1 /**
2 ******************************************************************************
3 * @file stm32wbxx_hal_usart.c
4 * @author MCD Application Team
5 * @brief USART HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Universal Synchronous/Asynchronous Receiver Transmitter
8 * Peripheral (USART).
9 * + Initialization and de-initialization functions
10 * + IO operation functions
11 * + Peripheral Control functions
12 * + Peripheral State and Error functions
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2019 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 @verbatim
26 ===============================================================================
27 ##### How to use this driver #####
28 ===============================================================================
29 [..]
30 The USART HAL driver can be used as follows:
31
32 (#) Declare a USART_HandleTypeDef handle structure (eg. USART_HandleTypeDef husart).
33 (#) Initialize the USART low level resources by implementing the HAL_USART_MspInit() API:
34 (++) Enable the USARTx interface clock.
35 (++) USART pins configuration:
36 (+++) Enable the clock for the USART GPIOs.
37 (+++) Configure these USART pins as alternate function pull-up.
38 (++) NVIC configuration if you need to use interrupt process (HAL_USART_Transmit_IT(),
39 HAL_USART_Receive_IT() and HAL_USART_TransmitReceive_IT() APIs):
40 (+++) Configure the USARTx interrupt priority.
41 (+++) Enable the NVIC USART IRQ handle.
42 (++) USART interrupts handling:
43 -@@- The specific USART interrupts (Transmission complete interrupt,
44 RXNE interrupt and Error Interrupts) will be managed using the macros
45 __HAL_USART_ENABLE_IT() and __HAL_USART_DISABLE_IT() inside the transmit and receive process.
46 (++) DMA Configuration if you need to use DMA process (HAL_USART_Transmit_DMA()
47 HAL_USART_Receive_DMA() and HAL_USART_TransmitReceive_DMA() APIs):
48 (+++) Declare a DMA handle structure for the Tx/Rx channel.
49 (+++) Enable the DMAx interface clock.
50 (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
51 (+++) Configure the DMA Tx/Rx channel.
52 (+++) Associate the initialized DMA handle to the USART DMA Tx/Rx handle.
53 (+++) Configure the priority and enable the NVIC for the transfer
54 complete interrupt on the DMA Tx/Rx channel.
55
56 (#) Program the Baud Rate, Word Length, Stop Bit, Parity, and Mode
57 (Receiver/Transmitter) in the husart handle Init structure.
58
59 (#) Initialize the USART registers by calling the HAL_USART_Init() API:
60 (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
61 by calling the customized HAL_USART_MspInit(&husart) API.
62
63 [..]
64 (@) To configure and enable/disable the USART to wake up the MCU from stop mode, resort to USART API's
65 HAL_UARTEx_StopModeWakeUpSourceConfig(), HAL_UARTEx_EnableStopMode() and
66 HAL_UARTEx_DisableStopMode() in casting the USART handle to UART type UART_HandleTypeDef.
67
68 ##### Callback registration #####
69 ==================================
70
71 [..]
72 The compilation define USE_HAL_USART_REGISTER_CALLBACKS when set to 1
73 allows the user to configure dynamically the driver callbacks.
74
75 [..]
76 Use Function HAL_USART_RegisterCallback() to register a user callback.
77 Function HAL_USART_RegisterCallback() allows to register following callbacks:
78 (+) TxHalfCpltCallback : Tx Half Complete Callback.
79 (+) TxCpltCallback : Tx Complete Callback.
80 (+) RxHalfCpltCallback : Rx Half Complete Callback.
81 (+) RxCpltCallback : Rx Complete Callback.
82 (+) TxRxCpltCallback : Tx Rx Complete Callback.
83 (+) ErrorCallback : Error Callback.
84 (+) AbortCpltCallback : Abort Complete Callback.
85 (+) RxFifoFullCallback : Rx Fifo Full Callback.
86 (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
87 (+) MspInitCallback : USART MspInit.
88 (+) MspDeInitCallback : USART MspDeInit.
89 This function takes as parameters the HAL peripheral handle, the Callback ID
90 and a pointer to the user callback function.
91
92 [..]
93 Use function HAL_USART_UnRegisterCallback() to reset a callback to the default
94 weak function.
95 HAL_USART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
96 and the Callback ID.
97 This function allows to reset following callbacks:
98 (+) TxHalfCpltCallback : Tx Half Complete Callback.
99 (+) TxCpltCallback : Tx Complete Callback.
100 (+) RxHalfCpltCallback : Rx Half Complete Callback.
101 (+) RxCpltCallback : Rx Complete Callback.
102 (+) TxRxCpltCallback : Tx Rx Complete Callback.
103 (+) ErrorCallback : Error Callback.
104 (+) AbortCpltCallback : Abort Complete Callback.
105 (+) RxFifoFullCallback : Rx Fifo Full Callback.
106 (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
107 (+) MspInitCallback : USART MspInit.
108 (+) MspDeInitCallback : USART MspDeInit.
109
110 [..]
111 By default, after the HAL_USART_Init() and when the state is HAL_USART_STATE_RESET
112 all callbacks are set to the corresponding weak functions:
113 examples HAL_USART_TxCpltCallback(), HAL_USART_RxHalfCpltCallback().
114 Exception done for MspInit and MspDeInit functions that are respectively
115 reset to the legacy weak functions in the HAL_USART_Init()
116 and HAL_USART_DeInit() only when these callbacks are null (not registered beforehand).
117 If not, MspInit or MspDeInit are not null, the HAL_USART_Init() and HAL_USART_DeInit()
118 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
119
120 [..]
121 Callbacks can be registered/unregistered in HAL_USART_STATE_READY state only.
122 Exception done MspInit/MspDeInit that can be registered/unregistered
123 in HAL_USART_STATE_READY or HAL_USART_STATE_RESET state, thus registered (user)
124 MspInit/DeInit callbacks can be used during the Init/DeInit.
125 In that case first register the MspInit/MspDeInit user callbacks
126 using HAL_USART_RegisterCallback() before calling HAL_USART_DeInit()
127 or HAL_USART_Init() function.
128
129 [..]
130 When The compilation define USE_HAL_USART_REGISTER_CALLBACKS is set to 0 or
131 not defined, the callback registration feature is not available
132 and weak callbacks are used.
133
134
135 @endverbatim
136 ******************************************************************************
137 */
138
139 /* Includes ------------------------------------------------------------------*/
140 #include "stm32wbxx_hal.h"
141
142 /** @addtogroup STM32WBxx_HAL_Driver
143 * @{
144 */
145
146 /** @defgroup USART USART
147 * @brief HAL USART Synchronous module driver
148 * @{
149 */
150
151 #ifdef HAL_USART_MODULE_ENABLED
152
153 /* Private typedef -----------------------------------------------------------*/
154 /* Private define ------------------------------------------------------------*/
155 /** @defgroup USART_Private_Constants USART Private Constants
156 * @{
157 */
158 #define USART_DUMMY_DATA ((uint16_t) 0xFFFF) /*!< USART transmitted dummy data */
159 #define USART_TEACK_REACK_TIMEOUT 1000U /*!< USART TX or RX enable acknowledge time-out value */
160 #define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | \
161 USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8 | \
162 USART_CR1_FIFOEN )) /*!< USART CR1 fields of parameters set by USART_SetConfig API */
163
164 #define USART_CR2_FIELDS ((uint32_t)(USART_CR2_CPHA | USART_CR2_CPOL | USART_CR2_CLKEN | \
165 USART_CR2_LBCL | USART_CR2_STOP | USART_CR2_SLVEN | \
166 USART_CR2_DIS_NSS)) /*!< USART CR2 fields of parameters set by USART_SetConfig API */
167
168 #define USART_CR3_FIELDS ((uint32_t)(USART_CR3_TXFTCFG | USART_CR3_RXFTCFG )) /*!< USART or USART CR3 fields of parameters set by USART_SetConfig API */
169
170 #define USART_BRR_MIN 0x10U /* USART BRR minimum authorized value */
171 #define USART_BRR_MAX 0xFFFFU /* USART BRR maximum authorized value */
172 /**
173 * @}
174 */
175
176 /* Private macros ------------------------------------------------------------*/
177 /* Private variables ---------------------------------------------------------*/
178 /* Private function prototypes -----------------------------------------------*/
179 /** @addtogroup USART_Private_Functions
180 * @{
181 */
182 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
183 void USART_InitCallbacksToDefault(USART_HandleTypeDef *husart);
184 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
185 static void USART_EndTransfer(USART_HandleTypeDef *husart);
186 static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
187 static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
188 static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
189 static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
190 static void USART_DMAError(DMA_HandleTypeDef *hdma);
191 static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
192 static void USART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
193 static void USART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
194 static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout);
195 static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart);
196 static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart);
197 static void USART_TxISR_8BIT(USART_HandleTypeDef *husart);
198 static void USART_TxISR_16BIT(USART_HandleTypeDef *husart);
199 static void USART_TxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart);
200 static void USART_TxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart);
201 static void USART_EndTransmit_IT(USART_HandleTypeDef *husart);
202 static void USART_RxISR_8BIT(USART_HandleTypeDef *husart);
203 static void USART_RxISR_16BIT(USART_HandleTypeDef *husart);
204 static void USART_RxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart);
205 static void USART_RxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart);
206
207
208 /**
209 * @}
210 */
211
212 /* Exported functions --------------------------------------------------------*/
213
214 /** @defgroup USART_Exported_Functions USART Exported Functions
215 * @{
216 */
217
218 /** @defgroup USART_Exported_Functions_Group1 Initialization and de-initialization functions
219 * @brief Initialization and Configuration functions
220 *
221 @verbatim
222 ===============================================================================
223 ##### Initialization and Configuration functions #####
224 ===============================================================================
225 [..]
226 This subsection provides a set of functions allowing to initialize the USART
227 in asynchronous and in synchronous modes.
228 (+) For the asynchronous mode only these parameters can be configured:
229 (++) Baud Rate
230 (++) Word Length
231 (++) Stop Bit
232 (++) Parity: If the parity is enabled, then the MSB bit of the data written
233 in the data register is transmitted but is changed by the parity bit.
234 (++) USART polarity
235 (++) USART phase
236 (++) USART LastBit
237 (++) Receiver/transmitter modes
238
239 [..]
240 The HAL_USART_Init() function follows the USART synchronous configuration
241 procedure (details for the procedure are available in reference manual).
242
243 @endverbatim
244
245 Depending on the frame length defined by the M1 and M0 bits (7-bit,
246 8-bit or 9-bit), the possible USART formats are listed in the
247 following table.
248
249 Table 1. USART frame format.
250 +-----------------------------------------------------------------------+
251 | M1 bit | M0 bit | PCE bit | USART frame |
252 |---------|---------|-----------|---------------------------------------|
253 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
254 |---------|---------|-----------|---------------------------------------|
255 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
256 |---------|---------|-----------|---------------------------------------|
257 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
258 |---------|---------|-----------|---------------------------------------|
259 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
260 |---------|---------|-----------|---------------------------------------|
261 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
262 |---------|---------|-----------|---------------------------------------|
263 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
264 +-----------------------------------------------------------------------+
265
266 * @{
267 */
268
269 /**
270 * @brief Initialize the USART mode according to the specified
271 * parameters in the USART_InitTypeDef and initialize the associated handle.
272 * @param husart USART handle.
273 * @retval HAL status
274 */
HAL_USART_Init(USART_HandleTypeDef * husart)275 HAL_StatusTypeDef HAL_USART_Init(USART_HandleTypeDef *husart)
276 {
277 /* Check the USART handle allocation */
278 if (husart == NULL)
279 {
280 return HAL_ERROR;
281 }
282
283 /* Check the parameters */
284 assert_param(IS_USART_INSTANCE(husart->Instance));
285
286 if (husart->State == HAL_USART_STATE_RESET)
287 {
288 /* Allocate lock resource and initialize it */
289 husart->Lock = HAL_UNLOCKED;
290
291 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
292 USART_InitCallbacksToDefault(husart);
293
294 if (husart->MspInitCallback == NULL)
295 {
296 husart->MspInitCallback = HAL_USART_MspInit;
297 }
298
299 /* Init the low level hardware */
300 husart->MspInitCallback(husart);
301 #else
302 /* Init the low level hardware : GPIO, CLOCK */
303 HAL_USART_MspInit(husart);
304 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
305 }
306
307 husart->State = HAL_USART_STATE_BUSY;
308
309 /* Disable the Peripheral */
310 __HAL_USART_DISABLE(husart);
311
312 /* Set the Usart Communication parameters */
313 if (USART_SetConfig(husart) == HAL_ERROR)
314 {
315 return HAL_ERROR;
316 }
317
318 /* In Synchronous mode, the following bits must be kept cleared:
319 - LINEN bit in the USART_CR2 register
320 - HDSEL, SCEN and IREN bits in the USART_CR3 register.*/
321 husart->Instance->CR2 &= ~USART_CR2_LINEN;
322 husart->Instance->CR3 &= ~(USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN);
323
324 /* Enable the Peripheral */
325 __HAL_USART_ENABLE(husart);
326
327 /* TEACK and/or REACK to check before moving husart->State to Ready */
328 return (USART_CheckIdleState(husart));
329 }
330
331 /**
332 * @brief DeInitialize the USART peripheral.
333 * @param husart USART handle.
334 * @retval HAL status
335 */
HAL_USART_DeInit(USART_HandleTypeDef * husart)336 HAL_StatusTypeDef HAL_USART_DeInit(USART_HandleTypeDef *husart)
337 {
338 /* Check the USART handle allocation */
339 if (husart == NULL)
340 {
341 return HAL_ERROR;
342 }
343
344 /* Check the parameters */
345 assert_param(IS_USART_INSTANCE(husart->Instance));
346
347 husart->State = HAL_USART_STATE_BUSY;
348
349 husart->Instance->CR1 = 0x0U;
350 husart->Instance->CR2 = 0x0U;
351 husart->Instance->CR3 = 0x0U;
352
353 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
354 if (husart->MspDeInitCallback == NULL)
355 {
356 husart->MspDeInitCallback = HAL_USART_MspDeInit;
357 }
358 /* DeInit the low level hardware */
359 husart->MspDeInitCallback(husart);
360 #else
361 /* DeInit the low level hardware */
362 HAL_USART_MspDeInit(husart);
363 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
364
365 husart->ErrorCode = HAL_USART_ERROR_NONE;
366 husart->State = HAL_USART_STATE_RESET;
367
368 /* Process Unlock */
369 __HAL_UNLOCK(husart);
370
371 return HAL_OK;
372 }
373
374 /**
375 * @brief Initialize the USART MSP.
376 * @param husart USART handle.
377 * @retval None
378 */
HAL_USART_MspInit(USART_HandleTypeDef * husart)379 __weak void HAL_USART_MspInit(USART_HandleTypeDef *husart)
380 {
381 /* Prevent unused argument(s) compilation warning */
382 UNUSED(husart);
383
384 /* NOTE : This function should not be modified, when the callback is needed,
385 the HAL_USART_MspInit can be implemented in the user file
386 */
387 }
388
389 /**
390 * @brief DeInitialize the USART MSP.
391 * @param husart USART handle.
392 * @retval None
393 */
HAL_USART_MspDeInit(USART_HandleTypeDef * husart)394 __weak void HAL_USART_MspDeInit(USART_HandleTypeDef *husart)
395 {
396 /* Prevent unused argument(s) compilation warning */
397 UNUSED(husart);
398
399 /* NOTE : This function should not be modified, when the callback is needed,
400 the HAL_USART_MspDeInit can be implemented in the user file
401 */
402 }
403
404 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
405 /**
406 * @brief Register a User USART Callback
407 * To be used to override the weak predefined callback
408 * @note The HAL_USART_RegisterCallback() may be called before HAL_USART_Init() in HAL_USART_STATE_RESET
409 * to register callbacks for HAL_USART_MSPINIT_CB_ID and HAL_USART_MSPDEINIT_CB_ID
410 * @param husart usart handle
411 * @param CallbackID ID of the callback to be registered
412 * This parameter can be one of the following values:
413 * @arg @ref HAL_USART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
414 * @arg @ref HAL_USART_TX_COMPLETE_CB_ID Tx Complete Callback ID
415 * @arg @ref HAL_USART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
416 * @arg @ref HAL_USART_RX_COMPLETE_CB_ID Rx Complete Callback ID
417 * @arg @ref HAL_USART_TX_RX_COMPLETE_CB_ID Rx Complete Callback ID
418 * @arg @ref HAL_USART_ERROR_CB_ID Error Callback ID
419 * @arg @ref HAL_USART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
420 * @arg @ref HAL_USART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
421 * @arg @ref HAL_USART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
422 * @arg @ref HAL_USART_MSPINIT_CB_ID MspInit Callback ID
423 * @arg @ref HAL_USART_MSPDEINIT_CB_ID MspDeInit Callback ID
424 * @param pCallback pointer to the Callback function
425 * @retval HAL status
426 + */
HAL_USART_RegisterCallback(USART_HandleTypeDef * husart,HAL_USART_CallbackIDTypeDef CallbackID,pUSART_CallbackTypeDef pCallback)427 HAL_StatusTypeDef HAL_USART_RegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID,
428 pUSART_CallbackTypeDef pCallback)
429 {
430 HAL_StatusTypeDef status = HAL_OK;
431
432 if (pCallback == NULL)
433 {
434 /* Update the error code */
435 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
436
437 return HAL_ERROR;
438 }
439
440 if (husart->State == HAL_USART_STATE_READY)
441 {
442 switch (CallbackID)
443 {
444 case HAL_USART_TX_HALFCOMPLETE_CB_ID :
445 husart->TxHalfCpltCallback = pCallback;
446 break;
447
448 case HAL_USART_TX_COMPLETE_CB_ID :
449 husart->TxCpltCallback = pCallback;
450 break;
451
452 case HAL_USART_RX_HALFCOMPLETE_CB_ID :
453 husart->RxHalfCpltCallback = pCallback;
454 break;
455
456 case HAL_USART_RX_COMPLETE_CB_ID :
457 husart->RxCpltCallback = pCallback;
458 break;
459
460 case HAL_USART_TX_RX_COMPLETE_CB_ID :
461 husart->TxRxCpltCallback = pCallback;
462 break;
463
464 case HAL_USART_ERROR_CB_ID :
465 husart->ErrorCallback = pCallback;
466 break;
467
468 case HAL_USART_ABORT_COMPLETE_CB_ID :
469 husart->AbortCpltCallback = pCallback;
470 break;
471
472 case HAL_USART_RX_FIFO_FULL_CB_ID :
473 husart->RxFifoFullCallback = pCallback;
474 break;
475
476 case HAL_USART_TX_FIFO_EMPTY_CB_ID :
477 husart->TxFifoEmptyCallback = pCallback;
478 break;
479
480 case HAL_USART_MSPINIT_CB_ID :
481 husart->MspInitCallback = pCallback;
482 break;
483
484 case HAL_USART_MSPDEINIT_CB_ID :
485 husart->MspDeInitCallback = pCallback;
486 break;
487
488 default :
489 /* Update the error code */
490 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
491
492 /* Return error status */
493 status = HAL_ERROR;
494 break;
495 }
496 }
497 else if (husart->State == HAL_USART_STATE_RESET)
498 {
499 switch (CallbackID)
500 {
501 case HAL_USART_MSPINIT_CB_ID :
502 husart->MspInitCallback = pCallback;
503 break;
504
505 case HAL_USART_MSPDEINIT_CB_ID :
506 husart->MspDeInitCallback = pCallback;
507 break;
508
509 default :
510 /* Update the error code */
511 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
512
513 /* Return error status */
514 status = HAL_ERROR;
515 break;
516 }
517 }
518 else
519 {
520 /* Update the error code */
521 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
522
523 /* Return error status */
524 status = HAL_ERROR;
525 }
526
527 return status;
528 }
529
530 /**
531 * @brief Unregister an USART Callback
532 * USART callaback is redirected to the weak predefined callback
533 * @note The HAL_USART_UnRegisterCallback() may be called before HAL_USART_Init() in HAL_USART_STATE_RESET
534 * to un-register callbacks for HAL_USART_MSPINIT_CB_ID and HAL_USART_MSPDEINIT_CB_ID
535 * @param husart usart handle
536 * @param CallbackID ID of the callback to be unregistered
537 * This parameter can be one of the following values:
538 * @arg @ref HAL_USART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
539 * @arg @ref HAL_USART_TX_COMPLETE_CB_ID Tx Complete Callback ID
540 * @arg @ref HAL_USART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
541 * @arg @ref HAL_USART_RX_COMPLETE_CB_ID Rx Complete Callback ID
542 * @arg @ref HAL_USART_TX_RX_COMPLETE_CB_ID Rx Complete Callback ID
543 * @arg @ref HAL_USART_ERROR_CB_ID Error Callback ID
544 * @arg @ref HAL_USART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
545 * @arg @ref HAL_USART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
546 * @arg @ref HAL_USART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
547 * @arg @ref HAL_USART_MSPINIT_CB_ID MspInit Callback ID
548 * @arg @ref HAL_USART_MSPDEINIT_CB_ID MspDeInit Callback ID
549 * @retval HAL status
550 */
HAL_USART_UnRegisterCallback(USART_HandleTypeDef * husart,HAL_USART_CallbackIDTypeDef CallbackID)551 HAL_StatusTypeDef HAL_USART_UnRegisterCallback(USART_HandleTypeDef *husart, HAL_USART_CallbackIDTypeDef CallbackID)
552 {
553 HAL_StatusTypeDef status = HAL_OK;
554
555 if (HAL_USART_STATE_READY == husart->State)
556 {
557 switch (CallbackID)
558 {
559 case HAL_USART_TX_HALFCOMPLETE_CB_ID :
560 husart->TxHalfCpltCallback = HAL_USART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
561 break;
562
563 case HAL_USART_TX_COMPLETE_CB_ID :
564 husart->TxCpltCallback = HAL_USART_TxCpltCallback; /* Legacy weak TxCpltCallback */
565 break;
566
567 case HAL_USART_RX_HALFCOMPLETE_CB_ID :
568 husart->RxHalfCpltCallback = HAL_USART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
569 break;
570
571 case HAL_USART_RX_COMPLETE_CB_ID :
572 husart->RxCpltCallback = HAL_USART_RxCpltCallback; /* Legacy weak RxCpltCallback */
573 break;
574
575 case HAL_USART_TX_RX_COMPLETE_CB_ID :
576 husart->TxRxCpltCallback = HAL_USART_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
577 break;
578
579 case HAL_USART_ERROR_CB_ID :
580 husart->ErrorCallback = HAL_USART_ErrorCallback; /* Legacy weak ErrorCallback */
581 break;
582
583 case HAL_USART_ABORT_COMPLETE_CB_ID :
584 husart->AbortCpltCallback = HAL_USART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
585 break;
586
587 case HAL_USART_RX_FIFO_FULL_CB_ID :
588 husart->RxFifoFullCallback = HAL_USARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
589 break;
590
591 case HAL_USART_TX_FIFO_EMPTY_CB_ID :
592 husart->TxFifoEmptyCallback = HAL_USARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
593 break;
594
595 case HAL_USART_MSPINIT_CB_ID :
596 husart->MspInitCallback = HAL_USART_MspInit; /* Legacy weak MspInitCallback */
597 break;
598
599 case HAL_USART_MSPDEINIT_CB_ID :
600 husart->MspDeInitCallback = HAL_USART_MspDeInit; /* Legacy weak MspDeInitCallback */
601 break;
602
603 default :
604 /* Update the error code */
605 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
606
607 /* Return error status */
608 status = HAL_ERROR;
609 break;
610 }
611 }
612 else if (HAL_USART_STATE_RESET == husart->State)
613 {
614 switch (CallbackID)
615 {
616 case HAL_USART_MSPINIT_CB_ID :
617 husart->MspInitCallback = HAL_USART_MspInit;
618 break;
619
620 case HAL_USART_MSPDEINIT_CB_ID :
621 husart->MspDeInitCallback = HAL_USART_MspDeInit;
622 break;
623
624 default :
625 /* Update the error code */
626 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
627
628 /* Return error status */
629 status = HAL_ERROR;
630 break;
631 }
632 }
633 else
634 {
635 /* Update the error code */
636 husart->ErrorCode |= HAL_USART_ERROR_INVALID_CALLBACK;
637
638 /* Return error status */
639 status = HAL_ERROR;
640 }
641
642 return status;
643 }
644 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
645
646
647 /**
648 * @}
649 */
650
651 /** @defgroup USART_Exported_Functions_Group2 IO operation functions
652 * @brief USART Transmit and Receive functions
653 *
654 @verbatim
655 ===============================================================================
656 ##### IO operation functions #####
657 ===============================================================================
658 [..] This subsection provides a set of functions allowing to manage the USART synchronous
659 data transfers.
660
661 [..] The USART supports master mode only: it cannot receive or send data related to an input
662 clock (SCLK is always an output).
663
664 [..]
665
666 (#) There are two modes of transfer:
667 (++) Blocking mode: The communication is performed in polling mode.
668 The HAL status of all data processing is returned by the same function
669 after finishing transfer.
670 (++) No-Blocking mode: The communication is performed using Interrupts
671 or DMA, These API's return the HAL status.
672 The end of the data processing will be indicated through the
673 dedicated USART IRQ when using Interrupt mode or the DMA IRQ when
674 using DMA mode.
675 The HAL_USART_TxCpltCallback(), HAL_USART_RxCpltCallback() and HAL_USART_TxRxCpltCallback() user callbacks
676 will be executed respectively at the end of the transmit or Receive process
677 The HAL_USART_ErrorCallback()user callback will be executed when a communication error is detected
678
679 (#) Blocking mode API's are :
680 (++) HAL_USART_Transmit() in simplex mode
681 (++) HAL_USART_Receive() in full duplex receive only
682 (++) HAL_USART_TransmitReceive() in full duplex mode
683
684 (#) Non-Blocking mode API's with Interrupt are :
685 (++) HAL_USART_Transmit_IT() in simplex mode
686 (++) HAL_USART_Receive_IT() in full duplex receive only
687 (++) HAL_USART_TransmitReceive_IT() in full duplex mode
688 (++) HAL_USART_IRQHandler()
689
690 (#) No-Blocking mode API's with DMA are :
691 (++) HAL_USART_Transmit_DMA() in simplex mode
692 (++) HAL_USART_Receive_DMA() in full duplex receive only
693 (++) HAL_USART_TransmitReceive_DMA() in full duplex mode
694 (++) HAL_USART_DMAPause()
695 (++) HAL_USART_DMAResume()
696 (++) HAL_USART_DMAStop()
697
698 (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
699 (++) HAL_USART_TxCpltCallback()
700 (++) HAL_USART_RxCpltCallback()
701 (++) HAL_USART_TxHalfCpltCallback()
702 (++) HAL_USART_RxHalfCpltCallback()
703 (++) HAL_USART_ErrorCallback()
704 (++) HAL_USART_TxRxCpltCallback()
705
706 (#) Non-Blocking mode transfers could be aborted using Abort API's :
707 (++) HAL_USART_Abort()
708 (++) HAL_USART_Abort_IT()
709
710 (#) For Abort services based on interrupts (HAL_USART_Abort_IT), a Abort Complete Callbacks is provided:
711 (++) HAL_USART_AbortCpltCallback()
712
713 (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
714 Errors are handled as follows :
715 (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
716 to be evaluated by user : this concerns Frame Error,
717 Parity Error or Noise Error in Interrupt mode reception .
718 Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify
719 error type, and HAL_USART_ErrorCallback() user callback is executed.
720 Transfer is kept ongoing on USART side.
721 If user wants to abort it, Abort services should be called by user.
722 (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
723 This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
724 Error code is set to allow user to identify error type,
725 and HAL_USART_ErrorCallback() user callback is executed.
726
727 @endverbatim
728 * @{
729 */
730
731 /**
732 * @brief Simplex send an amount of data in blocking mode.
733 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
734 * the sent data is handled as a set of u16. In this case, Size must indicate the number
735 * of u16 provided through pTxData.
736 * @param husart USART handle.
737 * @param pTxData Pointer to data buffer (u8 or u16 data elements).
738 * @param Size Amount of data elements (u8 or u16) to be sent.
739 * @param Timeout Timeout duration.
740 * @retval HAL status
741 */
HAL_USART_Transmit(USART_HandleTypeDef * husart,const uint8_t * pTxData,uint16_t Size,uint32_t Timeout)742 HAL_StatusTypeDef HAL_USART_Transmit(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size, uint32_t Timeout)
743 {
744 const uint8_t *ptxdata8bits;
745 const uint16_t *ptxdata16bits;
746 uint32_t tickstart;
747
748
749 if (husart->State == HAL_USART_STATE_READY)
750 {
751 if ((pTxData == NULL) || (Size == 0U))
752 {
753 return HAL_ERROR;
754 }
755
756 /* Process Locked */
757 __HAL_LOCK(husart);
758
759 husart->ErrorCode = HAL_USART_ERROR_NONE;
760 husart->State = HAL_USART_STATE_BUSY_TX;
761
762 /* Init tickstart for timeout management */
763 tickstart = HAL_GetTick();
764
765 husart->TxXferSize = Size;
766 husart->TxXferCount = Size;
767
768 /* In case of 9bits/No Parity transfer, pTxData needs to be handled as a uint16_t pointer */
769 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
770 {
771 ptxdata8bits = NULL;
772 ptxdata16bits = (const uint16_t *) pTxData;
773 }
774 else
775 {
776 ptxdata8bits = pTxData;
777 ptxdata16bits = NULL;
778 }
779
780 /* Check the remaining data to be sent */
781 while (husart->TxXferCount > 0U)
782 {
783 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
784 {
785 return HAL_TIMEOUT;
786 }
787 if (ptxdata8bits == NULL)
788 {
789 husart->Instance->TDR = (uint16_t)(*ptxdata16bits & 0x01FFU);
790 ptxdata16bits++;
791 }
792 else
793 {
794 husart->Instance->TDR = (uint8_t)(*ptxdata8bits & 0xFFU);
795 ptxdata8bits++;
796 }
797
798 husart->TxXferCount--;
799 }
800
801 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
802 {
803 return HAL_TIMEOUT;
804 }
805
806 /* Clear Transmission Complete Flag */
807 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF);
808
809 /* Clear overrun flag and discard the received data */
810 __HAL_USART_CLEAR_OREFLAG(husart);
811 __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST);
812 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
813
814 /* At end of Tx process, restore husart->State to Ready */
815 husart->State = HAL_USART_STATE_READY;
816
817 /* Process Unlocked */
818 __HAL_UNLOCK(husart);
819
820 return HAL_OK;
821 }
822 else
823 {
824 return HAL_BUSY;
825 }
826 }
827
828 /**
829 * @brief Receive an amount of data in blocking mode.
830 * @note To receive synchronous data, dummy data are simultaneously transmitted.
831 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
832 * the received data is handled as a set of u16. In this case, Size must indicate the number
833 * of u16 available through pRxData.
834 * @param husart USART handle.
835 * @param pRxData Pointer to data buffer (u8 or u16 data elements).
836 * @param Size Amount of data elements (u8 or u16) to be received.
837 * @param Timeout Timeout duration.
838 * @retval HAL status
839 */
HAL_USART_Receive(USART_HandleTypeDef * husart,uint8_t * pRxData,uint16_t Size,uint32_t Timeout)840 HAL_StatusTypeDef HAL_USART_Receive(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)
841 {
842 uint8_t *prxdata8bits;
843 uint16_t *prxdata16bits;
844 uint16_t uhMask;
845 uint32_t tickstart;
846
847
848 if (husart->State == HAL_USART_STATE_READY)
849 {
850 if ((pRxData == NULL) || (Size == 0U))
851 {
852 return HAL_ERROR;
853 }
854
855 /* Process Locked */
856 __HAL_LOCK(husart);
857
858 husart->ErrorCode = HAL_USART_ERROR_NONE;
859 husart->State = HAL_USART_STATE_BUSY_RX;
860
861 /* Init tickstart for timeout management */
862 tickstart = HAL_GetTick();
863
864 husart->RxXferSize = Size;
865 husart->RxXferCount = Size;
866
867 /* Computation of USART mask to apply to RDR register */
868 USART_MASK_COMPUTATION(husart);
869 uhMask = husart->Mask;
870
871 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
872 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
873 {
874 prxdata8bits = NULL;
875 prxdata16bits = (uint16_t *) pRxData;
876 }
877 else
878 {
879 prxdata8bits = pRxData;
880 prxdata16bits = NULL;
881 }
882
883 /* as long as data have to be received */
884 while (husart->RxXferCount > 0U)
885 {
886 if (husart->SlaveMode == USART_SLAVEMODE_DISABLE)
887 {
888 /* Wait until TXE flag is set to send dummy byte in order to generate the
889 * clock for the slave to send data.
890 * Whatever the frame length (7, 8 or 9-bit long), the same dummy value
891 * can be written for all the cases. */
892 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
893 {
894 return HAL_TIMEOUT;
895 }
896 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x0FF);
897 }
898
899 /* Wait for RXNE Flag */
900 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
901 {
902 return HAL_TIMEOUT;
903 }
904
905 if (prxdata8bits == NULL)
906 {
907 *prxdata16bits = (uint16_t)(husart->Instance->RDR & uhMask);
908 prxdata16bits++;
909 }
910 else
911 {
912 *prxdata8bits = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU));
913 prxdata8bits++;
914 }
915
916 husart->RxXferCount--;
917
918 }
919
920 /* Clear SPI slave underrun flag and discard transmit data */
921 if (husart->SlaveMode == USART_SLAVEMODE_ENABLE)
922 {
923 __HAL_USART_CLEAR_UDRFLAG(husart);
924 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
925 }
926
927 /* At end of Rx process, restore husart->State to Ready */
928 husart->State = HAL_USART_STATE_READY;
929
930 /* Process Unlocked */
931 __HAL_UNLOCK(husart);
932
933 return HAL_OK;
934 }
935 else
936 {
937 return HAL_BUSY;
938 }
939 }
940
941 /**
942 * @brief Full-Duplex Send and Receive an amount of data in blocking mode.
943 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
944 * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number
945 * of u16 available through pTxData and through pRxData.
946 * @param husart USART handle.
947 * @param pTxData pointer to TX data buffer (u8 or u16 data elements).
948 * @param pRxData pointer to RX data buffer (u8 or u16 data elements).
949 * @param Size amount of data elements (u8 or u16) to be sent (same amount to be received).
950 * @param Timeout Timeout duration.
951 * @retval HAL status
952 */
HAL_USART_TransmitReceive(USART_HandleTypeDef * husart,const uint8_t * pTxData,uint8_t * pRxData,uint16_t Size,uint32_t Timeout)953 HAL_StatusTypeDef HAL_USART_TransmitReceive(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData,
954 uint16_t Size, uint32_t Timeout)
955 {
956 uint8_t *prxdata8bits;
957 uint16_t *prxdata16bits;
958 const uint8_t *ptxdata8bits;
959 const uint16_t *ptxdata16bits;
960 uint16_t uhMask;
961 uint16_t rxdatacount;
962 uint32_t tickstart;
963
964
965 if (husart->State == HAL_USART_STATE_READY)
966 {
967 if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
968 {
969 return HAL_ERROR;
970 }
971
972 /* Process Locked */
973 __HAL_LOCK(husart);
974
975 husart->ErrorCode = HAL_USART_ERROR_NONE;
976 husart->State = HAL_USART_STATE_BUSY_RX;
977
978 /* Init tickstart for timeout management */
979 tickstart = HAL_GetTick();
980
981 husart->RxXferSize = Size;
982 husart->TxXferSize = Size;
983 husart->TxXferCount = Size;
984 husart->RxXferCount = Size;
985
986 /* Computation of USART mask to apply to RDR register */
987 USART_MASK_COMPUTATION(husart);
988 uhMask = husart->Mask;
989
990 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
991 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
992 {
993 prxdata8bits = NULL;
994 ptxdata8bits = NULL;
995 ptxdata16bits = (const uint16_t *) pTxData;
996 prxdata16bits = (uint16_t *) pRxData;
997 }
998 else
999 {
1000 prxdata8bits = pRxData;
1001 ptxdata8bits = pTxData;
1002 ptxdata16bits = NULL;
1003 prxdata16bits = NULL;
1004 }
1005
1006 if ((husart->TxXferCount == 0x01U) || (husart->SlaveMode == USART_SLAVEMODE_ENABLE))
1007 {
1008 /* Wait until TXE flag is set to send data */
1009 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
1010 {
1011 return HAL_TIMEOUT;
1012 }
1013 if (ptxdata8bits == NULL)
1014 {
1015 husart->Instance->TDR = (uint16_t)(*ptxdata16bits & uhMask);
1016 ptxdata16bits++;
1017 }
1018 else
1019 {
1020 husart->Instance->TDR = (uint8_t)(*ptxdata8bits & (uint8_t)(uhMask & 0xFFU));
1021 ptxdata8bits++;
1022 }
1023
1024 husart->TxXferCount--;
1025 }
1026
1027 /* Check the remain data to be sent */
1028 /* rxdatacount is a temporary variable for MISRAC2012-Rule-13.5 */
1029 rxdatacount = husart->RxXferCount;
1030 while ((husart->TxXferCount > 0U) || (rxdatacount > 0U))
1031 {
1032 if (husart->TxXferCount > 0U)
1033 {
1034 /* Wait until TXE flag is set to send data */
1035 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
1036 {
1037 return HAL_TIMEOUT;
1038 }
1039 if (ptxdata8bits == NULL)
1040 {
1041 husart->Instance->TDR = (uint16_t)(*ptxdata16bits & uhMask);
1042 ptxdata16bits++;
1043 }
1044 else
1045 {
1046 husart->Instance->TDR = (uint8_t)(*ptxdata8bits & (uint8_t)(uhMask & 0xFFU));
1047 ptxdata8bits++;
1048 }
1049
1050 husart->TxXferCount--;
1051 }
1052
1053 if (husart->RxXferCount > 0U)
1054 {
1055 /* Wait for RXNE Flag */
1056 if (USART_WaitOnFlagUntilTimeout(husart, USART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
1057 {
1058 return HAL_TIMEOUT;
1059 }
1060
1061 if (prxdata8bits == NULL)
1062 {
1063 *prxdata16bits = (uint16_t)(husart->Instance->RDR & uhMask);
1064 prxdata16bits++;
1065 }
1066 else
1067 {
1068 *prxdata8bits = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU));
1069 prxdata8bits++;
1070 }
1071
1072 husart->RxXferCount--;
1073 }
1074 rxdatacount = husart->RxXferCount;
1075 }
1076
1077 /* At end of TxRx process, restore husart->State to Ready */
1078 husart->State = HAL_USART_STATE_READY;
1079
1080 /* Process Unlocked */
1081 __HAL_UNLOCK(husart);
1082
1083 return HAL_OK;
1084 }
1085 else
1086 {
1087 return HAL_BUSY;
1088 }
1089 }
1090
1091 /**
1092 * @brief Send an amount of data in interrupt mode.
1093 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1094 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1095 * of u16 provided through pTxData.
1096 * @param husart USART handle.
1097 * @param pTxData pointer to data buffer (u8 or u16 data elements).
1098 * @param Size amount of data elements (u8 or u16) to be sent.
1099 * @retval HAL status
1100 */
HAL_USART_Transmit_IT(USART_HandleTypeDef * husart,const uint8_t * pTxData,uint16_t Size)1101 HAL_StatusTypeDef HAL_USART_Transmit_IT(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size)
1102 {
1103
1104 if (husart->State == HAL_USART_STATE_READY)
1105 {
1106 if ((pTxData == NULL) || (Size == 0U))
1107 {
1108 return HAL_ERROR;
1109 }
1110
1111 /* Process Locked */
1112 __HAL_LOCK(husart);
1113
1114 husart->pTxBuffPtr = pTxData;
1115 husart->TxXferSize = Size;
1116 husart->TxXferCount = Size;
1117 husart->TxISR = NULL;
1118
1119 husart->ErrorCode = HAL_USART_ERROR_NONE;
1120 husart->State = HAL_USART_STATE_BUSY_TX;
1121
1122 /* The USART Error Interrupts: (Frame error, noise error, overrun error)
1123 are not managed by the USART Transmit Process to avoid the overrun interrupt
1124 when the usart mode is configured for transmit and receive "USART_MODE_TX_RX"
1125 to benefit for the frame error and noise interrupts the usart mode should be
1126 configured only for transmit "USART_MODE_TX" */
1127
1128 /* Configure Tx interrupt processing */
1129 if (husart->FifoMode == USART_FIFOMODE_ENABLE)
1130 {
1131 /* Set the Tx ISR function pointer according to the data word length */
1132 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
1133 {
1134 husart->TxISR = USART_TxISR_16BIT_FIFOEN;
1135 }
1136 else
1137 {
1138 husart->TxISR = USART_TxISR_8BIT_FIFOEN;
1139 }
1140
1141 /* Process Unlocked */
1142 __HAL_UNLOCK(husart);
1143
1144 /* Enable the TX FIFO threshold interrupt */
1145 __HAL_USART_ENABLE_IT(husart, USART_IT_TXFT);
1146 }
1147 else
1148 {
1149 /* Set the Tx ISR function pointer according to the data word length */
1150 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
1151 {
1152 husart->TxISR = USART_TxISR_16BIT;
1153 }
1154 else
1155 {
1156 husart->TxISR = USART_TxISR_8BIT;
1157 }
1158
1159 /* Process Unlocked */
1160 __HAL_UNLOCK(husart);
1161
1162 /* Enable the USART Transmit Data Register Empty Interrupt */
1163 __HAL_USART_ENABLE_IT(husart, USART_IT_TXE);
1164 }
1165
1166 return HAL_OK;
1167 }
1168 else
1169 {
1170 return HAL_BUSY;
1171 }
1172 }
1173
1174 /**
1175 * @brief Receive an amount of data in interrupt mode.
1176 * @note To receive synchronous data, dummy data are simultaneously transmitted.
1177 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1178 * the received data is handled as a set of u16. In this case, Size must indicate the number
1179 * of u16 available through pRxData.
1180 * @param husart USART handle.
1181 * @param pRxData pointer to data buffer (u8 or u16 data elements).
1182 * @param Size amount of data elements (u8 or u16) to be received.
1183 * @retval HAL status
1184 */
HAL_USART_Receive_IT(USART_HandleTypeDef * husart,uint8_t * pRxData,uint16_t Size)1185 HAL_StatusTypeDef HAL_USART_Receive_IT(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size)
1186 {
1187 uint16_t nb_dummy_data;
1188
1189
1190 if (husart->State == HAL_USART_STATE_READY)
1191 {
1192 if ((pRxData == NULL) || (Size == 0U))
1193 {
1194 return HAL_ERROR;
1195 }
1196
1197 /* Process Locked */
1198 __HAL_LOCK(husart);
1199
1200 husart->pRxBuffPtr = pRxData;
1201 husart->RxXferSize = Size;
1202 husart->RxXferCount = Size;
1203 husart->RxISR = NULL;
1204
1205 USART_MASK_COMPUTATION(husart);
1206
1207 husart->ErrorCode = HAL_USART_ERROR_NONE;
1208 husart->State = HAL_USART_STATE_BUSY_RX;
1209
1210 /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
1211 SET_BIT(husart->Instance->CR3, USART_CR3_EIE);
1212
1213 /* Configure Rx interrupt processing */
1214 if ((husart->FifoMode == USART_FIFOMODE_ENABLE) && (Size >= husart->NbRxDataToProcess))
1215 {
1216 /* Set the Rx ISR function pointer according to the data word length */
1217 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
1218 {
1219 husart->RxISR = USART_RxISR_16BIT_FIFOEN;
1220 }
1221 else
1222 {
1223 husart->RxISR = USART_RxISR_8BIT_FIFOEN;
1224 }
1225
1226 /* Process Unlocked */
1227 __HAL_UNLOCK(husart);
1228
1229 /* Enable the USART Parity Error interrupt and RX FIFO Threshold interrupt */
1230 if (husart->Init.Parity != USART_PARITY_NONE)
1231 {
1232 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE);
1233 }
1234 SET_BIT(husart->Instance->CR3, USART_CR3_RXFTIE);
1235 }
1236 else
1237 {
1238 /* Set the Rx ISR function pointer according to the data word length */
1239 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
1240 {
1241 husart->RxISR = USART_RxISR_16BIT;
1242 }
1243 else
1244 {
1245 husart->RxISR = USART_RxISR_8BIT;
1246 }
1247
1248 /* Process Unlocked */
1249 __HAL_UNLOCK(husart);
1250
1251 /* Enable the USART Parity Error and Data Register not empty Interrupts */
1252 if (husart->Init.Parity != USART_PARITY_NONE)
1253 {
1254 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
1255 }
1256 else
1257 {
1258 SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
1259 }
1260 }
1261
1262 if (husart->SlaveMode == USART_SLAVEMODE_DISABLE)
1263 {
1264 /* Send dummy data in order to generate the clock for the Slave to send the next data.
1265 When FIFO mode is disabled only one data must be transferred.
1266 When FIFO mode is enabled data must be transmitted until the RX FIFO reaches its threshold.
1267 */
1268 if ((husart->FifoMode == USART_FIFOMODE_ENABLE) && (Size >= husart->NbRxDataToProcess))
1269 {
1270 for (nb_dummy_data = husart->NbRxDataToProcess ; nb_dummy_data > 0U ; nb_dummy_data--)
1271 {
1272 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
1273 }
1274 }
1275 else
1276 {
1277 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
1278 }
1279 }
1280
1281 return HAL_OK;
1282 }
1283 else
1284 {
1285 return HAL_BUSY;
1286 }
1287 }
1288
1289 /**
1290 * @brief Full-Duplex Send and Receive an amount of data in interrupt mode.
1291 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1292 * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number
1293 * of u16 available through pTxData and through pRxData.
1294 * @param husart USART handle.
1295 * @param pTxData pointer to TX data buffer (u8 or u16 data elements).
1296 * @param pRxData pointer to RX data buffer (u8 or u16 data elements).
1297 * @param Size amount of data elements (u8 or u16) to be sent (same amount to be received).
1298 * @retval HAL status
1299 */
HAL_USART_TransmitReceive_IT(USART_HandleTypeDef * husart,const uint8_t * pTxData,uint8_t * pRxData,uint16_t Size)1300 HAL_StatusTypeDef HAL_USART_TransmitReceive_IT(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData,
1301 uint16_t Size)
1302 {
1303
1304 if (husart->State == HAL_USART_STATE_READY)
1305 {
1306 if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
1307 {
1308 return HAL_ERROR;
1309 }
1310
1311 /* Process Locked */
1312 __HAL_LOCK(husart);
1313
1314 husart->pRxBuffPtr = pRxData;
1315 husart->RxXferSize = Size;
1316 husart->RxXferCount = Size;
1317 husart->pTxBuffPtr = pTxData;
1318 husart->TxXferSize = Size;
1319 husart->TxXferCount = Size;
1320
1321 /* Computation of USART mask to apply to RDR register */
1322 USART_MASK_COMPUTATION(husart);
1323
1324 husart->ErrorCode = HAL_USART_ERROR_NONE;
1325 husart->State = HAL_USART_STATE_BUSY_TX_RX;
1326
1327 /* Configure TxRx interrupt processing */
1328 if ((husart->FifoMode == USART_FIFOMODE_ENABLE) && (Size >= husart->NbRxDataToProcess))
1329 {
1330 /* Set the Rx ISR function pointer according to the data word length */
1331 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
1332 {
1333 husart->TxISR = USART_TxISR_16BIT_FIFOEN;
1334 husart->RxISR = USART_RxISR_16BIT_FIFOEN;
1335 }
1336 else
1337 {
1338 husart->TxISR = USART_TxISR_8BIT_FIFOEN;
1339 husart->RxISR = USART_RxISR_8BIT_FIFOEN;
1340 }
1341
1342 /* Process Locked */
1343 __HAL_UNLOCK(husart);
1344
1345 /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
1346 SET_BIT(husart->Instance->CR3, USART_CR3_EIE);
1347
1348 if (husart->Init.Parity != USART_PARITY_NONE)
1349 {
1350 /* Enable the USART Parity Error interrupt */
1351 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE);
1352 }
1353
1354 /* Enable the TX and RX FIFO Threshold interrupts */
1355 SET_BIT(husart->Instance->CR3, (USART_CR3_TXFTIE | USART_CR3_RXFTIE));
1356 }
1357 else
1358 {
1359 if ((husart->Init.WordLength == USART_WORDLENGTH_9B) && (husart->Init.Parity == USART_PARITY_NONE))
1360 {
1361 husart->TxISR = USART_TxISR_16BIT;
1362 husart->RxISR = USART_RxISR_16BIT;
1363 }
1364 else
1365 {
1366 husart->TxISR = USART_TxISR_8BIT;
1367 husart->RxISR = USART_RxISR_8BIT;
1368 }
1369
1370 /* Process Locked */
1371 __HAL_UNLOCK(husart);
1372
1373 /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
1374 SET_BIT(husart->Instance->CR3, USART_CR3_EIE);
1375
1376 /* Enable the USART Parity Error and USART Data Register not empty Interrupts */
1377 if (husart->Init.Parity != USART_PARITY_NONE)
1378 {
1379 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
1380 }
1381 else
1382 {
1383 SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
1384 }
1385
1386 /* Enable the USART Transmit Data Register Empty Interrupt */
1387 SET_BIT(husart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
1388 }
1389
1390 return HAL_OK;
1391 }
1392 else
1393 {
1394 return HAL_BUSY;
1395 }
1396 }
1397
1398 /**
1399 * @brief Send an amount of data in DMA mode.
1400 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1401 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1402 * of u16 provided through pTxData.
1403 * @param husart USART handle.
1404 * @param pTxData pointer to data buffer (u8 or u16 data elements).
1405 * @param Size amount of data elements (u8 or u16) to be sent.
1406 * @retval HAL status
1407 */
HAL_USART_Transmit_DMA(USART_HandleTypeDef * husart,const uint8_t * pTxData,uint16_t Size)1408 HAL_StatusTypeDef HAL_USART_Transmit_DMA(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint16_t Size)
1409 {
1410 HAL_StatusTypeDef status = HAL_OK;
1411 const uint32_t *tmp;
1412
1413
1414 if (husart->State == HAL_USART_STATE_READY)
1415 {
1416 if ((pTxData == NULL) || (Size == 0U))
1417 {
1418 return HAL_ERROR;
1419 }
1420
1421 /* Process Locked */
1422 __HAL_LOCK(husart);
1423
1424 husart->pTxBuffPtr = pTxData;
1425 husart->TxXferSize = Size;
1426 husart->TxXferCount = Size;
1427
1428 husart->ErrorCode = HAL_USART_ERROR_NONE;
1429 husart->State = HAL_USART_STATE_BUSY_TX;
1430
1431 if (husart->hdmatx != NULL)
1432 {
1433 /* Set the USART DMA transfer complete callback */
1434 husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt;
1435
1436 /* Set the USART DMA Half transfer complete callback */
1437 husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt;
1438
1439 /* Set the DMA error callback */
1440 husart->hdmatx->XferErrorCallback = USART_DMAError;
1441
1442 /* Enable the USART transmit DMA channel */
1443 tmp = (const uint32_t *)&pTxData;
1444 status = HAL_DMA_Start_IT(husart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size);
1445 }
1446
1447 if (status == HAL_OK)
1448 {
1449 /* Clear the TC flag in the ICR register */
1450 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF);
1451
1452 /* Process Unlocked */
1453 __HAL_UNLOCK(husart);
1454
1455 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1456 in the USART CR3 register */
1457 SET_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1458
1459 return HAL_OK;
1460 }
1461 else
1462 {
1463 /* Set error code to DMA */
1464 husart->ErrorCode = HAL_USART_ERROR_DMA;
1465
1466 /* Process Unlocked */
1467 __HAL_UNLOCK(husart);
1468
1469 /* Restore husart->State to ready */
1470 husart->State = HAL_USART_STATE_READY;
1471
1472 return HAL_ERROR;
1473 }
1474 }
1475 else
1476 {
1477 return HAL_BUSY;
1478 }
1479 }
1480
1481 /**
1482 * @brief Receive an amount of data in DMA mode.
1483 * @note When the USART parity is enabled (PCE = 1), the received data contain
1484 * the parity bit (MSB position).
1485 * @note The USART DMA transmit channel must be configured in order to generate the clock for the slave.
1486 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1487 * the received data is handled as a set of u16. In this case, Size must indicate the number
1488 * of u16 available through pRxData.
1489 * @param husart USART handle.
1490 * @param pRxData pointer to data buffer (u8 or u16 data elements).
1491 * @param Size amount of data elements (u8 or u16) to be received.
1492 * @retval HAL status
1493 */
HAL_USART_Receive_DMA(USART_HandleTypeDef * husart,uint8_t * pRxData,uint16_t Size)1494 HAL_StatusTypeDef HAL_USART_Receive_DMA(USART_HandleTypeDef *husart, uint8_t *pRxData, uint16_t Size)
1495 {
1496 HAL_StatusTypeDef status = HAL_OK;
1497 uint32_t *tmp = (uint32_t *)&pRxData;
1498
1499
1500 /* Check that a Rx process is not already ongoing */
1501 if (husart->State == HAL_USART_STATE_READY)
1502 {
1503 if ((pRxData == NULL) || (Size == 0U))
1504 {
1505 return HAL_ERROR;
1506 }
1507
1508 /* Process Locked */
1509 __HAL_LOCK(husart);
1510
1511 husart->pRxBuffPtr = pRxData;
1512 husart->RxXferSize = Size;
1513 husart->pTxBuffPtr = pRxData;
1514 husart->TxXferSize = Size;
1515
1516 husart->ErrorCode = HAL_USART_ERROR_NONE;
1517 husart->State = HAL_USART_STATE_BUSY_RX;
1518
1519 if (husart->hdmarx != NULL)
1520 {
1521 /* Set the USART DMA Rx transfer complete callback */
1522 husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt;
1523
1524 /* Set the USART DMA Half transfer complete callback */
1525 husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt;
1526
1527 /* Set the USART DMA Rx transfer error callback */
1528 husart->hdmarx->XferErrorCallback = USART_DMAError;
1529
1530 /* Enable the USART receive DMA channel */
1531 status = HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(uint32_t *)tmp, Size);
1532 }
1533
1534 if ((status == HAL_OK) &&
1535 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
1536 {
1537 /* Enable the USART transmit DMA channel: the transmit channel is used in order
1538 to generate in the non-blocking mode the clock to the slave device,
1539 this mode isn't a simplex receive mode but a full-duplex receive mode */
1540
1541 /* Set the USART DMA Tx Complete and Error callback to Null */
1542 if (husart->hdmatx != NULL)
1543 {
1544 husart->hdmatx->XferErrorCallback = NULL;
1545 husart->hdmatx->XferHalfCpltCallback = NULL;
1546 husart->hdmatx->XferCpltCallback = NULL;
1547 status = HAL_DMA_Start_IT(husart->hdmatx, *(uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size);
1548 }
1549 }
1550
1551 if (status == HAL_OK)
1552 {
1553 /* Process Unlocked */
1554 __HAL_UNLOCK(husart);
1555
1556 if (husart->Init.Parity != USART_PARITY_NONE)
1557 {
1558 /* Enable the USART Parity Error Interrupt */
1559 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE);
1560 }
1561
1562 /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
1563 SET_BIT(husart->Instance->CR3, USART_CR3_EIE);
1564
1565 /* Enable the DMA transfer for the receiver request by setting the DMAR bit
1566 in the USART CR3 register */
1567 SET_BIT(husart->Instance->CR3, USART_CR3_DMAR);
1568
1569 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1570 in the USART CR3 register */
1571 SET_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1572
1573 return HAL_OK;
1574 }
1575 else
1576 {
1577 if (husart->hdmarx != NULL)
1578 {
1579 status = HAL_DMA_Abort(husart->hdmarx);
1580 }
1581
1582 /* No need to check on error code */
1583 UNUSED(status);
1584
1585 /* Set error code to DMA */
1586 husart->ErrorCode = HAL_USART_ERROR_DMA;
1587
1588 /* Process Unlocked */
1589 __HAL_UNLOCK(husart);
1590
1591 /* Restore husart->State to ready */
1592 husart->State = HAL_USART_STATE_READY;
1593
1594 return HAL_ERROR;
1595 }
1596 }
1597 else
1598 {
1599 return HAL_BUSY;
1600 }
1601 }
1602
1603 /**
1604 * @brief Full-Duplex Transmit Receive an amount of data in non-blocking mode.
1605 * @note When the USART parity is enabled (PCE = 1) the data received contain the parity bit.
1606 * @note When USART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1607 * the sent data and the received data are handled as sets of u16. In this case, Size must indicate the number
1608 * of u16 available through pTxData and through pRxData.
1609 * @param husart USART handle.
1610 * @param pTxData pointer to TX data buffer (u8 or u16 data elements).
1611 * @param pRxData pointer to RX data buffer (u8 or u16 data elements).
1612 * @param Size amount of data elements (u8 or u16) to be received/sent.
1613 * @retval HAL status
1614 */
HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef * husart,const uint8_t * pTxData,uint8_t * pRxData,uint16_t Size)1615 HAL_StatusTypeDef HAL_USART_TransmitReceive_DMA(USART_HandleTypeDef *husart, const uint8_t *pTxData, uint8_t *pRxData,
1616 uint16_t Size)
1617 {
1618 HAL_StatusTypeDef status;
1619 const uint32_t *tmp;
1620
1621
1622 if (husart->State == HAL_USART_STATE_READY)
1623 {
1624 if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
1625 {
1626 return HAL_ERROR;
1627 }
1628
1629 /* Process Locked */
1630 __HAL_LOCK(husart);
1631
1632 husart->pRxBuffPtr = pRxData;
1633 husart->RxXferSize = Size;
1634 husart->pTxBuffPtr = pTxData;
1635 husart->TxXferSize = Size;
1636
1637 husart->ErrorCode = HAL_USART_ERROR_NONE;
1638 husart->State = HAL_USART_STATE_BUSY_TX_RX;
1639
1640 if ((husart->hdmarx != NULL) && (husart->hdmatx != NULL))
1641 {
1642 /* Set the USART DMA Rx transfer complete callback */
1643 husart->hdmarx->XferCpltCallback = USART_DMAReceiveCplt;
1644
1645 /* Set the USART DMA Half transfer complete callback */
1646 husart->hdmarx->XferHalfCpltCallback = USART_DMARxHalfCplt;
1647
1648 /* Set the USART DMA Tx transfer complete callback */
1649 husart->hdmatx->XferCpltCallback = USART_DMATransmitCplt;
1650
1651 /* Set the USART DMA Half transfer complete callback */
1652 husart->hdmatx->XferHalfCpltCallback = USART_DMATxHalfCplt;
1653
1654 /* Set the USART DMA Tx transfer error callback */
1655 husart->hdmatx->XferErrorCallback = USART_DMAError;
1656
1657 /* Set the USART DMA Rx transfer error callback */
1658 husart->hdmarx->XferErrorCallback = USART_DMAError;
1659
1660 /* Enable the USART receive DMA channel */
1661 tmp = (const uint32_t *)&pRxData;
1662 status = HAL_DMA_Start_IT(husart->hdmarx, (uint32_t)&husart->Instance->RDR, *(const uint32_t *)tmp, Size);
1663
1664 /* Enable the USART transmit DMA channel */
1665 if (status == HAL_OK)
1666 {
1667 tmp = (uint32_t *)&pTxData;
1668 status = HAL_DMA_Start_IT(husart->hdmatx, *(const uint32_t *)tmp, (uint32_t)&husart->Instance->TDR, Size);
1669 }
1670 }
1671 else
1672 {
1673 status = HAL_ERROR;
1674 }
1675
1676 if (status == HAL_OK)
1677 {
1678 /* Process Unlocked */
1679 __HAL_UNLOCK(husart);
1680
1681 if (husart->Init.Parity != USART_PARITY_NONE)
1682 {
1683 /* Enable the USART Parity Error Interrupt */
1684 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE);
1685 }
1686
1687 /* Enable the USART Error Interrupt: (Frame error, noise error, overrun error) */
1688 SET_BIT(husart->Instance->CR3, USART_CR3_EIE);
1689
1690 /* Clear the TC flag in the ICR register */
1691 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_TCF);
1692
1693 /* Enable the DMA transfer for the receiver request by setting the DMAR bit
1694 in the USART CR3 register */
1695 SET_BIT(husart->Instance->CR3, USART_CR3_DMAR);
1696
1697 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1698 in the USART CR3 register */
1699 SET_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1700
1701 return HAL_OK;
1702 }
1703 else
1704 {
1705 if (husart->hdmarx != NULL)
1706 {
1707 status = HAL_DMA_Abort(husart->hdmarx);
1708 }
1709
1710 /* No need to check on error code */
1711 UNUSED(status);
1712
1713 /* Set error code to DMA */
1714 husart->ErrorCode = HAL_USART_ERROR_DMA;
1715
1716 /* Process Unlocked */
1717 __HAL_UNLOCK(husart);
1718
1719 /* Restore husart->State to ready */
1720 husart->State = HAL_USART_STATE_READY;
1721
1722 return HAL_ERROR;
1723 }
1724 }
1725 else
1726 {
1727 return HAL_BUSY;
1728 }
1729 }
1730
1731 /**
1732 * @brief Pause the DMA Transfer.
1733 * @param husart USART handle.
1734 * @retval HAL status
1735 */
HAL_USART_DMAPause(USART_HandleTypeDef * husart)1736 HAL_StatusTypeDef HAL_USART_DMAPause(USART_HandleTypeDef *husart)
1737 {
1738 const HAL_USART_StateTypeDef state = husart->State;
1739
1740 /* Process Locked */
1741 __HAL_LOCK(husart);
1742
1743 if ((HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT)) &&
1744 (state == HAL_USART_STATE_BUSY_TX))
1745 {
1746 /* Disable the USART DMA Tx request */
1747 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1748 }
1749 else if ((state == HAL_USART_STATE_BUSY_RX) ||
1750 (state == HAL_USART_STATE_BUSY_TX_RX))
1751 {
1752 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT))
1753 {
1754 /* Disable the USART DMA Tx request */
1755 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1756 }
1757 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))
1758 {
1759 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
1760 CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE);
1761 CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE);
1762
1763 /* Disable the USART DMA Rx request */
1764 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR);
1765 }
1766 }
1767 else
1768 {
1769 /* Nothing to do */
1770 }
1771
1772 /* Process Unlocked */
1773 __HAL_UNLOCK(husart);
1774
1775 return HAL_OK;
1776 }
1777
1778 /**
1779 * @brief Resume the DMA Transfer.
1780 * @param husart USART handle.
1781 * @retval HAL status
1782 */
HAL_USART_DMAResume(USART_HandleTypeDef * husart)1783 HAL_StatusTypeDef HAL_USART_DMAResume(USART_HandleTypeDef *husart)
1784 {
1785 const HAL_USART_StateTypeDef state = husart->State;
1786
1787 /* Process Locked */
1788 __HAL_LOCK(husart);
1789
1790 if (state == HAL_USART_STATE_BUSY_TX)
1791 {
1792 /* Enable the USART DMA Tx request */
1793 SET_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1794 }
1795 else if ((state == HAL_USART_STATE_BUSY_RX) ||
1796 (state == HAL_USART_STATE_BUSY_TX_RX))
1797 {
1798 /* Clear the Overrun flag before resuming the Rx transfer*/
1799 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF);
1800
1801 /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
1802 if (husart->Init.Parity != USART_PARITY_NONE)
1803 {
1804 SET_BIT(husart->Instance->CR1, USART_CR1_PEIE);
1805 }
1806 SET_BIT(husart->Instance->CR3, USART_CR3_EIE);
1807
1808 /* Enable the USART DMA Rx request before the DMA Tx request */
1809 SET_BIT(husart->Instance->CR3, USART_CR3_DMAR);
1810
1811 /* Enable the USART DMA Tx request */
1812 SET_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1813 }
1814 else
1815 {
1816 /* Nothing to do */
1817 }
1818
1819 /* Process Unlocked */
1820 __HAL_UNLOCK(husart);
1821
1822 return HAL_OK;
1823 }
1824
1825 /**
1826 * @brief Stop the DMA Transfer.
1827 * @param husart USART handle.
1828 * @retval HAL status
1829 */
HAL_USART_DMAStop(USART_HandleTypeDef * husart)1830 HAL_StatusTypeDef HAL_USART_DMAStop(USART_HandleTypeDef *husart)
1831 {
1832 /* The Lock is not implemented on this API to allow the user application
1833 to call the HAL USART API under callbacks HAL_USART_TxCpltCallback() / HAL_USART_RxCpltCallback() /
1834 HAL_USART_TxHalfCpltCallback / HAL_USART_RxHalfCpltCallback:
1835 indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
1836 interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
1837 the stream and the corresponding call back is executed. */
1838
1839 /* Disable the USART Tx/Rx DMA requests */
1840 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1841 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR);
1842
1843 /* Abort the USART DMA tx channel */
1844 if (husart->hdmatx != NULL)
1845 {
1846 if (HAL_DMA_Abort(husart->hdmatx) != HAL_OK)
1847 {
1848 if (HAL_DMA_GetError(husart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1849 {
1850 /* Set error code to DMA */
1851 husart->ErrorCode = HAL_USART_ERROR_DMA;
1852
1853 return HAL_TIMEOUT;
1854 }
1855 }
1856 }
1857 /* Abort the USART DMA rx channel */
1858 if (husart->hdmarx != NULL)
1859 {
1860 if (HAL_DMA_Abort(husart->hdmarx) != HAL_OK)
1861 {
1862 if (HAL_DMA_GetError(husart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1863 {
1864 /* Set error code to DMA */
1865 husart->ErrorCode = HAL_USART_ERROR_DMA;
1866
1867 return HAL_TIMEOUT;
1868 }
1869 }
1870 }
1871
1872 USART_EndTransfer(husart);
1873 husart->State = HAL_USART_STATE_READY;
1874
1875 return HAL_OK;
1876 }
1877
1878 /**
1879 * @brief Abort ongoing transfers (blocking mode).
1880 * @param husart USART handle.
1881 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1882 * This procedure performs following operations :
1883 * - Disable USART Interrupts (Tx and Rx)
1884 * - Disable the DMA transfer in the peripheral register (if enabled)
1885 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1886 * - Set handle State to READY
1887 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1888 * @retval HAL status
1889 */
HAL_USART_Abort(USART_HandleTypeDef * husart)1890 HAL_StatusTypeDef HAL_USART_Abort(USART_HandleTypeDef *husart)
1891 {
1892 /* Disable TXEIE, TCIE, RXNE, RXFT, TXFT, PE and ERR (Frame error, noise error, overrun error) interrupts */
1893 CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE |
1894 USART_CR1_TCIE));
1895 CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
1896
1897 /* Disable the USART DMA Tx request if enabled */
1898 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT))
1899 {
1900 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
1901
1902 /* Abort the USART DMA Tx channel : use blocking DMA Abort API (no callback) */
1903 if (husart->hdmatx != NULL)
1904 {
1905 /* Set the USART DMA Abort callback to Null.
1906 No call back execution at end of DMA abort procedure */
1907 husart->hdmatx->XferAbortCallback = NULL;
1908
1909 if (HAL_DMA_Abort(husart->hdmatx) != HAL_OK)
1910 {
1911 if (HAL_DMA_GetError(husart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1912 {
1913 /* Set error code to DMA */
1914 husart->ErrorCode = HAL_USART_ERROR_DMA;
1915
1916 return HAL_TIMEOUT;
1917 }
1918 }
1919 }
1920 }
1921
1922 /* Disable the USART DMA Rx request if enabled */
1923 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))
1924 {
1925 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR);
1926
1927 /* Abort the USART DMA Rx channel : use blocking DMA Abort API (no callback) */
1928 if (husart->hdmarx != NULL)
1929 {
1930 /* Set the USART DMA Abort callback to Null.
1931 No call back execution at end of DMA abort procedure */
1932 husart->hdmarx->XferAbortCallback = NULL;
1933
1934 if (HAL_DMA_Abort(husart->hdmarx) != HAL_OK)
1935 {
1936 if (HAL_DMA_GetError(husart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1937 {
1938 /* Set error code to DMA */
1939 husart->ErrorCode = HAL_USART_ERROR_DMA;
1940
1941 return HAL_TIMEOUT;
1942 }
1943 }
1944 }
1945 }
1946
1947 /* Reset Tx and Rx transfer counters */
1948 husart->TxXferCount = 0U;
1949 husart->RxXferCount = 0U;
1950
1951 /* Clear the Error flags in the ICR register */
1952 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF);
1953
1954 /* Flush the whole TX FIFO (if needed) */
1955 if (husart->FifoMode == USART_FIFOMODE_ENABLE)
1956 {
1957 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
1958 }
1959
1960 /* Discard the received data */
1961 __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST);
1962
1963 /* Restore husart->State to Ready */
1964 husart->State = HAL_USART_STATE_READY;
1965
1966 /* Reset Handle ErrorCode to No Error */
1967 husart->ErrorCode = HAL_USART_ERROR_NONE;
1968
1969 return HAL_OK;
1970 }
1971
1972 /**
1973 * @brief Abort ongoing transfers (Interrupt mode).
1974 * @param husart USART handle.
1975 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1976 * This procedure performs following operations :
1977 * - Disable USART Interrupts (Tx and Rx)
1978 * - Disable the DMA transfer in the peripheral register (if enabled)
1979 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1980 * - Set handle State to READY
1981 * - At abort completion, call user abort complete callback
1982 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1983 * considered as completed only when user abort complete callback is executed (not when exiting function).
1984 * @retval HAL status
1985 */
HAL_USART_Abort_IT(USART_HandleTypeDef * husart)1986 HAL_StatusTypeDef HAL_USART_Abort_IT(USART_HandleTypeDef *husart)
1987 {
1988 uint32_t abortcplt = 1U;
1989
1990 /* Disable TXEIE, TCIE, RXNE, RXFT, TXFT, PE and ERR (Frame error, noise error, overrun error) interrupts */
1991 CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE |
1992 USART_CR1_TCIE));
1993 CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
1994
1995 /* If DMA Tx and/or DMA Rx Handles are associated to USART Handle, DMA Abort complete callbacks should be initialised
1996 before any call to DMA Abort functions */
1997 /* DMA Tx Handle is valid */
1998 if (husart->hdmatx != NULL)
1999 {
2000 /* Set DMA Abort Complete callback if USART DMA Tx request if enabled.
2001 Otherwise, set it to NULL */
2002 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT))
2003 {
2004 husart->hdmatx->XferAbortCallback = USART_DMATxAbortCallback;
2005 }
2006 else
2007 {
2008 husart->hdmatx->XferAbortCallback = NULL;
2009 }
2010 }
2011 /* DMA Rx Handle is valid */
2012 if (husart->hdmarx != NULL)
2013 {
2014 /* Set DMA Abort Complete callback if USART DMA Rx request if enabled.
2015 Otherwise, set it to NULL */
2016 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))
2017 {
2018 husart->hdmarx->XferAbortCallback = USART_DMARxAbortCallback;
2019 }
2020 else
2021 {
2022 husart->hdmarx->XferAbortCallback = NULL;
2023 }
2024 }
2025
2026 /* Disable the USART DMA Tx request if enabled */
2027 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAT))
2028 {
2029 /* Disable DMA Tx at USART level */
2030 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
2031
2032 /* Abort the USART DMA Tx channel : use non blocking DMA Abort API (callback) */
2033 if (husart->hdmatx != NULL)
2034 {
2035 /* USART Tx DMA Abort callback has already been initialised :
2036 will lead to call HAL_USART_AbortCpltCallback() at end of DMA abort procedure */
2037
2038 /* Abort DMA TX */
2039 if (HAL_DMA_Abort_IT(husart->hdmatx) != HAL_OK)
2040 {
2041 husart->hdmatx->XferAbortCallback = NULL;
2042 }
2043 else
2044 {
2045 abortcplt = 0U;
2046 }
2047 }
2048 }
2049
2050 /* Disable the USART DMA Rx request if enabled */
2051 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))
2052 {
2053 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR);
2054
2055 /* Abort the USART DMA Rx channel : use non blocking DMA Abort API (callback) */
2056 if (husart->hdmarx != NULL)
2057 {
2058 /* USART Rx DMA Abort callback has already been initialised :
2059 will lead to call HAL_USART_AbortCpltCallback() at end of DMA abort procedure */
2060
2061 /* Abort DMA RX */
2062 if (HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK)
2063 {
2064 husart->hdmarx->XferAbortCallback = NULL;
2065 abortcplt = 1U;
2066 }
2067 else
2068 {
2069 abortcplt = 0U;
2070 }
2071 }
2072 }
2073
2074 /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
2075 if (abortcplt == 1U)
2076 {
2077 /* Reset Tx and Rx transfer counters */
2078 husart->TxXferCount = 0U;
2079 husart->RxXferCount = 0U;
2080
2081 /* Reset errorCode */
2082 husart->ErrorCode = HAL_USART_ERROR_NONE;
2083
2084 /* Clear the Error flags in the ICR register */
2085 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF);
2086
2087 /* Flush the whole TX FIFO (if needed) */
2088 if (husart->FifoMode == USART_FIFOMODE_ENABLE)
2089 {
2090 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
2091 }
2092
2093 /* Discard the received data */
2094 __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST);
2095
2096 /* Restore husart->State to Ready */
2097 husart->State = HAL_USART_STATE_READY;
2098
2099 /* As no DMA to be aborted, call directly user Abort complete callback */
2100 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2101 /* Call registered Abort Complete Callback */
2102 husart->AbortCpltCallback(husart);
2103 #else
2104 /* Call legacy weak Abort Complete Callback */
2105 HAL_USART_AbortCpltCallback(husart);
2106 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2107 }
2108
2109 return HAL_OK;
2110 }
2111
2112 /**
2113 * @brief Handle USART interrupt request.
2114 * @param husart USART handle.
2115 * @retval None
2116 */
HAL_USART_IRQHandler(USART_HandleTypeDef * husart)2117 void HAL_USART_IRQHandler(USART_HandleTypeDef *husart)
2118 {
2119 uint32_t isrflags = READ_REG(husart->Instance->ISR);
2120 uint32_t cr1its = READ_REG(husart->Instance->CR1);
2121 uint32_t cr3its = READ_REG(husart->Instance->CR3);
2122
2123 uint32_t errorflags;
2124 uint32_t errorcode;
2125
2126 /* If no error occurs */
2127 errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF | USART_ISR_UDR));
2128 if (errorflags == 0U)
2129 {
2130 /* USART in mode Receiver ---------------------------------------------------*/
2131 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
2132 && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
2133 || ((cr3its & USART_CR3_RXFTIE) != 0U)))
2134 {
2135 if (husart->RxISR != NULL)
2136 {
2137 husart->RxISR(husart);
2138 }
2139 return;
2140 }
2141 }
2142
2143 /* If some errors occur */
2144 if ((errorflags != 0U)
2145 && (((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)
2146 || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U)))
2147 {
2148 /* USART parity error interrupt occurred -------------------------------------*/
2149 if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
2150 {
2151 __HAL_USART_CLEAR_IT(husart, USART_CLEAR_PEF);
2152
2153 husart->ErrorCode |= HAL_USART_ERROR_PE;
2154 }
2155
2156 /* USART frame error interrupt occurred --------------------------------------*/
2157 if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
2158 {
2159 __HAL_USART_CLEAR_IT(husart, USART_CLEAR_FEF);
2160
2161 husart->ErrorCode |= HAL_USART_ERROR_FE;
2162 }
2163
2164 /* USART noise error interrupt occurred --------------------------------------*/
2165 if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
2166 {
2167 __HAL_USART_CLEAR_IT(husart, USART_CLEAR_NEF);
2168
2169 husart->ErrorCode |= HAL_USART_ERROR_NE;
2170 }
2171
2172 /* USART Over-Run interrupt occurred -----------------------------------------*/
2173 if (((isrflags & USART_ISR_ORE) != 0U)
2174 && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) ||
2175 ((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)))
2176 {
2177 __HAL_USART_CLEAR_IT(husart, USART_CLEAR_OREF);
2178
2179 husart->ErrorCode |= HAL_USART_ERROR_ORE;
2180 }
2181
2182 /* USART Receiver Timeout interrupt occurred ---------------------------------*/
2183 if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U))
2184 {
2185 __HAL_UART_CLEAR_FLAG(husart, UART_CLEAR_RTOF);
2186
2187 husart->ErrorCode |= HAL_USART_ERROR_RTO;
2188 }
2189
2190 /* USART SPI slave underrun error interrupt occurred -------------------------*/
2191 if (((isrflags & USART_ISR_UDR) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
2192 {
2193 /* Ignore SPI slave underrun errors when reception is going on */
2194 if (husart->State == HAL_USART_STATE_BUSY_RX)
2195 {
2196 __HAL_USART_CLEAR_UDRFLAG(husart);
2197 return;
2198 }
2199 else
2200 {
2201 __HAL_USART_CLEAR_UDRFLAG(husart);
2202 husart->ErrorCode |= HAL_USART_ERROR_UDR;
2203 }
2204 }
2205
2206 /* Call USART Error Call back function if need be --------------------------*/
2207 if (husart->ErrorCode != HAL_USART_ERROR_NONE)
2208 {
2209 /* USART in mode Receiver ---------------------------------------------------*/
2210 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
2211 && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
2212 || ((cr3its & USART_CR3_RXFTIE) != 0U)))
2213 {
2214 if (husart->RxISR != NULL)
2215 {
2216 husart->RxISR(husart);
2217 }
2218 }
2219
2220 /* If Overrun error occurs, or if any error occurs in DMA mode reception,
2221 consider error as blocking */
2222 errorcode = husart->ErrorCode & HAL_USART_ERROR_ORE;
2223 if ((HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR)) ||
2224 (errorcode != 0U))
2225 {
2226 /* Blocking error : transfer is aborted
2227 Set the USART state ready to be able to start again the process,
2228 Disable Interrupts, and disable DMA requests, if ongoing */
2229 USART_EndTransfer(husart);
2230
2231 /* Disable the USART DMA Rx request if enabled */
2232 if (HAL_IS_BIT_SET(husart->Instance->CR3, USART_CR3_DMAR))
2233 {
2234 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR | USART_CR3_DMAR);
2235
2236 /* Abort the USART DMA Tx channel */
2237 if (husart->hdmatx != NULL)
2238 {
2239 /* Set the USART Tx DMA Abort callback to NULL : no callback
2240 executed at end of DMA abort procedure */
2241 husart->hdmatx->XferAbortCallback = NULL;
2242
2243 /* Abort DMA TX */
2244 (void)HAL_DMA_Abort_IT(husart->hdmatx);
2245 }
2246
2247 /* Abort the USART DMA Rx channel */
2248 if (husart->hdmarx != NULL)
2249 {
2250 /* Set the USART Rx DMA Abort callback :
2251 will lead to call HAL_USART_ErrorCallback() at end of DMA abort procedure */
2252 husart->hdmarx->XferAbortCallback = USART_DMAAbortOnError;
2253
2254 /* Abort DMA RX */
2255 if (HAL_DMA_Abort_IT(husart->hdmarx) != HAL_OK)
2256 {
2257 /* Call Directly husart->hdmarx->XferAbortCallback function in case of error */
2258 husart->hdmarx->XferAbortCallback(husart->hdmarx);
2259 }
2260 }
2261 else
2262 {
2263 /* Call user error callback */
2264 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2265 /* Call registered Error Callback */
2266 husart->ErrorCallback(husart);
2267 #else
2268 /* Call legacy weak Error Callback */
2269 HAL_USART_ErrorCallback(husart);
2270 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2271 }
2272 }
2273 else
2274 {
2275 /* Call user error callback */
2276 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2277 /* Call registered Error Callback */
2278 husart->ErrorCallback(husart);
2279 #else
2280 /* Call legacy weak Error Callback */
2281 HAL_USART_ErrorCallback(husart);
2282 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2283 }
2284 }
2285 else
2286 {
2287 /* Non Blocking error : transfer could go on.
2288 Error is notified to user through user error callback */
2289 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2290 /* Call registered Error Callback */
2291 husart->ErrorCallback(husart);
2292 #else
2293 /* Call legacy weak Error Callback */
2294 HAL_USART_ErrorCallback(husart);
2295 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2296 husart->ErrorCode = HAL_USART_ERROR_NONE;
2297 }
2298 }
2299 return;
2300
2301 } /* End if some error occurs */
2302
2303
2304 /* USART in mode Transmitter ------------------------------------------------*/
2305 if (((isrflags & USART_ISR_TXE_TXFNF) != 0U)
2306 && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)
2307 || ((cr3its & USART_CR3_TXFTIE) != 0U)))
2308 {
2309 if (husart->TxISR != NULL)
2310 {
2311 husart->TxISR(husart);
2312 }
2313 return;
2314 }
2315
2316 /* USART in mode Transmitter (transmission end) -----------------------------*/
2317 if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
2318 {
2319 USART_EndTransmit_IT(husart);
2320 return;
2321 }
2322
2323 /* USART TX Fifo Empty occurred ----------------------------------------------*/
2324 if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U))
2325 {
2326 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2327 /* Call registered Tx Fifo Empty Callback */
2328 husart->TxFifoEmptyCallback(husart);
2329 #else
2330 /* Call legacy weak Tx Fifo Empty Callback */
2331 HAL_USARTEx_TxFifoEmptyCallback(husart);
2332 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2333 return;
2334 }
2335
2336 /* USART RX Fifo Full occurred ----------------------------------------------*/
2337 if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U))
2338 {
2339 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2340 /* Call registered Rx Fifo Full Callback */
2341 husart->RxFifoFullCallback(husart);
2342 #else
2343 /* Call legacy weak Rx Fifo Full Callback */
2344 HAL_USARTEx_RxFifoFullCallback(husart);
2345 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2346 return;
2347 }
2348 }
2349
2350 /**
2351 * @brief Tx Transfer completed callback.
2352 * @param husart USART handle.
2353 * @retval None
2354 */
HAL_USART_TxCpltCallback(USART_HandleTypeDef * husart)2355 __weak void HAL_USART_TxCpltCallback(USART_HandleTypeDef *husart)
2356 {
2357 /* Prevent unused argument(s) compilation warning */
2358 UNUSED(husart);
2359
2360 /* NOTE : This function should not be modified, when the callback is needed,
2361 the HAL_USART_TxCpltCallback can be implemented in the user file.
2362 */
2363 }
2364
2365 /**
2366 * @brief Tx Half Transfer completed callback.
2367 * @param husart USART handle.
2368 * @retval None
2369 */
HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef * husart)2370 __weak void HAL_USART_TxHalfCpltCallback(USART_HandleTypeDef *husart)
2371 {
2372 /* Prevent unused argument(s) compilation warning */
2373 UNUSED(husart);
2374
2375 /* NOTE: This function should not be modified, when the callback is needed,
2376 the HAL_USART_TxHalfCpltCallback can be implemented in the user file.
2377 */
2378 }
2379
2380 /**
2381 * @brief Rx Transfer completed callback.
2382 * @param husart USART handle.
2383 * @retval None
2384 */
HAL_USART_RxCpltCallback(USART_HandleTypeDef * husart)2385 __weak void HAL_USART_RxCpltCallback(USART_HandleTypeDef *husart)
2386 {
2387 /* Prevent unused argument(s) compilation warning */
2388 UNUSED(husart);
2389
2390 /* NOTE: This function should not be modified, when the callback is needed,
2391 the HAL_USART_RxCpltCallback can be implemented in the user file.
2392 */
2393 }
2394
2395 /**
2396 * @brief Rx Half Transfer completed callback.
2397 * @param husart USART handle.
2398 * @retval None
2399 */
HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef * husart)2400 __weak void HAL_USART_RxHalfCpltCallback(USART_HandleTypeDef *husart)
2401 {
2402 /* Prevent unused argument(s) compilation warning */
2403 UNUSED(husart);
2404
2405 /* NOTE : This function should not be modified, when the callback is needed,
2406 the HAL_USART_RxHalfCpltCallback can be implemented in the user file
2407 */
2408 }
2409
2410 /**
2411 * @brief Tx/Rx Transfers completed callback for the non-blocking process.
2412 * @param husart USART handle.
2413 * @retval None
2414 */
HAL_USART_TxRxCpltCallback(USART_HandleTypeDef * husart)2415 __weak void HAL_USART_TxRxCpltCallback(USART_HandleTypeDef *husart)
2416 {
2417 /* Prevent unused argument(s) compilation warning */
2418 UNUSED(husart);
2419
2420 /* NOTE : This function should not be modified, when the callback is needed,
2421 the HAL_USART_TxRxCpltCallback can be implemented in the user file
2422 */
2423 }
2424
2425 /**
2426 * @brief USART error callback.
2427 * @param husart USART handle.
2428 * @retval None
2429 */
HAL_USART_ErrorCallback(USART_HandleTypeDef * husart)2430 __weak void HAL_USART_ErrorCallback(USART_HandleTypeDef *husart)
2431 {
2432 /* Prevent unused argument(s) compilation warning */
2433 UNUSED(husart);
2434
2435 /* NOTE : This function should not be modified, when the callback is needed,
2436 the HAL_USART_ErrorCallback can be implemented in the user file.
2437 */
2438 }
2439
2440 /**
2441 * @brief USART Abort Complete callback.
2442 * @param husart USART handle.
2443 * @retval None
2444 */
HAL_USART_AbortCpltCallback(USART_HandleTypeDef * husart)2445 __weak void HAL_USART_AbortCpltCallback(USART_HandleTypeDef *husart)
2446 {
2447 /* Prevent unused argument(s) compilation warning */
2448 UNUSED(husart);
2449
2450 /* NOTE : This function should not be modified, when the callback is needed,
2451 the HAL_USART_AbortCpltCallback can be implemented in the user file.
2452 */
2453 }
2454
2455 /**
2456 * @}
2457 */
2458
2459 /** @defgroup USART_Exported_Functions_Group4 Peripheral State and Error functions
2460 * @brief USART Peripheral State and Error functions
2461 *
2462 @verbatim
2463 ==============================================================================
2464 ##### Peripheral State and Error functions #####
2465 ==============================================================================
2466 [..]
2467 This subsection provides functions allowing to :
2468 (+) Return the USART handle state
2469 (+) Return the USART handle error code
2470
2471 @endverbatim
2472 * @{
2473 */
2474
2475
2476 /**
2477 * @brief Return the USART handle state.
2478 * @param husart pointer to a USART_HandleTypeDef structure that contains
2479 * the configuration information for the specified USART.
2480 * @retval USART handle state
2481 */
HAL_USART_GetState(const USART_HandleTypeDef * husart)2482 HAL_USART_StateTypeDef HAL_USART_GetState(const USART_HandleTypeDef *husart)
2483 {
2484 return husart->State;
2485 }
2486
2487 /**
2488 * @brief Return the USART error code.
2489 * @param husart pointer to a USART_HandleTypeDef structure that contains
2490 * the configuration information for the specified USART.
2491 * @retval USART handle Error Code
2492 */
HAL_USART_GetError(const USART_HandleTypeDef * husart)2493 uint32_t HAL_USART_GetError(const USART_HandleTypeDef *husart)
2494 {
2495 return husart->ErrorCode;
2496 }
2497
2498 /**
2499 * @}
2500 */
2501
2502 /**
2503 * @}
2504 */
2505
2506 /** @defgroup USART_Private_Functions USART Private Functions
2507 * @{
2508 */
2509
2510 /**
2511 * @brief Initialize the callbacks to their default values.
2512 * @param husart USART handle.
2513 * @retval none
2514 */
2515 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
USART_InitCallbacksToDefault(USART_HandleTypeDef * husart)2516 void USART_InitCallbacksToDefault(USART_HandleTypeDef *husart)
2517 {
2518 /* Init the USART Callback settings */
2519 husart->TxHalfCpltCallback = HAL_USART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
2520 husart->TxCpltCallback = HAL_USART_TxCpltCallback; /* Legacy weak TxCpltCallback */
2521 husart->RxHalfCpltCallback = HAL_USART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
2522 husart->RxCpltCallback = HAL_USART_RxCpltCallback; /* Legacy weak RxCpltCallback */
2523 husart->TxRxCpltCallback = HAL_USART_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
2524 husart->ErrorCallback = HAL_USART_ErrorCallback; /* Legacy weak ErrorCallback */
2525 husart->AbortCpltCallback = HAL_USART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
2526 husart->RxFifoFullCallback = HAL_USARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
2527 husart->TxFifoEmptyCallback = HAL_USARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
2528 }
2529 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2530
2531 /**
2532 * @brief End ongoing transfer on USART peripheral (following error detection or Transfer completion).
2533 * @param husart USART handle.
2534 * @retval None
2535 */
USART_EndTransfer(USART_HandleTypeDef * husart)2536 static void USART_EndTransfer(USART_HandleTypeDef *husart)
2537 {
2538 /* Disable TXEIE, TCIE, RXNE, RXFT, TXFT, PE and ERR (Frame error, noise error, overrun error) interrupts */
2539 CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
2540 CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
2541
2542 /* At end of process, restore husart->State to Ready */
2543 husart->State = HAL_USART_STATE_READY;
2544 }
2545
2546 /**
2547 * @brief DMA USART transmit process complete callback.
2548 * @param hdma DMA handle.
2549 * @retval None
2550 */
USART_DMATransmitCplt(DMA_HandleTypeDef * hdma)2551 static void USART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2552 {
2553 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2554
2555 /* DMA Normal mode */
2556 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
2557 {
2558 husart->TxXferCount = 0U;
2559
2560 if (husart->State == HAL_USART_STATE_BUSY_TX)
2561 {
2562 /* Disable the DMA transfer for transmit request by resetting the DMAT bit
2563 in the USART CR3 register */
2564 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
2565
2566 /* Enable the USART Transmit Complete Interrupt */
2567 __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
2568 }
2569 }
2570 /* DMA Circular mode */
2571 else
2572 {
2573 if (husart->State == HAL_USART_STATE_BUSY_TX)
2574 {
2575 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2576 /* Call registered Tx Complete Callback */
2577 husart->TxCpltCallback(husart);
2578 #else
2579 /* Call legacy weak Tx Complete Callback */
2580 HAL_USART_TxCpltCallback(husart);
2581 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2582 }
2583 }
2584 }
2585
2586 /**
2587 * @brief DMA USART transmit process half complete callback.
2588 * @param hdma DMA handle.
2589 * @retval None
2590 */
USART_DMATxHalfCplt(DMA_HandleTypeDef * hdma)2591 static void USART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
2592 {
2593 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2594
2595 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2596 /* Call registered Tx Half Complete Callback */
2597 husart->TxHalfCpltCallback(husart);
2598 #else
2599 /* Call legacy weak Tx Half Complete Callback */
2600 HAL_USART_TxHalfCpltCallback(husart);
2601 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2602 }
2603
2604 /**
2605 * @brief DMA USART receive process complete callback.
2606 * @param hdma DMA handle.
2607 * @retval None
2608 */
USART_DMAReceiveCplt(DMA_HandleTypeDef * hdma)2609 static void USART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
2610 {
2611 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2612
2613 /* DMA Normal mode */
2614 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
2615 {
2616 husart->RxXferCount = 0U;
2617
2618 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2619 CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE);
2620 CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE);
2621
2622 /* Disable the DMA RX transfer for the receiver request by resetting the DMAR bit
2623 in USART CR3 register */
2624 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAR);
2625 /* similarly, disable the DMA TX transfer that was started to provide the
2626 clock to the slave device */
2627 CLEAR_BIT(husart->Instance->CR3, USART_CR3_DMAT);
2628
2629 if (husart->State == HAL_USART_STATE_BUSY_RX)
2630 {
2631 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2632 /* Call registered Rx Complete Callback */
2633 husart->RxCpltCallback(husart);
2634 #else
2635 /* Call legacy weak Rx Complete Callback */
2636 HAL_USART_RxCpltCallback(husart);
2637 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2638 }
2639 /* The USART state is HAL_USART_STATE_BUSY_TX_RX */
2640 else
2641 {
2642 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2643 /* Call registered Tx Rx Complete Callback */
2644 husart->TxRxCpltCallback(husart);
2645 #else
2646 /* Call legacy weak Tx Rx Complete Callback */
2647 HAL_USART_TxRxCpltCallback(husart);
2648 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2649 }
2650 husart->State = HAL_USART_STATE_READY;
2651 }
2652 /* DMA circular mode */
2653 else
2654 {
2655 if (husart->State == HAL_USART_STATE_BUSY_RX)
2656 {
2657 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2658 /* Call registered Rx Complete Callback */
2659 husart->RxCpltCallback(husart);
2660 #else
2661 /* Call legacy weak Rx Complete Callback */
2662 HAL_USART_RxCpltCallback(husart);
2663 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2664 }
2665 /* The USART state is HAL_USART_STATE_BUSY_TX_RX */
2666 else
2667 {
2668 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2669 /* Call registered Tx Rx Complete Callback */
2670 husart->TxRxCpltCallback(husart);
2671 #else
2672 /* Call legacy weak Tx Rx Complete Callback */
2673 HAL_USART_TxRxCpltCallback(husart);
2674 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2675 }
2676 }
2677 }
2678
2679 /**
2680 * @brief DMA USART receive process half complete callback.
2681 * @param hdma DMA handle.
2682 * @retval None
2683 */
USART_DMARxHalfCplt(DMA_HandleTypeDef * hdma)2684 static void USART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
2685 {
2686 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2687
2688 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2689 /* Call registered Rx Half Complete Callback */
2690 husart->RxHalfCpltCallback(husart);
2691 #else
2692 /* Call legacy weak Rx Half Complete Callback */
2693 HAL_USART_RxHalfCpltCallback(husart);
2694 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2695 }
2696
2697 /**
2698 * @brief DMA USART communication error callback.
2699 * @param hdma DMA handle.
2700 * @retval None
2701 */
USART_DMAError(DMA_HandleTypeDef * hdma)2702 static void USART_DMAError(DMA_HandleTypeDef *hdma)
2703 {
2704 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2705
2706 husart->RxXferCount = 0U;
2707 husart->TxXferCount = 0U;
2708 USART_EndTransfer(husart);
2709
2710 husart->ErrorCode |= HAL_USART_ERROR_DMA;
2711 husart->State = HAL_USART_STATE_READY;
2712
2713 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2714 /* Call registered Error Callback */
2715 husart->ErrorCallback(husart);
2716 #else
2717 /* Call legacy weak Error Callback */
2718 HAL_USART_ErrorCallback(husart);
2719 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2720 }
2721
2722 /**
2723 * @brief DMA USART communication abort callback, when initiated by HAL services on Error
2724 * (To be called at end of DMA Abort procedure following error occurrence).
2725 * @param hdma DMA handle.
2726 * @retval None
2727 */
USART_DMAAbortOnError(DMA_HandleTypeDef * hdma)2728 static void USART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
2729 {
2730 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2731 husart->RxXferCount = 0U;
2732 husart->TxXferCount = 0U;
2733
2734 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2735 /* Call registered Error Callback */
2736 husart->ErrorCallback(husart);
2737 #else
2738 /* Call legacy weak Error Callback */
2739 HAL_USART_ErrorCallback(husart);
2740 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2741 }
2742
2743 /**
2744 * @brief DMA USART Tx communication abort callback, when initiated by user
2745 * (To be called at end of DMA Tx Abort procedure following user abort request).
2746 * @note When this callback is executed, User Abort complete call back is called only if no
2747 * Abort still ongoing for Rx DMA Handle.
2748 * @param hdma DMA handle.
2749 * @retval None
2750 */
USART_DMATxAbortCallback(DMA_HandleTypeDef * hdma)2751 static void USART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
2752 {
2753 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2754
2755 husart->hdmatx->XferAbortCallback = NULL;
2756
2757 /* Check if an Abort process is still ongoing */
2758 if (husart->hdmarx != NULL)
2759 {
2760 if (husart->hdmarx->XferAbortCallback != NULL)
2761 {
2762 return;
2763 }
2764 }
2765
2766 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2767 husart->TxXferCount = 0U;
2768 husart->RxXferCount = 0U;
2769
2770 /* Reset errorCode */
2771 husart->ErrorCode = HAL_USART_ERROR_NONE;
2772
2773 /* Clear the Error flags in the ICR register */
2774 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF);
2775
2776 /* Restore husart->State to Ready */
2777 husart->State = HAL_USART_STATE_READY;
2778
2779 /* Call user Abort complete callback */
2780 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2781 /* Call registered Abort Complete Callback */
2782 husart->AbortCpltCallback(husart);
2783 #else
2784 /* Call legacy weak Abort Complete Callback */
2785 HAL_USART_AbortCpltCallback(husart);
2786 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2787
2788 }
2789
2790
2791 /**
2792 * @brief DMA USART Rx communication abort callback, when initiated by user
2793 * (To be called at end of DMA Rx Abort procedure following user abort request).
2794 * @note When this callback is executed, User Abort complete call back is called only if no
2795 * Abort still ongoing for Tx DMA Handle.
2796 * @param hdma DMA handle.
2797 * @retval None
2798 */
USART_DMARxAbortCallback(DMA_HandleTypeDef * hdma)2799 static void USART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
2800 {
2801 USART_HandleTypeDef *husart = (USART_HandleTypeDef *)(hdma->Parent);
2802
2803 husart->hdmarx->XferAbortCallback = NULL;
2804
2805 /* Check if an Abort process is still ongoing */
2806 if (husart->hdmatx != NULL)
2807 {
2808 if (husart->hdmatx->XferAbortCallback != NULL)
2809 {
2810 return;
2811 }
2812 }
2813
2814 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2815 husart->TxXferCount = 0U;
2816 husart->RxXferCount = 0U;
2817
2818 /* Reset errorCode */
2819 husart->ErrorCode = HAL_USART_ERROR_NONE;
2820
2821 /* Clear the Error flags in the ICR register */
2822 __HAL_USART_CLEAR_FLAG(husart, USART_CLEAR_OREF | USART_CLEAR_NEF | USART_CLEAR_PEF | USART_CLEAR_FEF);
2823
2824 /* Restore husart->State to Ready */
2825 husart->State = HAL_USART_STATE_READY;
2826
2827 /* Call user Abort complete callback */
2828 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
2829 /* Call registered Abort Complete Callback */
2830 husart->AbortCpltCallback(husart);
2831 #else
2832 /* Call legacy weak Abort Complete Callback */
2833 HAL_USART_AbortCpltCallback(husart);
2834 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
2835 }
2836
2837
2838 /**
2839 * @brief Handle USART Communication Timeout. It waits
2840 * until a flag is no longer in the specified status.
2841 * @param husart USART handle.
2842 * @param Flag Specifies the USART flag to check.
2843 * @param Status the Flag status (SET or RESET).
2844 * @param Tickstart Tick start value
2845 * @param Timeout timeout duration.
2846 * @retval HAL status
2847 */
USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef * husart,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)2848 static HAL_StatusTypeDef USART_WaitOnFlagUntilTimeout(USART_HandleTypeDef *husart, uint32_t Flag, FlagStatus Status,
2849 uint32_t Tickstart, uint32_t Timeout)
2850 {
2851 /* Wait until flag is set */
2852 while ((__HAL_USART_GET_FLAG(husart, Flag) ? SET : RESET) == Status)
2853 {
2854 /* Check for the Timeout */
2855 if (Timeout != HAL_MAX_DELAY)
2856 {
2857 if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
2858 {
2859 husart->State = HAL_USART_STATE_READY;
2860
2861 /* Process Unlocked */
2862 __HAL_UNLOCK(husart);
2863
2864 return HAL_TIMEOUT;
2865 }
2866 }
2867 }
2868 return HAL_OK;
2869 }
2870
2871 /**
2872 * @brief Configure the USART peripheral.
2873 * @param husart USART handle.
2874 * @retval HAL status
2875 */
USART_SetConfig(USART_HandleTypeDef * husart)2876 static HAL_StatusTypeDef USART_SetConfig(USART_HandleTypeDef *husart)
2877 {
2878 uint32_t tmpreg;
2879 USART_ClockSourceTypeDef clocksource;
2880 HAL_StatusTypeDef ret = HAL_OK;
2881 uint16_t brrtemp;
2882 uint32_t usartdiv = 0x00000000;
2883 uint32_t pclk;
2884
2885 /* Check the parameters */
2886 assert_param(IS_USART_POLARITY(husart->Init.CLKPolarity));
2887 assert_param(IS_USART_PHASE(husart->Init.CLKPhase));
2888 assert_param(IS_USART_LASTBIT(husart->Init.CLKLastBit));
2889 assert_param(IS_USART_BAUDRATE(husart->Init.BaudRate));
2890 assert_param(IS_USART_WORD_LENGTH(husart->Init.WordLength));
2891 assert_param(IS_USART_STOPBITS(husart->Init.StopBits));
2892 assert_param(IS_USART_PARITY(husart->Init.Parity));
2893 assert_param(IS_USART_MODE(husart->Init.Mode));
2894 assert_param(IS_USART_PRESCALER(husart->Init.ClockPrescaler));
2895
2896 /*-------------------------- USART CR1 Configuration -----------------------*/
2897 /* Clear M, PCE, PS, TE and RE bits and configure
2898 * the USART Word Length, Parity and Mode:
2899 * set the M bits according to husart->Init.WordLength value
2900 * set PCE and PS bits according to husart->Init.Parity value
2901 * set TE and RE bits according to husart->Init.Mode value
2902 * force OVER8 to 1 to allow to reach the maximum speed (Fclock/8) */
2903 tmpreg = (uint32_t)husart->Init.WordLength | husart->Init.Parity | husart->Init.Mode | USART_CR1_OVER8;
2904 MODIFY_REG(husart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
2905
2906 /*---------------------------- USART CR2 Configuration ---------------------*/
2907 /* Clear and configure the USART Clock, CPOL, CPHA, LBCL STOP and SLVEN bits:
2908 * set CPOL bit according to husart->Init.CLKPolarity value
2909 * set CPHA bit according to husart->Init.CLKPhase value
2910 * set LBCL bit according to husart->Init.CLKLastBit value (used in SPI master mode only)
2911 * set STOP[13:12] bits according to husart->Init.StopBits value */
2912 tmpreg = (uint32_t)(USART_CLOCK_ENABLE);
2913 tmpreg |= (uint32_t)husart->Init.CLKLastBit;
2914 tmpreg |= ((uint32_t)husart->Init.CLKPolarity | (uint32_t)husart->Init.CLKPhase);
2915 tmpreg |= (uint32_t)husart->Init.StopBits;
2916 MODIFY_REG(husart->Instance->CR2, USART_CR2_FIELDS, tmpreg);
2917
2918 /*-------------------------- USART PRESC Configuration -----------------------*/
2919 /* Configure
2920 * - USART Clock Prescaler : set PRESCALER according to husart->Init.ClockPrescaler value */
2921 MODIFY_REG(husart->Instance->PRESC, USART_PRESC_PRESCALER, husart->Init.ClockPrescaler);
2922
2923 /*-------------------------- USART BRR Configuration -----------------------*/
2924 /* BRR is filled-up according to OVER8 bit setting which is forced to 1 */
2925 USART_GETCLOCKSOURCE(husart, clocksource);
2926
2927 switch (clocksource)
2928 {
2929 case USART_CLOCKSOURCE_PCLK2:
2930 pclk = HAL_RCC_GetPCLK2Freq();
2931 usartdiv = (uint32_t)(USART_DIV_SAMPLING8(pclk, husart->Init.BaudRate, husart->Init.ClockPrescaler));
2932 break;
2933 case USART_CLOCKSOURCE_HSI:
2934 usartdiv = (uint32_t)(USART_DIV_SAMPLING8(HSI_VALUE, husart->Init.BaudRate, husart->Init.ClockPrescaler));
2935 break;
2936 case USART_CLOCKSOURCE_SYSCLK:
2937 pclk = HAL_RCC_GetSysClockFreq();
2938 usartdiv = (uint32_t)(USART_DIV_SAMPLING8(pclk, husart->Init.BaudRate, husart->Init.ClockPrescaler));
2939 break;
2940 case USART_CLOCKSOURCE_LSE:
2941 usartdiv = (uint32_t)(USART_DIV_SAMPLING8(LSE_VALUE, husart->Init.BaudRate, husart->Init.ClockPrescaler));
2942 break;
2943 default:
2944 ret = HAL_ERROR;
2945 break;
2946 }
2947
2948 /* USARTDIV must be greater than or equal to 0d16 and smaller than or equal to ffff */
2949 if ((usartdiv >= USART_BRR_MIN) && (usartdiv <= USART_BRR_MAX))
2950 {
2951 brrtemp = (uint16_t)(usartdiv & 0xFFF0U);
2952 brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
2953 husart->Instance->BRR = brrtemp;
2954 }
2955 else
2956 {
2957 ret = HAL_ERROR;
2958 }
2959
2960 /* Initialize the number of data to process during RX/TX ISR execution */
2961 husart->NbTxDataToProcess = 1U;
2962 husart->NbRxDataToProcess = 1U;
2963
2964 /* Clear ISR function pointers */
2965 husart->RxISR = NULL;
2966 husart->TxISR = NULL;
2967
2968 return ret;
2969 }
2970
2971 /**
2972 * @brief Check the USART Idle State.
2973 * @param husart USART handle.
2974 * @retval HAL status
2975 */
USART_CheckIdleState(USART_HandleTypeDef * husart)2976 static HAL_StatusTypeDef USART_CheckIdleState(USART_HandleTypeDef *husart)
2977 {
2978 uint32_t tickstart;
2979
2980 /* Initialize the USART ErrorCode */
2981 husart->ErrorCode = HAL_USART_ERROR_NONE;
2982
2983 /* Init tickstart for timeout management */
2984 tickstart = HAL_GetTick();
2985
2986 /* Check if the Transmitter is enabled */
2987 if ((husart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
2988 {
2989 /* Wait until TEACK flag is set */
2990 if (USART_WaitOnFlagUntilTimeout(husart, USART_ISR_TEACK, RESET, tickstart, USART_TEACK_REACK_TIMEOUT) != HAL_OK)
2991 {
2992 /* Timeout occurred */
2993 return HAL_TIMEOUT;
2994 }
2995 }
2996 /* Check if the Receiver is enabled */
2997 if ((husart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
2998 {
2999 /* Wait until REACK flag is set */
3000 if (USART_WaitOnFlagUntilTimeout(husart, USART_ISR_REACK, RESET, tickstart, USART_TEACK_REACK_TIMEOUT) != HAL_OK)
3001 {
3002 /* Timeout occurred */
3003 return HAL_TIMEOUT;
3004 }
3005 }
3006
3007 /* Initialize the USART state*/
3008 husart->State = HAL_USART_STATE_READY;
3009
3010 /* Process Unlocked */
3011 __HAL_UNLOCK(husart);
3012
3013 return HAL_OK;
3014 }
3015
3016 /**
3017 * @brief Simplex send an amount of data in non-blocking mode.
3018 * @note Function called under interruption only, once
3019 * interruptions have been enabled by HAL_USART_Transmit_IT().
3020 * @note The USART errors are not managed to avoid the overrun error.
3021 * @note ISR function executed when FIFO mode is disabled and when the
3022 * data word length is less than 9 bits long.
3023 * @param husart USART handle.
3024 * @retval None
3025 */
USART_TxISR_8BIT(USART_HandleTypeDef * husart)3026 static void USART_TxISR_8BIT(USART_HandleTypeDef *husart)
3027 {
3028 const HAL_USART_StateTypeDef state = husart->State;
3029
3030 /* Check that a Tx process is ongoing */
3031 if ((state == HAL_USART_STATE_BUSY_TX) ||
3032 (state == HAL_USART_STATE_BUSY_TX_RX))
3033 {
3034 if (husart->TxXferCount == 0U)
3035 {
3036 /* Disable the USART Transmit data register empty interrupt */
3037 __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
3038
3039 /* Enable the USART Transmit Complete Interrupt */
3040 __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
3041 }
3042 else
3043 {
3044 husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr & (uint8_t)0xFF);
3045 husart->pTxBuffPtr++;
3046 husart->TxXferCount--;
3047 }
3048 }
3049 }
3050
3051 /**
3052 * @brief Simplex send an amount of data in non-blocking mode.
3053 * @note Function called under interruption only, once
3054 * interruptions have been enabled by HAL_USART_Transmit_IT().
3055 * @note The USART errors are not managed to avoid the overrun error.
3056 * @note ISR function executed when FIFO mode is disabled and when the
3057 * data word length is 9 bits long.
3058 * @param husart USART handle.
3059 * @retval None
3060 */
USART_TxISR_16BIT(USART_HandleTypeDef * husart)3061 static void USART_TxISR_16BIT(USART_HandleTypeDef *husart)
3062 {
3063 const HAL_USART_StateTypeDef state = husart->State;
3064 const uint16_t *tmp;
3065
3066 if ((state == HAL_USART_STATE_BUSY_TX) ||
3067 (state == HAL_USART_STATE_BUSY_TX_RX))
3068 {
3069 if (husart->TxXferCount == 0U)
3070 {
3071 /* Disable the USART Transmit data register empty interrupt */
3072 __HAL_USART_DISABLE_IT(husart, USART_IT_TXE);
3073
3074 /* Enable the USART Transmit Complete Interrupt */
3075 __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
3076 }
3077 else
3078 {
3079 tmp = (const uint16_t *) husart->pTxBuffPtr;
3080 husart->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
3081 husart->pTxBuffPtr += 2U;
3082 husart->TxXferCount--;
3083 }
3084 }
3085 }
3086
3087 /**
3088 * @brief Simplex send an amount of data in non-blocking mode.
3089 * @note Function called under interruption only, once
3090 * interruptions have been enabled by HAL_USART_Transmit_IT().
3091 * @note The USART errors are not managed to avoid the overrun error.
3092 * @note ISR function executed when FIFO mode is enabled and when the
3093 * data word length is less than 9 bits long.
3094 * @param husart USART handle.
3095 * @retval None
3096 */
USART_TxISR_8BIT_FIFOEN(USART_HandleTypeDef * husart)3097 static void USART_TxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart)
3098 {
3099 const HAL_USART_StateTypeDef state = husart->State;
3100 uint16_t nb_tx_data;
3101
3102 /* Check that a Tx process is ongoing */
3103 if ((state == HAL_USART_STATE_BUSY_TX) ||
3104 (state == HAL_USART_STATE_BUSY_TX_RX))
3105 {
3106 for (nb_tx_data = husart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
3107 {
3108 if (husart->TxXferCount == 0U)
3109 {
3110 /* Disable the TX FIFO threshold interrupt */
3111 __HAL_USART_DISABLE_IT(husart, USART_IT_TXFT);
3112
3113 /* Enable the USART Transmit Complete Interrupt */
3114 __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
3115
3116 break; /* force exit loop */
3117 }
3118 else if (__HAL_USART_GET_FLAG(husart, USART_FLAG_TXFNF) == SET)
3119 {
3120 husart->Instance->TDR = (uint8_t)(*husart->pTxBuffPtr & (uint8_t)0xFF);
3121 husart->pTxBuffPtr++;
3122 husart->TxXferCount--;
3123 }
3124 else
3125 {
3126 /* Nothing to do */
3127 }
3128 }
3129 }
3130 }
3131
3132 /**
3133 * @brief Simplex send an amount of data in non-blocking mode.
3134 * @note Function called under interruption only, once
3135 * interruptions have been enabled by HAL_USART_Transmit_IT().
3136 * @note The USART errors are not managed to avoid the overrun error.
3137 * @note ISR function executed when FIFO mode is enabled and when the
3138 * data word length is 9 bits long.
3139 * @param husart USART handle.
3140 * @retval None
3141 */
USART_TxISR_16BIT_FIFOEN(USART_HandleTypeDef * husart)3142 static void USART_TxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart)
3143 {
3144 const HAL_USART_StateTypeDef state = husart->State;
3145 const uint16_t *tmp;
3146 uint16_t nb_tx_data;
3147
3148 /* Check that a Tx process is ongoing */
3149 if ((state == HAL_USART_STATE_BUSY_TX) ||
3150 (state == HAL_USART_STATE_BUSY_TX_RX))
3151 {
3152 for (nb_tx_data = husart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
3153 {
3154 if (husart->TxXferCount == 0U)
3155 {
3156 /* Disable the TX FIFO threshold interrupt */
3157 __HAL_USART_DISABLE_IT(husart, USART_IT_TXFT);
3158
3159 /* Enable the USART Transmit Complete Interrupt */
3160 __HAL_USART_ENABLE_IT(husart, USART_IT_TC);
3161
3162 break; /* force exit loop */
3163 }
3164 else if (__HAL_USART_GET_FLAG(husart, USART_FLAG_TXFNF) == SET)
3165 {
3166 tmp = (const uint16_t *) husart->pTxBuffPtr;
3167 husart->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
3168 husart->pTxBuffPtr += 2U;
3169 husart->TxXferCount--;
3170 }
3171 else
3172 {
3173 /* Nothing to do */
3174 }
3175 }
3176 }
3177 }
3178
3179 /**
3180 * @brief Wraps up transmission in non-blocking mode.
3181 * @param husart Pointer to a USART_HandleTypeDef structure that contains
3182 * the configuration information for the specified USART module.
3183 * @retval None
3184 */
USART_EndTransmit_IT(USART_HandleTypeDef * husart)3185 static void USART_EndTransmit_IT(USART_HandleTypeDef *husart)
3186 {
3187 /* Disable the USART Transmit Complete Interrupt */
3188 __HAL_USART_DISABLE_IT(husart, USART_IT_TC);
3189
3190 /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
3191 __HAL_USART_DISABLE_IT(husart, USART_IT_ERR);
3192
3193 /* Clear TxISR function pointer */
3194 husart->TxISR = NULL;
3195
3196 if (husart->State == HAL_USART_STATE_BUSY_TX)
3197 {
3198 /* Clear overrun flag and discard the received data */
3199 __HAL_USART_CLEAR_OREFLAG(husart);
3200 __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST);
3201
3202 /* Tx process is completed, restore husart->State to Ready */
3203 husart->State = HAL_USART_STATE_READY;
3204
3205 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3206 /* Call registered Tx Complete Callback */
3207 husart->TxCpltCallback(husart);
3208 #else
3209 /* Call legacy weak Tx Complete Callback */
3210 HAL_USART_TxCpltCallback(husart);
3211 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3212 }
3213 else if (husart->RxXferCount == 0U)
3214 {
3215 /* TxRx process is completed, restore husart->State to Ready */
3216 husart->State = HAL_USART_STATE_READY;
3217
3218 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3219 /* Call registered Tx Rx Complete Callback */
3220 husart->TxRxCpltCallback(husart);
3221 #else
3222 /* Call legacy weak Tx Rx Complete Callback */
3223 HAL_USART_TxRxCpltCallback(husart);
3224 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3225 }
3226 else
3227 {
3228 /* Nothing to do */
3229 }
3230 }
3231
3232
3233 /**
3234 * @brief Simplex receive an amount of data in non-blocking mode.
3235 * @note Function called under interruption only, once
3236 * interruptions have been enabled by HAL_USART_Receive_IT().
3237 * @note ISR function executed when FIFO mode is disabled and when the
3238 * data word length is less than 9 bits long.
3239 * @param husart USART handle
3240 * @retval None
3241 */
USART_RxISR_8BIT(USART_HandleTypeDef * husart)3242 static void USART_RxISR_8BIT(USART_HandleTypeDef *husart)
3243 {
3244 const HAL_USART_StateTypeDef state = husart->State;
3245 uint16_t txdatacount;
3246 uint16_t uhMask = husart->Mask;
3247 uint32_t txftie;
3248
3249 if ((state == HAL_USART_STATE_BUSY_RX) ||
3250 (state == HAL_USART_STATE_BUSY_TX_RX))
3251 {
3252 *husart->pRxBuffPtr = (uint8_t)(husart->Instance->RDR & (uint8_t)uhMask);
3253 husart->pRxBuffPtr++;
3254 husart->RxXferCount--;
3255
3256 if (husart->RxXferCount == 0U)
3257 {
3258 /* Disable the USART Parity Error Interrupt and RXNE interrupt*/
3259 CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
3260
3261 /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
3262 CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE);
3263
3264 /* Clear RxISR function pointer */
3265 husart->RxISR = NULL;
3266
3267 /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */
3268 txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE);
3269 txdatacount = husart->TxXferCount;
3270
3271 if (state == HAL_USART_STATE_BUSY_RX)
3272 {
3273 /* Clear SPI slave underrun flag and discard transmit data */
3274 if (husart->SlaveMode == USART_SLAVEMODE_ENABLE)
3275 {
3276 __HAL_USART_CLEAR_UDRFLAG(husart);
3277 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
3278 }
3279
3280 /* Rx process is completed, restore husart->State to Ready */
3281 husart->State = HAL_USART_STATE_READY;
3282
3283 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3284 /* Call registered Rx Complete Callback */
3285 husart->RxCpltCallback(husart);
3286 #else
3287 /* Call legacy weak Rx Complete Callback */
3288 HAL_USART_RxCpltCallback(husart);
3289 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3290 }
3291 else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) &&
3292 (txftie != USART_CR3_TXFTIE) &&
3293 (txdatacount == 0U))
3294 {
3295 /* TxRx process is completed, restore husart->State to Ready */
3296 husart->State = HAL_USART_STATE_READY;
3297
3298 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3299 /* Call registered Tx Rx Complete Callback */
3300 husart->TxRxCpltCallback(husart);
3301 #else
3302 /* Call legacy weak Tx Rx Complete Callback */
3303 HAL_USART_TxRxCpltCallback(husart);
3304 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3305 }
3306 else
3307 {
3308 /* Nothing to do */
3309 }
3310 }
3311 else if ((state == HAL_USART_STATE_BUSY_RX) &&
3312 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
3313 {
3314 /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
3315 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
3316 }
3317 else
3318 {
3319 /* Nothing to do */
3320 }
3321 }
3322 }
3323
3324 /**
3325 * @brief Simplex receive an amount of data in non-blocking mode.
3326 * @note Function called under interruption only, once
3327 * interruptions have been enabled by HAL_USART_Receive_IT().
3328 * @note ISR function executed when FIFO mode is disabled and when the
3329 * data word length is 9 bits long.
3330 * @param husart USART handle
3331 * @retval None
3332 */
USART_RxISR_16BIT(USART_HandleTypeDef * husart)3333 static void USART_RxISR_16BIT(USART_HandleTypeDef *husart)
3334 {
3335 const HAL_USART_StateTypeDef state = husart->State;
3336 uint16_t txdatacount;
3337 uint16_t *tmp;
3338 uint16_t uhMask = husart->Mask;
3339 uint32_t txftie;
3340
3341 if ((state == HAL_USART_STATE_BUSY_RX) ||
3342 (state == HAL_USART_STATE_BUSY_TX_RX))
3343 {
3344 tmp = (uint16_t *) husart->pRxBuffPtr;
3345 *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
3346 husart->pRxBuffPtr += 2U;
3347 husart->RxXferCount--;
3348
3349 if (husart->RxXferCount == 0U)
3350 {
3351 /* Disable the USART Parity Error Interrupt and RXNE interrupt*/
3352 CLEAR_BIT(husart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
3353
3354 /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error) */
3355 CLEAR_BIT(husart->Instance->CR3, USART_CR3_EIE);
3356
3357 /* Clear RxISR function pointer */
3358 husart->RxISR = NULL;
3359
3360 /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */
3361 txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE);
3362 txdatacount = husart->TxXferCount;
3363
3364 if (state == HAL_USART_STATE_BUSY_RX)
3365 {
3366 /* Clear SPI slave underrun flag and discard transmit data */
3367 if (husart->SlaveMode == USART_SLAVEMODE_ENABLE)
3368 {
3369 __HAL_USART_CLEAR_UDRFLAG(husart);
3370 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
3371 }
3372
3373 /* Rx process is completed, restore husart->State to Ready */
3374 husart->State = HAL_USART_STATE_READY;
3375
3376 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3377 /* Call registered Rx Complete Callback */
3378 husart->RxCpltCallback(husart);
3379 #else
3380 /* Call legacy weak Rx Complete Callback */
3381 HAL_USART_RxCpltCallback(husart);
3382 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3383 }
3384 else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) &&
3385 (txftie != USART_CR3_TXFTIE) &&
3386 (txdatacount == 0U))
3387 {
3388 /* TxRx process is completed, restore husart->State to Ready */
3389 husart->State = HAL_USART_STATE_READY;
3390
3391 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3392 /* Call registered Tx Rx Complete Callback */
3393 husart->TxRxCpltCallback(husart);
3394 #else
3395 /* Call legacy weak Tx Rx Complete Callback */
3396 HAL_USART_TxRxCpltCallback(husart);
3397 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3398 }
3399 else
3400 {
3401 /* Nothing to do */
3402 }
3403 }
3404 else if ((state == HAL_USART_STATE_BUSY_RX) &&
3405 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
3406 {
3407 /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
3408 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
3409 }
3410 else
3411 {
3412 /* Nothing to do */
3413 }
3414 }
3415 }
3416
3417 /**
3418 * @brief Simplex receive an amount of data in non-blocking mode.
3419 * @note Function called under interruption only, once
3420 * interruptions have been enabled by HAL_USART_Receive_IT().
3421 * @note ISR function executed when FIFO mode is enabled and when the
3422 * data word length is less than 9 bits long.
3423 * @param husart USART handle
3424 * @retval None
3425 */
USART_RxISR_8BIT_FIFOEN(USART_HandleTypeDef * husart)3426 static void USART_RxISR_8BIT_FIFOEN(USART_HandleTypeDef *husart)
3427 {
3428 HAL_USART_StateTypeDef state = husart->State;
3429 uint16_t txdatacount;
3430 uint16_t rxdatacount;
3431 uint16_t uhMask = husart->Mask;
3432 uint16_t nb_rx_data;
3433 uint32_t txftie;
3434
3435 /* Check that a Rx process is ongoing */
3436 if ((state == HAL_USART_STATE_BUSY_RX) ||
3437 (state == HAL_USART_STATE_BUSY_TX_RX))
3438 {
3439 for (nb_rx_data = husart->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--)
3440 {
3441 if (__HAL_USART_GET_FLAG(husart, USART_FLAG_RXFNE) == SET)
3442 {
3443 *husart->pRxBuffPtr = (uint8_t)(husart->Instance->RDR & (uint8_t)(uhMask & 0xFFU));
3444 husart->pRxBuffPtr++;
3445 husart->RxXferCount--;
3446
3447 if (husart->RxXferCount == 0U)
3448 {
3449 /* Disable the USART Parity Error Interrupt */
3450 CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE);
3451
3452 /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error)
3453 and RX FIFO Threshold interrupt */
3454 CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
3455
3456 /* Clear RxISR function pointer */
3457 husart->RxISR = NULL;
3458
3459 /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */
3460 txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE);
3461 txdatacount = husart->TxXferCount;
3462
3463 if (state == HAL_USART_STATE_BUSY_RX)
3464 {
3465 /* Clear SPI slave underrun flag and discard transmit data */
3466 if (husart->SlaveMode == USART_SLAVEMODE_ENABLE)
3467 {
3468 __HAL_USART_CLEAR_UDRFLAG(husart);
3469 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
3470 }
3471
3472 /* Rx process is completed, restore husart->State to Ready */
3473 husart->State = HAL_USART_STATE_READY;
3474 state = HAL_USART_STATE_READY;
3475
3476 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3477 /* Call registered Rx Complete Callback */
3478 husart->RxCpltCallback(husart);
3479 #else
3480 /* Call legacy weak Rx Complete Callback */
3481 HAL_USART_RxCpltCallback(husart);
3482 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3483 }
3484 else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) &&
3485 (txftie != USART_CR3_TXFTIE) &&
3486 (txdatacount == 0U))
3487 {
3488 /* TxRx process is completed, restore husart->State to Ready */
3489 husart->State = HAL_USART_STATE_READY;
3490 state = HAL_USART_STATE_READY;
3491
3492 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3493 /* Call registered Tx Rx Complete Callback */
3494 husart->TxRxCpltCallback(husart);
3495 #else
3496 /* Call legacy weak Tx Rx Complete Callback */
3497 HAL_USART_TxRxCpltCallback(husart);
3498 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3499 }
3500 else
3501 {
3502 /* Nothing to do */
3503 }
3504 }
3505 else if ((state == HAL_USART_STATE_BUSY_RX) &&
3506 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
3507 {
3508 /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
3509 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
3510 }
3511 else
3512 {
3513 /* Nothing to do */
3514 }
3515 }
3516 }
3517
3518 /* When remaining number of bytes to receive is less than the RX FIFO
3519 threshold, next incoming frames are processed as if FIFO mode was
3520 disabled (i.e. one interrupt per received frame).
3521 */
3522 rxdatacount = husart->RxXferCount;
3523 if (((rxdatacount != 0U)) && (rxdatacount < husart->NbRxDataToProcess))
3524 {
3525 /* Disable the USART RXFT interrupt*/
3526 CLEAR_BIT(husart->Instance->CR3, USART_CR3_RXFTIE);
3527
3528 /* Update the RxISR function pointer */
3529 husart->RxISR = USART_RxISR_8BIT;
3530
3531 /* Enable the USART Data Register Not Empty interrupt */
3532 SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
3533
3534 if ((husart->TxXferCount == 0U) &&
3535 (state == HAL_USART_STATE_BUSY_TX_RX) &&
3536 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
3537 {
3538 /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
3539 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
3540 }
3541 }
3542 }
3543 else
3544 {
3545 /* Clear RXNE interrupt flag */
3546 __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST);
3547 }
3548 }
3549
3550 /**
3551 * @brief Simplex receive an amount of data in non-blocking mode.
3552 * @note Function called under interruption only, once
3553 * interruptions have been enabled by HAL_USART_Receive_IT().
3554 * @note ISR function executed when FIFO mode is enabled and when the
3555 * data word length is 9 bits long.
3556 * @param husart USART handle
3557 * @retval None
3558 */
USART_RxISR_16BIT_FIFOEN(USART_HandleTypeDef * husart)3559 static void USART_RxISR_16BIT_FIFOEN(USART_HandleTypeDef *husart)
3560 {
3561 HAL_USART_StateTypeDef state = husart->State;
3562 uint16_t txdatacount;
3563 uint16_t rxdatacount;
3564 uint16_t *tmp;
3565 uint16_t uhMask = husart->Mask;
3566 uint16_t nb_rx_data;
3567 uint32_t txftie;
3568
3569 /* Check that a Tx process is ongoing */
3570 if ((state == HAL_USART_STATE_BUSY_RX) ||
3571 (state == HAL_USART_STATE_BUSY_TX_RX))
3572 {
3573 for (nb_rx_data = husart->NbRxDataToProcess ; nb_rx_data > 0U ; nb_rx_data--)
3574 {
3575 if (__HAL_USART_GET_FLAG(husart, USART_FLAG_RXFNE) == SET)
3576 {
3577 tmp = (uint16_t *) husart->pRxBuffPtr;
3578 *tmp = (uint16_t)(husart->Instance->RDR & uhMask);
3579 husart->pRxBuffPtr += 2U;
3580 husart->RxXferCount--;
3581
3582 if (husart->RxXferCount == 0U)
3583 {
3584 /* Disable the USART Parity Error Interrupt */
3585 CLEAR_BIT(husart->Instance->CR1, USART_CR1_PEIE);
3586
3587 /* Disable the USART Error Interrupt: (Frame error, noise error, overrun error)
3588 and RX FIFO Threshold interrupt */
3589 CLEAR_BIT(husart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
3590
3591 /* Clear RxISR function pointer */
3592 husart->RxISR = NULL;
3593
3594 /* txftie and txdatacount are temporary variables for MISRAC2012-Rule-13.5 */
3595 txftie = READ_BIT(husart->Instance->CR3, USART_CR3_TXFTIE);
3596 txdatacount = husart->TxXferCount;
3597
3598 if (state == HAL_USART_STATE_BUSY_RX)
3599 {
3600 /* Clear SPI slave underrun flag and discard transmit data */
3601 if (husart->SlaveMode == USART_SLAVEMODE_ENABLE)
3602 {
3603 __HAL_USART_CLEAR_UDRFLAG(husart);
3604 __HAL_USART_SEND_REQ(husart, USART_TXDATA_FLUSH_REQUEST);
3605 }
3606
3607 /* Rx process is completed, restore husart->State to Ready */
3608 husart->State = HAL_USART_STATE_READY;
3609 state = HAL_USART_STATE_READY;
3610
3611 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3612 /* Call registered Rx Complete Callback */
3613 husart->RxCpltCallback(husart);
3614 #else
3615 /* Call legacy weak Rx Complete Callback */
3616 HAL_USART_RxCpltCallback(husart);
3617 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3618 }
3619 else if ((READ_BIT(husart->Instance->CR1, USART_CR1_TCIE) != USART_CR1_TCIE) &&
3620 (txftie != USART_CR3_TXFTIE) &&
3621 (txdatacount == 0U))
3622 {
3623 /* TxRx process is completed, restore husart->State to Ready */
3624 husart->State = HAL_USART_STATE_READY;
3625 state = HAL_USART_STATE_READY;
3626
3627 #if (USE_HAL_USART_REGISTER_CALLBACKS == 1)
3628 /* Call registered Tx Rx Complete Callback */
3629 husart->TxRxCpltCallback(husart);
3630 #else
3631 /* Call legacy weak Tx Rx Complete Callback */
3632 HAL_USART_TxRxCpltCallback(husart);
3633 #endif /* USE_HAL_USART_REGISTER_CALLBACKS */
3634 }
3635 else
3636 {
3637 /* Nothing to do */
3638 }
3639 }
3640 else if ((state == HAL_USART_STATE_BUSY_RX) &&
3641 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
3642 {
3643 /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
3644 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
3645 }
3646 else
3647 {
3648 /* Nothing to do */
3649 }
3650 }
3651 }
3652
3653 /* When remaining number of bytes to receive is less than the RX FIFO
3654 threshold, next incoming frames are processed as if FIFO mode was
3655 disabled (i.e. one interrupt per received frame).
3656 */
3657 rxdatacount = husart->RxXferCount;
3658 if (((rxdatacount != 0U)) && (rxdatacount < husart->NbRxDataToProcess))
3659 {
3660 /* Disable the USART RXFT interrupt*/
3661 CLEAR_BIT(husart->Instance->CR3, USART_CR3_RXFTIE);
3662
3663 /* Update the RxISR function pointer */
3664 husart->RxISR = USART_RxISR_16BIT;
3665
3666 /* Enable the USART Data Register Not Empty interrupt */
3667 SET_BIT(husart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
3668
3669 if ((husart->TxXferCount == 0U) &&
3670 (state == HAL_USART_STATE_BUSY_TX_RX) &&
3671 (husart->SlaveMode == USART_SLAVEMODE_DISABLE))
3672 {
3673 /* Send dummy byte in order to generate the clock for the Slave to Send the next data */
3674 husart->Instance->TDR = (USART_DUMMY_DATA & (uint16_t)0x00FF);
3675 }
3676 }
3677 }
3678 else
3679 {
3680 /* Clear RXNE interrupt flag */
3681 __HAL_USART_SEND_REQ(husart, USART_RXDATA_FLUSH_REQUEST);
3682 }
3683 }
3684
3685 /**
3686 * @}
3687 */
3688
3689 #endif /* HAL_USART_MODULE_ENABLED */
3690 /**
3691 * @}
3692 */
3693
3694 /**
3695 * @}
3696 */
3697
3698