EXTRAM_DATA_LOW+(128-SPIRAM_BANKSWITCH_RESERVE)*CACHE_BLOCKSIZE)
55 //Start MMU block reserved for himem use
56 #define VIRT_HIMEM_RANGE_BLOCKSTART (128-SPIRAM_BANKSWITCH_RESERVE)
57 //Start physical block
58 #define PHYS_HIMEM_BLOCKSTART (128-SPIRAM_BANKSWITCH_RESERVE)
59
60 #define TAG "esp_himem"
61
62 // Metadata for a block of physical RAM
63 typedef struct {
64 unsigned int is_alloced: 1;
65 unsigned int is_mapped: 1;
66 } ramblock_t;
67
68 //Metadata for a 32-K memory address range
69 typedef struct {
70 unsigned int is_alloced: 1;
71 unsigned int is_mapped: 1;
72 unsigned int ram_block: 16;
73 } rangeblock_t;
74
75 static ramblock_t *s_ram_descriptor = NULL;
76 static rangeblock_t *s_range_descriptor = NULL;
77 static int s_ramblockcnt = 0;
78 static const int s_rangeblockcnt = SPIRAM_BANKSWITCH_RESERVE;
79
80 //Handle for a window of address space
81 typedef struct esp_himem_rangedata_t {
82 int block_ct;
83 int block_start;
84 } esp_himem_rangedata_t;
85
86 //Handle for a range of physical memory
87 typedef struct esp_himem_ramdata_t {
88 int block_ct;
89 uint16_t *block;
90 } esp_himem_ramdata_t;
91
92 static portMUX_TYPE spinlock = portMUX_INITIALIZER_UNLOCKED;
93
ramblock_idx_valid(int ramblock_idx)94 static inline int ramblock_idx_valid(int ramblock_idx)
95 {
96 return (ramblock_idx >= 0 && ramblock_idx < s_ramblockcnt);
97 }
98
rangeblock_idx_valid(int rangeblock_idx)99 static inline int rangeblock_idx_valid(int rangeblock_idx)
100 {
101 return (rangeblock_idx >= 0 && rangeblock_idx < s_rangeblockcnt);
102 }
103
set_bank(int virt_bank,int phys_bank,int ct)104 static void set_bank(int virt_bank, int phys_bank, int ct)
105 {
106 int r __attribute__((unused));
107 r = cache_sram_mmu_set( 0, 0, SOC_EXTRAM_DATA_LOW + CACHE_BLOCKSIZE * virt_bank, phys_bank * CACHE_BLOCKSIZE, 32, ct );
108 assert(r == 0);
109 r = cache_sram_mmu_set( 1, 0, SOC_EXTRAM_DATA_LOW + CACHE_BLOCKSIZE * virt_bank, phys_bank * CACHE_BLOCKSIZE, 32, ct );
110 assert(r == 0);
111 }
112
esp_himem_get_phys_size(void)113 size_t esp_himem_get_phys_size(void)
114 {
115 int paddr_start = (4096 * 1024) - (CACHE_BLOCKSIZE * SPIRAM_BANKSWITCH_RESERVE);
116 uint32_t psram_available_size = 0;
117 esp_psram_impl_get_available_size(&psram_available_size);
118 return psram_available_size - paddr_start;
119 }
120
esp_himem_get_free_size(void)121 size_t esp_himem_get_free_size(void)
122 {
123 size_t ret=0;
124 for (int i = 0; i < s_ramblockcnt; i++) {
125 if (!s_ram_descriptor[i].is_alloced) ret+=CACHE_BLOCKSIZE;
126 }
127 return ret;
128 }
129
esp_himem_reserved_area_size(void)130 size_t esp_himem_reserved_area_size(void) {
131 return CACHE_BLOCKSIZE * SPIRAM_BANKSWITCH_RESERVE;
132 }
133
134
esp_himem_init(void)135 void __attribute__((constructor)) esp_himem_init(void)
136 {
137 if (SPIRAM_BANKSWITCH_RESERVE == 0) return;
138 uint32_t maxram = 0;
139 esp_psram_impl_get_available_size(&maxram);
140 //catch double init
141 ESP_RETURN_ON_FALSE(s_ram_descriptor == NULL, , TAG, "already initialized"); //Looks weird; last arg is empty so it expands to 'return ;'
142 ESP_RETURN_ON_FALSE(s_range_descriptor == NULL, , TAG, "already initialized");
143 //need to have some reserved banks
144 ESP_RETURN_ON_FALSE(SPIRAM_BANKSWITCH_RESERVE != 0, , TAG, "No banks reserved for himem");
145 //Start and end of physical reserved memory. Note it starts slightly under
146 //the 4MiB mark as the reserved banks can't have an unity mapping to be used by malloc
147 //anymore; we treat them as himem instead.
148 int paddr_start = (4096 * 1024) - (CACHE_BLOCKSIZE * SPIRAM_BANKSWITCH_RESERVE);
149 int paddr_end = maxram;
150 s_ramblockcnt = ((paddr_end - paddr_start) / CACHE_BLOCKSIZE);
151 //Allocate data structures
152 s_ram_descriptor = calloc(sizeof(ramblock_t), s_ramblockcnt);
153 s_range_descriptor = calloc(sizeof(rangeblock_t), SPIRAM_BANKSWITCH_RESERVE);
154 if (s_ram_descriptor == NULL || s_range_descriptor == NULL) {
155 ESP_EARLY_LOGE(TAG, "Cannot allocate memory for meta info. Not initializing!");
156 free(s_ram_descriptor);
157 free(s_range_descriptor);
158 return;
159 }
160 ESP_EARLY_LOGI(TAG, "Initialized. Using last %d 32KB address blocks for bank switching on %d KB of physical memory.",
161 SPIRAM_BANKSWITCH_RESERVE, (paddr_end - paddr_start)/1024);
162 }
163
164
165 //Allocate count not-necessarily consecutive physical RAM blocks, return numbers in blocks[]. Return
166 //true if blocks can be allocated, false if not.
allocate_blocks(int count,uint16_t * blocks_out)167 static bool allocate_blocks(int count, uint16_t *blocks_out)
168 {
169 int n = 0;
170 for (int i = 0; i < s_ramblockcnt && n != count; i++) {
171 if (!s_ram_descriptor[i].is_alloced) {
172 blocks_out[n] = i;
173 n++;
174 }
175 }
176 if (n == count) {
177 //All blocks could be allocated. Mark as in use.
178 for (int i = 0; i < count; i++) {
179 s_ram_descriptor[blocks_out[i]].is_alloced = true;
180 assert(s_ram_descriptor[blocks_out[i]].is_mapped == false);
181 }
182 return true;
183 } else {
184 //Error allocating blocks
185 return false;
186 }
187 }
188
189
esp_himem_alloc(size_t size,esp_himem_handle_t * handle_out)190 esp_err_t esp_himem_alloc(size_t size, esp_himem_handle_t *handle_out)
191 {
192 if (size % CACHE_BLOCKSIZE != 0) {
193 return ESP_ERR_INVALID_SIZE;
194 }
195 int blocks = size / CACHE_BLOCKSIZE;
196 esp_himem_ramdata_t *r = calloc(sizeof(esp_himem_ramdata_t), 1);
197 if (!r) {
198 goto nomem;
199 }
200 r->block = calloc(sizeof(uint16_t), blocks);
201 if (!r->block) {
202 goto nomem;
203 }
204 portENTER_CRITICAL(&spinlock);
205 int ok = allocate_blocks(blocks, r->block);
206 portEXIT_CRITICAL(&spinlock);
207 if (!ok) {
208 goto nomem;
209 }
210 r->block_ct = blocks;
211 *handle_out = r;
212 return ESP_OK;
213 nomem:
214 if (r) {
215 free(r->block);
216 }
217 free(r);
218 return ESP_ERR_NO_MEM;
219 }
220
esp_himem_free(esp_himem_handle_t handle)221 esp_err_t esp_himem_free(esp_himem_handle_t handle)
222 {
223 //Check if any of the blocks is still mapped; fail if this is the case.
224 for (int i = 0; i < handle->block_ct; i++) {
225 assert(ramblock_idx_valid(handle->block[i]));
226 ESP_RETURN_ON_FALSE(!s_ram_descriptor[handle->block[i]].is_mapped, ESP_ERR_INVALID_ARG, TAG, "block in range still mapped");
227 }
228 //Mark blocks as free
229 portENTER_CRITICAL(&spinlock);
230 for (int i = 0; i < handle->block_ct; i++) {
231 s_ram_descriptor[handle->block[i]].is_alloced = false;
232 }
233 portEXIT_CRITICAL(&spinlock);
234
235 //Free handle
236 free(handle->block);
237 free(handle);
238 return ESP_OK;
239 }
240
241
esp_himem_alloc_map_range(size_t size,esp_himem_rangehandle_t * handle_out)242 esp_err_t esp_himem_alloc_map_range(size_t size, esp_himem_rangehandle_t *handle_out)
243 {
244 ESP_RETURN_ON_FALSE(s_ram_descriptor != NULL, ESP_ERR_INVALID_STATE, TAG, "Himem not available!");
245 ESP_RETURN_ON_FALSE(size % CACHE_BLOCKSIZE == 0, ESP_ERR_INVALID_SIZE, TAG, "requested size not aligned to blocksize");
246 int blocks = size / CACHE_BLOCKSIZE;
247 esp_himem_rangedata_t *r = calloc(sizeof(esp_himem_rangedata_t), 1);
248 if (!r) {
249 return ESP_ERR_NO_MEM;
250 }
251 r->block_ct = blocks;
252 r->block_start = -1;
253 int start_free = 0;
254 portENTER_CRITICAL(&spinlock);
255 for (int i = 0; i < s_rangeblockcnt; i++) {
256 if (s_range_descriptor[i].is_alloced) {
257 start_free = i + 1; //optimistically assume next block is free...
258 } else if (i - start_free == blocks - 1) {
259 //We found a span of blocks that's big enough to allocate the requested range in.
260 r->block_start = start_free;
261 break;
262 }
263 }
264
265 if (r->block_start == -1) {
266 //Couldn't find enough free blocks
267 free(r);
268 portEXIT_CRITICAL(&spinlock);
269 return ESP_ERR_NO_MEM;
270 }
271 //Range is found. Mark the blocks as in use.
272 for (int i = 0; i < blocks; i++) {
273 s_range_descriptor[r->block_start + i].is_alloced = 1;
274 }
275 portEXIT_CRITICAL(&spinlock);
276 //All done.
277 *handle_out = r;
278 return ESP_OK;
279 }
280
esp_himem_free_map_range(esp_himem_rangehandle_t handle)281 esp_err_t esp_himem_free_map_range(esp_himem_rangehandle_t handle)
282 {
283 //Check if any of the blocks in the range have a mapping
284 for (int i = 0; i < handle->block_ct; i++) {
285 assert(rangeblock_idx_valid(handle->block_start + i));
286 assert(s_range_descriptor[i + handle->block_start].is_alloced == 1); //should be, if handle is valid
287 ESP_RETURN_ON_FALSE(!s_range_descriptor[i + handle->block_start].is_mapped, ESP_ERR_INVALID_ARG, TAG, "memory still mapped to range");
288 }
289 //We should be good to free this. Mark blocks as free.
290 portENTER_CRITICAL(&spinlock);
291 for (int i = 0; i < handle->block_ct; i++) {
292 s_range_descriptor[i + handle->block_start].is_alloced = 0;
293 }
294 portEXIT_CRITICAL(&spinlock);
295 free(handle);
296 return ESP_OK;
297 }
298
299
esp_himem_map(esp_himem_handle_t handle,esp_himem_rangehandle_t range,size_t ram_offset,size_t range_offset,size_t len,int flags,void ** out_ptr)300 esp_err_t esp_himem_map(esp_himem_handle_t handle, esp_himem_rangehandle_t range, size_t ram_offset, size_t range_offset, size_t len, int flags, void **out_ptr)
301 {
302 int ram_block = ram_offset / CACHE_BLOCKSIZE;
303 int range_block = range_offset / CACHE_BLOCKSIZE;
304 int blockcount = len / CACHE_BLOCKSIZE;
305 ESP_RETURN_ON_FALSE(s_ram_descriptor != NULL, ESP_ERR_INVALID_STATE, TAG, "Himem not available!");
306 //Offsets and length must be block-aligned
307 ESP_RETURN_ON_FALSE(ram_offset % CACHE_BLOCKSIZE == 0, ESP_ERR_INVALID_ARG, TAG, "ram offset not aligned to blocksize");
308 ESP_RETURN_ON_FALSE(range_offset % CACHE_BLOCKSIZE == 0, ESP_ERR_INVALID_ARG, TAG, "range not aligned to blocksize");
309 ESP_RETURN_ON_FALSE(len % CACHE_BLOCKSIZE == 0, ESP_ERR_INVALID_ARG, TAG, "length not aligned to blocksize");
310 //ram and range should be within allocated range
311 ESP_RETURN_ON_FALSE(ram_block + blockcount <= handle->block_ct, ESP_ERR_INVALID_SIZE, TAG, "args not in range of phys ram handle");
312 ESP_RETURN_ON_FALSE(range_block + blockcount <= range->block_ct, ESP_ERR_INVALID_SIZE, TAG, "args not in range of range handle");
313
314 //Check if ram blocks aren't already mapped, and if memory range is unmapped
315 for (int i = 0; i < blockcount; i++) {
316 ESP_RETURN_ON_FALSE(!s_ram_descriptor[handle->block[i + ram_block]].is_mapped, ESP_ERR_INVALID_STATE, TAG, "ram already mapped");
317 ESP_RETURN_ON_FALSE(!s_range_descriptor[range->block_start + i + range_block].is_mapped, ESP_ERR_INVALID_STATE, TAG, "range already mapped");
318 }
319
320 //Map and mark as mapped
321 portENTER_CRITICAL(&spinlock);
322 for (int i = 0; i < blockcount; i++) {
323 assert(ramblock_idx_valid(handle->block[i + ram_block]));
324 s_ram_descriptor[handle->block[i + ram_block]].is_mapped = 1;
325 s_range_descriptor[range->block_start + i + range_block].is_mapped = 1;
326 s_range_descriptor[range->block_start + i + range_block].ram_block = handle->block[i + ram_block];
327 }
328 portEXIT_CRITICAL(&spinlock);
329 for (int i = 0; i < blockcount; i++) {
330 set_bank(VIRT_HIMEM_RANGE_BLOCKSTART + range->block_start + i + range_block, handle->block[i + ram_block] + PHYS_HIMEM_BLOCKSTART, 1);
331 }
332
333 //Set out pointer
334 *out_ptr = (void *)(VIRT_HIMEM_RANGE_START + (range->block_start + range_block) * CACHE_BLOCKSIZE);
335 return ESP_OK;
336 }
337
esp_himem_unmap(esp_himem_rangehandle_t range,void * ptr,size_t len)338 esp_err_t esp_himem_unmap(esp_himem_rangehandle_t range, void *ptr, size_t len)
339 {
340 //Note: doesn't actually unmap, just clears cache and marks blocks as unmapped.
341 //Future optimization: could actually lazy-unmap here: essentially, do nothing and only clear the cache when we re-use
342 //the block for a different physical address.
343 int range_offset = (uint32_t)ptr - VIRT_HIMEM_RANGE_START;
344 int range_block = (range_offset / CACHE_BLOCKSIZE) - range->block_start;
345 int blockcount = len / CACHE_BLOCKSIZE;
346 ESP_RETURN_ON_FALSE(range_offset % CACHE_BLOCKSIZE == 0, ESP_ERR_INVALID_ARG, TAG, "range offset not block-aligned");
347 ESP_RETURN_ON_FALSE(len % CACHE_BLOCKSIZE == 0, ESP_ERR_INVALID_ARG, TAG, "map length not block-aligned");
348 ESP_RETURN_ON_FALSE(range_block + blockcount <= range->block_ct, ESP_ERR_INVALID_ARG, TAG, "range out of bounds for handle");
349
350 portENTER_CRITICAL(&spinlock);
351 for (int i = 0; i < blockcount; i++) {
352 int ramblock = s_range_descriptor[range->block_start + i + range_block].ram_block;
353 assert(ramblock_idx_valid(ramblock));
354 s_ram_descriptor[ramblock].is_mapped = 0;
355 s_range_descriptor[range->block_start + i + range_block].is_mapped = 0;
356 }
357 esp_psram_extram_writeback_cache();
358 portEXIT_CRITICAL(&spinlock);
359 return ESP_OK;
360 }
361