1 /**
2   ******************************************************************************
3   * @file    stm32wb0x_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2024 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32wb0x_ll_tim.h"
22 #include "stm32wb0x_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32WB0x_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM16) || defined (TIM17)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM1) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM2))
71 
72 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
73                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
74 
75 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
76                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
77 
78 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
79                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
80 
81 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
82                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
83                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
84 
85 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
86                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
87                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
89 
90 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
91                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
92                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
106 
107 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
108                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
109                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
110 
111 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
112                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
113                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
114 
115 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
116                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
117 
118 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
119                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
120 
121 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
122                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
123 
124 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
125                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
126                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
127                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
128 
129 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
130                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
131 
132 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
133                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
134 #if defined(TIM_BDTR_BKF)
135 
136 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
137                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
138                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
139                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
140                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
141                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
142                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
143                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
151                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
152 #endif /* TIM_BDTR_BKF */
153 #if defined(TIM_BDTR_BKBID)
154 
155 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT)          \
156                                            || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
157 #endif /* TIM_BDTR_BKBID */
158 #if defined(TIM_BDTR_BK2E)
159 
160 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
161                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
162 
163 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
164                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
165 
166 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
167                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
168                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
169                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
175                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
176                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
177                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
178                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
179                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
180                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
181                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
182 #endif /* TIM_BDTR_BK2E */
183 
184 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
185                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
186 /**
187   * @}
188   */
189 
190 
191 /* Private function prototypes -----------------------------------------------*/
192 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
193   * @{
194   */
195 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
196 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
197 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
198 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
199 #if defined(TIM_CCER_CC5E)
200 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
201 #endif /* TIM_CCER_CC5E */
202 #if defined(TIM_CCER_CC6E)
203 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
204 #endif /* TIM_CCER_CC6E */
205 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
206 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
207 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
208 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
209 /**
210   * @}
211   */
212 
213 /* Exported functions --------------------------------------------------------*/
214 /** @addtogroup TIM_LL_Exported_Functions
215   * @{
216   */
217 
218 /** @addtogroup TIM_LL_EF_Init
219   * @{
220   */
221 
222 /**
223   * @brief  Set TIMx registers to their reset values.
224   * @param  TIMx Timer instance
225   * @retval An ErrorStatus enumeration value:
226   *          - SUCCESS: TIMx registers are de-initialized
227   *          - ERROR: invalid TIMx instance
228   */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)229 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
230 {
231   ErrorStatus result = SUCCESS;
232 
233   /* Check the parameters */
234   assert_param(IS_TIM_INSTANCE(TIMx));
235 
236 #if defined(TIM1)
237   if (TIMx == TIM1)
238   {
239     LL_APB0_GRP1_ForceReset(LL_APB0_GRP1_PERIPH_TIM1);
240     LL_APB0_GRP1_ReleaseReset(LL_APB0_GRP1_PERIPH_TIM1);
241   }
242 #else
243   if (TIMx == TIM2)
244   {
245     LL_APB0_GRP1_ForceReset(LL_APB0_GRP1_PERIPH_TIM2);
246     LL_APB0_GRP1_ReleaseReset(LL_APB0_GRP1_PERIPH_TIM2);
247   }
248   else if (TIMx == TIM16)
249   {
250     LL_APB0_GRP1_ForceReset(LL_APB0_GRP1_PERIPH_TIM16);
251     LL_APB0_GRP1_ReleaseReset(LL_APB0_GRP1_PERIPH_TIM16);
252   }
253 
254   else if (TIMx == TIM17)
255   {
256     LL_APB0_GRP1_ForceReset(LL_APB0_GRP1_PERIPH_TIM17);
257     LL_APB0_GRP1_ReleaseReset(LL_APB0_GRP1_PERIPH_TIM17);
258   }
259 #endif /* TIM1 */
260   else
261   {
262     result = ERROR;
263   }
264 
265   return result;
266 }
267 
268 /**
269   * @brief  Set the fields of the time base unit configuration data structure
270   *         to their default values.
271   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
272   * @retval None
273   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)274 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
275 {
276   /* Set the default configuration */
277   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
278   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
279   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
280   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
281   TIM_InitStruct->RepetitionCounter = 0x00000000U;
282 }
283 
284 /**
285   * @brief  Configure the TIMx time base unit.
286   * @param  TIMx Timer Instance
287   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
288   *         (TIMx time base unit configuration data structure)
289   * @retval An ErrorStatus enumeration value:
290   *          - SUCCESS: TIMx registers are de-initialized
291   *          - ERROR: not applicable
292   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)293 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
294 {
295   uint32_t tmpcr1;
296 
297   /* Check the parameters */
298   assert_param(IS_TIM_INSTANCE(TIMx));
299   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
300   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
301 
302   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
303 
304   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
305   {
306     /* Select the Counter Mode */
307     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
308   }
309 
310   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
311   {
312     /* Set the clock division */
313     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
314   }
315 
316   /* Write to TIMx CR1 */
317   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
318 
319   /* Set the Autoreload value */
320   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
321 
322   /* Set the Prescaler value */
323   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
324 
325   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
326   {
327     /* Set the Repetition Counter value */
328     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
329   }
330 
331   /* Generate an update event to reload the Prescaler
332      and the repetition counter value (if applicable) immediately */
333   LL_TIM_GenerateEvent_UPDATE(TIMx);
334 
335   return SUCCESS;
336 }
337 
338 /**
339   * @brief  Set the fields of the TIMx output channel configuration data
340   *         structure to their default values.
341   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
342   *         (the output channel configuration data structure)
343   * @retval None
344   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)345 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
346 {
347   /* Set the default configuration */
348   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
349   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
350   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
351   TIM_OC_InitStruct->CompareValue = 0x00000000U;
352   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
353   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
354   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
355   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
356 }
357 
358 /**
359   * @brief  Configure the TIMx output channel.
360   * @param  TIMx Timer Instance
361   * @param  Channel This parameter can be one of the following values:
362   *         @arg @ref LL_TIM_CHANNEL_CH1
363   *         @arg @ref LL_TIM_CHANNEL_CH2
364   *         @arg @ref LL_TIM_CHANNEL_CH3
365   *         @arg @ref LL_TIM_CHANNEL_CH4
366   *         @arg @ref LL_TIM_CHANNEL_CH5
367   *         @arg @ref LL_TIM_CHANNEL_CH6
368   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
369   *         data structure)
370   * @retval An ErrorStatus enumeration value:
371   *          - SUCCESS: TIMx output channel is initialized
372   *          - ERROR: TIMx output channel is not initialized
373   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)374 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
375 {
376   ErrorStatus result = ERROR;
377 
378   switch (Channel)
379   {
380     case LL_TIM_CHANNEL_CH1:
381       result = OC1Config(TIMx, TIM_OC_InitStruct);
382       break;
383     case LL_TIM_CHANNEL_CH2:
384       result = OC2Config(TIMx, TIM_OC_InitStruct);
385       break;
386     case LL_TIM_CHANNEL_CH3:
387       result = OC3Config(TIMx, TIM_OC_InitStruct);
388       break;
389     case LL_TIM_CHANNEL_CH4:
390       result = OC4Config(TIMx, TIM_OC_InitStruct);
391       break;
392 #if defined(TIM_CCER_CC5E)
393     case LL_TIM_CHANNEL_CH5:
394       result = OC5Config(TIMx, TIM_OC_InitStruct);
395       break;
396 #endif /* TIM_CCER_CC5E */
397 #if defined(TIM_CCER_CC6E)
398     case LL_TIM_CHANNEL_CH6:
399       result = OC6Config(TIMx, TIM_OC_InitStruct);
400       break;
401 #endif /* TIM_CCER_CC6E */
402     default:
403       break;
404   }
405 
406   return result;
407 }
408 
409 /**
410   * @brief  Set the fields of the TIMx input channel configuration data
411   *         structure to their default values.
412   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
413   *         data structure)
414   * @retval None
415   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)416 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
417 {
418   /* Set the default configuration */
419   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
420   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
421   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
422   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
423 }
424 
425 /**
426   * @brief  Configure the TIMx input channel.
427   * @param  TIMx Timer Instance
428   * @param  Channel This parameter can be one of the following values:
429   *         @arg @ref LL_TIM_CHANNEL_CH1
430   *         @arg @ref LL_TIM_CHANNEL_CH2
431   *         @arg @ref LL_TIM_CHANNEL_CH3
432   *         @arg @ref LL_TIM_CHANNEL_CH4
433   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
434   *         structure)
435   * @retval An ErrorStatus enumeration value:
436   *          - SUCCESS: TIMx output channel is initialized
437   *          - ERROR: TIMx output channel is not initialized
438   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)439 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
440 {
441   ErrorStatus result = ERROR;
442 
443   switch (Channel)
444   {
445     case LL_TIM_CHANNEL_CH1:
446       result = IC1Config(TIMx, TIM_IC_InitStruct);
447       break;
448     case LL_TIM_CHANNEL_CH2:
449       result = IC2Config(TIMx, TIM_IC_InitStruct);
450       break;
451     case LL_TIM_CHANNEL_CH3:
452       result = IC3Config(TIMx, TIM_IC_InitStruct);
453       break;
454     case LL_TIM_CHANNEL_CH4:
455       result = IC4Config(TIMx, TIM_IC_InitStruct);
456       break;
457     default:
458       break;
459   }
460 
461   return result;
462 }
463 
464 /**
465   * @brief  Fills each TIM_EncoderInitStruct field with its default value
466   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
467   *         configuration data structure)
468   * @retval None
469   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)470 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
471 {
472   /* Set the default configuration */
473   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
474   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
475   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
476   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
477   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
478   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
479   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
480   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
481   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
482 }
483 
484 /**
485   * @brief  Configure the encoder interface of the timer instance.
486   * @param  TIMx Timer Instance
487   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
488   *         configuration data structure)
489   * @retval An ErrorStatus enumeration value:
490   *          - SUCCESS: TIMx registers are de-initialized
491   *          - ERROR: not applicable
492   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)493 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
494 {
495   uint32_t tmpccmr1;
496   uint32_t tmpccer;
497 
498   /* Check the parameters */
499   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
500   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
501   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
502   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
503   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
504   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
505   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
506   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
507   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
508   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
509 
510   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
511   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
512 
513   /* Get the TIMx CCMR1 register value */
514   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
515 
516   /* Get the TIMx CCER register value */
517   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
518 
519   /* Configure TI1 */
520   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
521   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
522   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
523   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
524 
525   /* Configure TI2 */
526   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
527   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
528   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
529   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
530 
531   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
532 #if defined(TIM_CCER_CC2NP)
533   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
534 #else
535   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P);
536 #endif /* TIM_CCER_CC2NP */
537   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
538   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
539   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
540 
541   /* Set encoder mode */
542   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
543 
544   /* Write to TIMx CCMR1 */
545   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
546 
547   /* Write to TIMx CCER */
548   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
549 
550   return SUCCESS;
551 }
552 
553 
554 /**
555   * @brief  Set the fields of the Break and Dead Time configuration data structure
556   *         to their default values.
557   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
558   *         data structure)
559   * @retval None
560   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)561 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
562 {
563   /* Set the default configuration */
564   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
565   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
566   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
567   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
568   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
569   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
570 #if defined(TIM_BDTR_BKF)
571   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
572 #endif /* TIM_BDTR_BKF */
573 #if defined(TIM_BDTR_BKBID)
574   TIM_BDTRInitStruct->BreakAFMode     = LL_TIM_BREAK_AFMODE_INPUT;
575 #endif /* TIM_BDTR_BKBID */
576 #if defined(TIM_BDTR_BK2E)
577   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
578   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
579   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
580 #endif /* TIM_BDTR_BK2E */
581   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
582 }
583 
584 /**
585   * @brief  Configure the Break and Dead Time feature of the timer instance.
586   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
587   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
588   *  can be necessary to configure all of them during the first write access to
589   *  the TIMx_BDTR register.
590   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
591   *       a timer instance provides a break input.
592   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
593   *       a timer instance provides a second break input.
594   * @param  TIMx Timer Instance
595   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
596   *         data structure)
597   * @retval An ErrorStatus enumeration value:
598   *          - SUCCESS: Break and Dead Time is initialized
599   *          - ERROR: not applicable
600   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)601 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
602 {
603   uint32_t tmpbdtr = 0;
604 
605   /* Check the parameters */
606   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
607   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
608   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
609   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
610   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
611   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
612   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
613 #if defined(TIM_BDTR_BKF)
614   assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
615 #endif /* TIM_BDTR_BKF */
616 #if defined(TIM_BDTR_BKBID)
617   assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
618 #endif /*TIM_BDTR_BKBID */
619 
620   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
621   the OSSI State, the dead time value and the Automatic Output Enable Bit */
622 
623   /* Set the BDTR bits */
624   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
625   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
626   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
627   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
628   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
629   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
630   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
631 #if defined(TIM_BDTR_BKF)
632   MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
633 #endif /* TIM_BDTR_BKF */
634 #if defined(TIM_BDTR_BKBID)
635   MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
636 #endif /*TIM_BDTR_BKBID */
637 #if defined(TIM_BDTR_BK2E)
638 
639   if (IS_TIM_BKIN2_INSTANCE(TIMx))
640   {
641     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
642     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
643     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
644 
645     /* Set the BREAK2 input related BDTR bit-fields */
646     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
647     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
648     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
649   }
650 #endif /* TIM_BDTR_BK2E */
651 
652   /* Set TIMx_BDTR */
653   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
654 
655   return SUCCESS;
656 }
657 /**
658   * @}
659   */
660 
661 /**
662   * @}
663   */
664 
665 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
666   *  @brief   Private functions
667   * @{
668   */
669 /**
670   * @brief  Configure the TIMx output channel 1.
671   * @param  TIMx Timer Instance
672   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
673   * @retval An ErrorStatus enumeration value:
674   *          - SUCCESS: TIMx registers are de-initialized
675   *          - ERROR: not applicable
676   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)677 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
678 {
679   uint32_t tmpccmr1;
680   uint32_t tmpccer;
681   uint32_t tmpcr2;
682 
683   /* Check the parameters */
684   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
685   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
686   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
687   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
688 
689   /* Disable the Channel 1: Reset the CC1E Bit */
690   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
691 
692   /* Get the TIMx CCER register value */
693   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
694 
695   /* Get the TIMx CR2 register value */
696   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
697 
698   /* Get the TIMx CCMR1 register value */
699   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
700 
701   /* Reset Capture/Compare selection Bits */
702   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
703 
704   /* Set the Output Compare Mode */
705   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
706 
707   /* Set the Output Compare Polarity */
708   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
709 
710   /* Set the Output State */
711   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
712 
713   if (IS_TIM_BREAK_INSTANCE(TIMx))
714   {
715     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
716     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
717     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
718     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
719 
720     /* Set the complementary output Polarity */
721     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
722 
723     /* Set the complementary output State */
724     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
725 
726     /* Set the Output Idle state */
727     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
728 
729     /* Set the complementary output Idle state */
730     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
731   }
732 
733   /* Write to TIMx CR2 */
734   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
735 
736   /* Write to TIMx CCMR1 */
737   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
738 
739   /* Set the Capture Compare Register value */
740   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
741 
742   /* Write to TIMx CCER */
743   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
744 
745   return SUCCESS;
746 }
747 
748 /**
749   * @brief  Configure the TIMx output channel 2.
750   * @param  TIMx Timer Instance
751   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
752   * @retval An ErrorStatus enumeration value:
753   *          - SUCCESS: TIMx registers are de-initialized
754   *          - ERROR: not applicable
755   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)756 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
757 {
758   uint32_t tmpccmr1;
759   uint32_t tmpccer;
760   uint32_t tmpcr2;
761 
762   /* Check the parameters */
763   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
764   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
765   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
766   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
767 
768   /* Disable the Channel 2: Reset the CC2E Bit */
769   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
770 
771   /* Get the TIMx CCER register value */
772   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
773 
774   /* Get the TIMx CR2 register value */
775   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
776 
777   /* Get the TIMx CCMR1 register value */
778   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
779 
780   /* Reset Capture/Compare selection Bits */
781   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
782 
783   /* Select the Output Compare Mode */
784   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
785 
786   /* Set the Output Compare Polarity */
787   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
788 
789   /* Set the Output State */
790   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
791 
792 #if defined(TIM_CR2_OIS2)
793   if (IS_TIM_BREAK_INSTANCE(TIMx))
794   {
795     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
796     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
797     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
798     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
799 
800     /* Set the complementary output Polarity */
801     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
802 
803     /* Set the complementary output State */
804     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
805 
806     /* Set the Output Idle state */
807     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
808 
809     /* Set the complementary output Idle state */
810     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
811   }
812 #endif /* TIM_CR2_OIS2 */
813 
814   /* Write to TIMx CR2 */
815   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
816 
817   /* Write to TIMx CCMR1 */
818   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
819 
820   /* Set the Capture Compare Register value */
821   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
822 
823   /* Write to TIMx CCER */
824   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
825 
826   return SUCCESS;
827 }
828 
829 /**
830   * @brief  Configure the TIMx output channel 3.
831   * @param  TIMx Timer Instance
832   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
833   * @retval An ErrorStatus enumeration value:
834   *          - SUCCESS: TIMx registers are de-initialized
835   *          - ERROR: not applicable
836   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)837 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
838 {
839   uint32_t tmpccmr2;
840   uint32_t tmpccer;
841   uint32_t tmpcr2;
842 
843   /* Check the parameters */
844   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
845   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
846   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
847   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
848 
849   /* Disable the Channel 3: Reset the CC3E Bit */
850   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
851 
852   /* Get the TIMx CCER register value */
853   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
854 
855   /* Get the TIMx CR2 register value */
856   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
857 
858   /* Get the TIMx CCMR2 register value */
859   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
860 
861   /* Reset Capture/Compare selection Bits */
862   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
863 
864   /* Select the Output Compare Mode */
865   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
866 
867   /* Set the Output Compare Polarity */
868   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
869 
870   /* Set the Output State */
871   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
872 
873 #if defined(TIM_CR2_OIS3)
874   if (IS_TIM_BREAK_INSTANCE(TIMx))
875   {
876     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
877     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
878     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
879     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
880 
881     /* Set the complementary output Polarity */
882     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
883 
884     /* Set the complementary output State */
885     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
886 
887     /* Set the Output Idle state */
888     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
889 
890     /* Set the complementary output Idle state */
891     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
892   }
893 #endif /* TIM_CR2_OIS3 */
894 
895   /* Write to TIMx CR2 */
896   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
897 
898   /* Write to TIMx CCMR2 */
899   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
900 
901   /* Set the Capture Compare Register value */
902   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
903 
904   /* Write to TIMx CCER */
905   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
906 
907   return SUCCESS;
908 }
909 
910 /**
911   * @brief  Configure the TIMx output channel 4.
912   * @param  TIMx Timer Instance
913   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
914   * @retval An ErrorStatus enumeration value:
915   *          - SUCCESS: TIMx registers are de-initialized
916   *          - ERROR: not applicable
917   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)918 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
919 {
920   uint32_t tmpccmr2;
921   uint32_t tmpccer;
922   uint32_t tmpcr2;
923 
924   /* Check the parameters */
925   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
926   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
927   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
928   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
929 
930   /* Disable the Channel 4: Reset the CC4E Bit */
931   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
932 
933   /* Get the TIMx CCER register value */
934   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
935 
936   /* Get the TIMx CR2 register value */
937   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
938 
939   /* Get the TIMx CCMR2 register value */
940   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
941 
942   /* Reset Capture/Compare selection Bits */
943   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
944 
945   /* Select the Output Compare Mode */
946   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
947 
948   /* Set the Output Compare Polarity */
949   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
950 
951   /* Set the Output State */
952   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
953 
954 #if defined(TIM_CR2_OIS4)
955   if (IS_TIM_BREAK_INSTANCE(TIMx))
956   {
957     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
958 
959     /* Set the Output Idle state */
960     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
961   }
962 #endif /* TIM_CCER_CC4NE */
963 
964   /* Write to TIMx CR2 */
965   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
966 
967   /* Write to TIMx CCMR2 */
968   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
969 
970   /* Set the Capture Compare Register value */
971   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
972 
973   /* Write to TIMx CCER */
974   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
975 
976   return SUCCESS;
977 }
978 
979 #if defined(TIM_CCER_CC5E)
980 /**
981   * @brief  Configure the TIMx output channel 5.
982   * @param  TIMx Timer Instance
983   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
984   * @retval An ErrorStatus enumeration value:
985   *          - SUCCESS: TIMx registers are de-initialized
986   *          - ERROR: not applicable
987   */
OC5Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)988 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
989 {
990   uint32_t tmpccmr3;
991   uint32_t tmpccer;
992 
993   /* Check the parameters */
994   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
995   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
996   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
997   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
998   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
999   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1000 
1001   /* Disable the Channel 5: Reset the CC5E Bit */
1002   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1003 
1004   /* Get the TIMx CCER register value */
1005   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1006 
1007   /* Get the TIMx CCMR3 register value */
1008   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1009 
1010   /* Select the Output Compare Mode */
1011   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1012 
1013   /* Set the Output Compare Polarity */
1014   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1015 
1016   /* Set the Output State */
1017   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1018 
1019   if (IS_TIM_BREAK_INSTANCE(TIMx))
1020   {
1021     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1022     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1023 
1024     /* Set the Output Idle state */
1025     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1026 
1027   }
1028 
1029   /* Write to TIMx CCMR3 */
1030   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1031 
1032   /* Set the Capture Compare Register value */
1033   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1034 
1035   /* Write to TIMx CCER */
1036   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1037 
1038   return SUCCESS;
1039 }
1040 #endif /* TIM_CCER_CC5E */
1041 
1042 #if defined(TIM_CCER_CC6E)
1043 /**
1044   * @brief  Configure the TIMx output channel 6.
1045   * @param  TIMx Timer Instance
1046   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1047   * @retval An ErrorStatus enumeration value:
1048   *          - SUCCESS: TIMx registers are de-initialized
1049   *          - ERROR: not applicable
1050   */
OC6Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1051 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1052 {
1053   uint32_t tmpccmr3;
1054   uint32_t tmpccer;
1055 
1056   /* Check the parameters */
1057   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1058   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1059   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1060   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1061   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1062   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1063 
1064   /* Disable the Channel 5: Reset the CC6E Bit */
1065   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1066 
1067   /* Get the TIMx CCER register value */
1068   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1069 
1070   /* Get the TIMx CCMR3 register value */
1071   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1072 
1073   /* Select the Output Compare Mode */
1074   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1075 
1076   /* Set the Output Compare Polarity */
1077   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1078 
1079   /* Set the Output State */
1080   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1081 
1082   if (IS_TIM_BREAK_INSTANCE(TIMx))
1083   {
1084     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1085     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1086 
1087     /* Set the Output Idle state */
1088     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1089   }
1090 
1091   /* Write to TIMx CCMR3 */
1092   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1093 
1094   /* Set the Capture Compare Register value */
1095   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1096 
1097   /* Write to TIMx CCER */
1098   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1099 
1100   return SUCCESS;
1101 }
1102 #endif /* TIM_CCER_CC6E */
1103 
1104 /**
1105   * @brief  Configure the TIMx input channel 1.
1106   * @param  TIMx Timer Instance
1107   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1108   * @retval An ErrorStatus enumeration value:
1109   *          - SUCCESS: TIMx registers are de-initialized
1110   *          - ERROR: not applicable
1111   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1112 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1113 {
1114   /* Check the parameters */
1115   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1116   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1117   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1118   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1119   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1120 
1121   /* Disable the Channel 1: Reset the CC1E Bit */
1122   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1123 
1124   /* Select the Input and set the filter and the prescaler value */
1125   MODIFY_REG(TIMx->CCMR1,
1126              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1127              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1128 
1129   /* Select the Polarity and set the CC1E Bit */
1130   MODIFY_REG(TIMx->CCER,
1131              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1132              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1133 
1134   return SUCCESS;
1135 }
1136 
1137 /**
1138   * @brief  Configure the TIMx input channel 2.
1139   * @param  TIMx Timer Instance
1140   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1141   * @retval An ErrorStatus enumeration value:
1142   *          - SUCCESS: TIMx registers are de-initialized
1143   *          - ERROR: not applicable
1144   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1145 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1146 {
1147   /* Check the parameters */
1148   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1149   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1150   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1151   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1152   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1153 
1154   /* Disable the Channel 2: Reset the CC2E Bit */
1155   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1156 
1157   /* Select the Input and set the filter and the prescaler value */
1158   MODIFY_REG(TIMx->CCMR1,
1159              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1160              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1161 
1162   /* Select the Polarity and set the CC2E Bit */
1163 #if defined(TIM_CCER_CC2NP)
1164   MODIFY_REG(TIMx->CCER,
1165              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1166              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1167 #else
1168   MODIFY_REG(TIMx->CCER,
1169              TIM_CCER_CC2P,
1170              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1171 #endif /* TIM_CCER_CC2NP */
1172 
1173   return SUCCESS;
1174 }
1175 
1176 /**
1177   * @brief  Configure the TIMx input channel 3.
1178   * @param  TIMx Timer Instance
1179   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1180   * @retval An ErrorStatus enumeration value:
1181   *          - SUCCESS: TIMx registers are de-initialized
1182   *          - ERROR: not applicable
1183   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1184 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1185 {
1186   /* Check the parameters */
1187   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1188   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1189   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1190   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1191   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1192 
1193   /* Disable the Channel 3: Reset the CC3E Bit */
1194   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1195 
1196   /* Select the Input and set the filter and the prescaler value */
1197   MODIFY_REG(TIMx->CCMR2,
1198              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1199              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1200 
1201   /* Select the Polarity and set the CC3E Bit */
1202 #if defined(TIM_CCER_CC3NP)
1203   MODIFY_REG(TIMx->CCER,
1204              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1205              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1206 #else
1207   MODIFY_REG(TIMx->CCER,
1208              TIM_CCER_CC3P,
1209              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1210 #endif /*TIM_CCER_CC3NP */
1211 
1212   return SUCCESS;
1213 }
1214 
1215 /**
1216   * @brief  Configure the TIMx input channel 4.
1217   * @param  TIMx Timer Instance
1218   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1219   * @retval An ErrorStatus enumeration value:
1220   *          - SUCCESS: TIMx registers are de-initialized
1221   *          - ERROR: not applicable
1222   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1223 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1224 {
1225   /* Check the parameters */
1226   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1227   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1228   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1229   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1230   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1231 
1232   /* Disable the Channel 4: Reset the CC4E Bit */
1233   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1234 
1235   /* Select the Input and set the filter and the prescaler value */
1236   MODIFY_REG(TIMx->CCMR2,
1237              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1238              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1239 
1240   /* Select the Polarity and set the CC4E Bit */
1241 #if defined(TIM_CCER_CC4NP)
1242   MODIFY_REG(TIMx->CCER,
1243              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1244              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1245 #else
1246   MODIFY_REG(TIMx->CCER,
1247              TIM_CCER_CC4P,
1248              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1249 #endif /* TIM_CCER_CC4NP */
1250 
1251   return SUCCESS;
1252 }
1253 
1254 
1255 /**
1256   * @}
1257   */
1258 
1259 /**
1260   * @}
1261   */
1262 
1263 #endif /* TIM1 || TIM2 || TIM16 || TIM17 */
1264 
1265 /**
1266   * @}
1267   */
1268 
1269 #endif /* USE_FULL_LL_DRIVER */
1270