1 /**
2 ******************************************************************************
3 * @file stm32wb0x_hal_uart_ex.c
4 * @author MCD Application Team
5 * @brief Extended UART HAL module driver.
6 * This file provides firmware functions to manage the following extended
7 * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 *
11 *
12 ******************************************************************************
13 * @attention
14 *
15 * Copyright (c) 2024 STMicroelectronics.
16 * All rights reserved.
17 *
18 * This software is licensed under terms that can be found in the LICENSE file
19 * in the root directory of this software component.
20 * If no LICENSE file comes with this software, it is provided AS-IS.
21 *
22 ******************************************************************************
23 @verbatim
24 ==============================================================================
25 ##### UART peripheral extended features #####
26 ==============================================================================
27
28 (#) Declare a UART_HandleTypeDef handle structure.
29
30 (#) For the UART RS485 Driver Enable mode, initialize the UART registers
31 by calling the HAL_RS485Ex_Init() API.
32
33 (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming.
34
35 -@- When UART operates in FIFO mode, FIFO mode must be enabled prior
36 starting RX/TX transfers. Also RX/TX FIFO thresholds must be
37 configured prior starting RX/TX transfers.
38
39 @endverbatim
40 ******************************************************************************
41 */
42
43 /* Includes ------------------------------------------------------------------*/
44 #include "stm32wb0x_hal.h"
45
46 /** @addtogroup STM32WB0x_HAL_Driver
47 * @{
48 */
49
50 /** @defgroup UARTEx UARTEx
51 * @brief UART Extended HAL module driver
52 * @{
53 */
54
55 #ifdef HAL_UART_MODULE_ENABLED
56
57 /* Private typedef -----------------------------------------------------------*/
58 /* Private define ------------------------------------------------------------*/
59 /** @defgroup UARTEX_Private_Constants UARTEx Private Constants
60 * @{
61 */
62 /* UART RX FIFO depth */
63 #define RX_FIFO_DEPTH 8U
64
65 /* UART TX FIFO depth */
66 #define TX_FIFO_DEPTH 8U
67 /**
68 * @}
69 */
70
71 /* Private macros ------------------------------------------------------------*/
72 /* Private variables ---------------------------------------------------------*/
73 /* Private function prototypes -----------------------------------------------*/
74 /** @defgroup UARTEx_Private_Functions UARTEx Private Functions
75 * @{
76 */
77 #if defined(USART_CR1_UESM)
78 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
79 #endif /* USART_CR1_UESM */
80 static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart);
81 /**
82 * @}
83 */
84
85 /* Exported functions --------------------------------------------------------*/
86
87 /** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
88 * @{
89 */
90
91 /** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
92 * @brief Extended Initialization and Configuration Functions
93 *
94 @verbatim
95 ===============================================================================
96 ##### Initialization and Configuration functions #####
97 ===============================================================================
98 [..]
99 This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
100 in asynchronous mode.
101 (+) For the asynchronous mode the parameters below can be configured:
102 (++) Baud Rate
103 (++) Word Length
104 (++) Stop Bit
105 (++) Parity: If the parity is enabled, then the MSB bit of the data written
106 in the data register is transmitted but is changed by the parity bit.
107 (++) Hardware flow control
108 (++) Receiver/transmitter modes
109 (++) Over Sampling Method
110 (++) One-Bit Sampling Method
111 (+) For the asynchronous mode, the following advanced features can be configured as well:
112 (++) TX and/or RX pin level inversion
113 (++) data logical level inversion
114 (++) RX and TX pins swap
115 (++) RX overrun detection disabling
116 (++) DMA disabling on RX error
117 (++) MSB first on communication line
118 (++) auto Baud rate detection
119 [..]
120 The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
121 procedures (details for the procedures are available in reference manual).
122
123 @endverbatim
124
125 Depending on the frame length defined by the M1 and M0 bits (7-bit,
126 8-bit or 9-bit), the possible UART formats are listed in the
127 following table.
128
129 Table 1. UART frame format.
130 +-----------------------------------------------------------------------+
131 | M1 bit | M0 bit | PCE bit | UART frame |
132 |---------|---------|-----------|---------------------------------------|
133 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
134 |---------|---------|-----------|---------------------------------------|
135 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
136 |---------|---------|-----------|---------------------------------------|
137 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
138 |---------|---------|-----------|---------------------------------------|
139 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
140 |---------|---------|-----------|---------------------------------------|
141 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
142 |---------|---------|-----------|---------------------------------------|
143 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
144 +-----------------------------------------------------------------------+
145
146 * @{
147 */
148
149 /**
150 * @brief Initialize the RS485 Driver enable feature according to the specified
151 * parameters in the UART_InitTypeDef and creates the associated handle.
152 * @param huart UART handle.
153 * @param Polarity Select the driver enable polarity.
154 * This parameter can be one of the following values:
155 * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
156 * @arg @ref UART_DE_POLARITY_LOW DE signal is active low
157 * @param AssertionTime Driver Enable assertion time:
158 * 5-bit value defining the time between the activation of the DE (Driver Enable)
159 * signal and the beginning of the start bit. It is expressed in sample time
160 * units (1/8 or 1/16 bit time, depending on the oversampling rate)
161 * @param DeassertionTime Driver Enable deassertion time:
162 * 5-bit value defining the time between the end of the last stop bit, in a
163 * transmitted message, and the de-activation of the DE (Driver Enable) signal.
164 * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
165 * oversampling rate).
166 * @retval HAL status
167 */
HAL_RS485Ex_Init(UART_HandleTypeDef * huart,uint32_t Polarity,uint32_t AssertionTime,uint32_t DeassertionTime)168 HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
169 uint32_t DeassertionTime)
170 {
171 uint32_t temp;
172
173 /* Check the UART handle allocation */
174 if (huart == NULL)
175 {
176 return HAL_ERROR;
177 }
178 /* Check the Driver Enable UART instance */
179 assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
180
181 /* Check the Driver Enable polarity */
182 assert_param(IS_UART_DE_POLARITY(Polarity));
183
184 /* Check the Driver Enable assertion time */
185 assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
186
187 /* Check the Driver Enable deassertion time */
188 assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
189
190 if (huart->gState == HAL_UART_STATE_RESET)
191 {
192 /* Allocate lock resource and initialize it */
193 huart->Lock = HAL_UNLOCKED;
194
195 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
196 UART_InitCallbacksToDefault(huart);
197
198 if (huart->MspInitCallback == NULL)
199 {
200 huart->MspInitCallback = HAL_UART_MspInit;
201 }
202
203 /* Init the low level hardware */
204 huart->MspInitCallback(huart);
205 #else
206 /* Init the low level hardware : GPIO, CLOCK, CORTEX */
207 HAL_UART_MspInit(huart);
208 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
209 }
210
211 huart->gState = HAL_UART_STATE_BUSY;
212
213 /* Disable the Peripheral */
214 __HAL_UART_DISABLE(huart);
215
216 /* Perform advanced settings configuration */
217 /* For some items, configuration requires to be done prior TE and RE bits are set */
218 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
219 {
220 UART_AdvFeatureConfig(huart);
221 }
222
223 /* Set the UART Communication parameters */
224 if (UART_SetConfig(huart) == HAL_ERROR)
225 {
226 return HAL_ERROR;
227 }
228
229 /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
230 SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
231
232 /* Set the Driver Enable polarity */
233 MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
234
235 /* Set the Driver Enable assertion and deassertion times */
236 temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
237 temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
238 MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
239
240 /* Enable the Peripheral */
241 __HAL_UART_ENABLE(huart);
242
243 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
244 return (UART_CheckIdleState(huart));
245 }
246
247 /**
248 * @}
249 */
250
251 /** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
252 * @brief Extended functions
253 *
254 @verbatim
255 ===============================================================================
256 ##### IO operation functions #####
257 ===============================================================================
258 This subsection provides a set of Wakeup and FIFO mode related callback functions.
259
260 #if defined(USART_CR1_UESM)
261 #if defined(USART_CR3_WUFIE)
262 (#) Wakeup from Stop mode Callback:
263 (+) HAL_UARTEx_WakeupCallback()
264
265 #endif
266 #endif
267 (#) TX/RX Fifos Callbacks:
268 (+) HAL_UARTEx_RxFifoFullCallback()
269 (+) HAL_UARTEx_TxFifoEmptyCallback()
270
271 @endverbatim
272 * @{
273 */
274
275 #if defined(USART_CR1_UESM)
276 #if defined(USART_CR3_WUFIE)
277 /**
278 * @brief UART wakeup from Stop mode callback.
279 * @param huart UART handle.
280 * @retval None
281 */
HAL_UARTEx_WakeupCallback(UART_HandleTypeDef * huart)282 __weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
283 {
284 /* Prevent unused argument(s) compilation warning */
285 UNUSED(huart);
286
287 /* NOTE : This function should not be modified, when the callback is needed,
288 the HAL_UARTEx_WakeupCallback can be implemented in the user file.
289 */
290 }
291
292 #endif /* USART_CR3_WUFIE */
293 #endif /* USART_CR1_UESM */
294 /**
295 * @brief UART RX Fifo full callback.
296 * @param huart UART handle.
297 * @retval None
298 */
HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef * huart)299 __weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart)
300 {
301 /* Prevent unused argument(s) compilation warning */
302 UNUSED(huart);
303
304 /* NOTE : This function should not be modified, when the callback is needed,
305 the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file.
306 */
307 }
308
309 /**
310 * @brief UART TX Fifo empty callback.
311 * @param huart UART handle.
312 * @retval None
313 */
HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef * huart)314 __weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart)
315 {
316 /* Prevent unused argument(s) compilation warning */
317 UNUSED(huart);
318
319 /* NOTE : This function should not be modified, when the callback is needed,
320 the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file.
321 */
322 }
323
324 /**
325 * @}
326 */
327
328 /** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
329 * @brief Extended Peripheral Control functions
330 *
331 @verbatim
332 ===============================================================================
333 ##### Peripheral Control functions #####
334 ===============================================================================
335 [..] This section provides the following functions:
336 (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
337 detection length to more than 4 bits for multiprocessor address mark wake up.
338 #if defined(USART_CR1_UESM)
339 (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
340 trigger: address match, Start Bit detection or RXNE bit status.
341 (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
342 (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
343 #endif
344 (+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode
345 (+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode
346 (+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold
347 (+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold
348
349 [..] This subsection also provides a set of additional functions providing enhanced reception
350 services to user. (For example, these functions allow application to handle use cases
351 where number of data to be received is unknown).
352
353 (#) Compared to standard reception services which only consider number of received
354 data elements as reception completion criteria, these functions also consider additional events
355 as triggers for updating reception status to caller :
356 (+) Detection of inactivity period (RX line has not been active for a given period).
357 (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
358 for 1 frame time, after last received byte.
359 (++) RX inactivity detected by RTO, i.e. line has been in idle state
360 for a programmable time, after last received byte.
361 (+) Detection that a specific character has been received.
362
363 (#) There are two mode of transfer:
364 (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
365 or till IDLE event occurs. Reception is handled only during function execution.
366 When function exits, no data reception could occur. HAL status and number of actually received data elements,
367 are returned by function after finishing transfer.
368 (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
369 These API's return the HAL status.
370 The end of the data processing will be indicated through the
371 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
372 The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
373 The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
374
375 (#) Blocking mode API:
376 (+) HAL_UARTEx_ReceiveToIdle()
377
378 (#) Non-Blocking mode API with Interrupt:
379 (+) HAL_UARTEx_ReceiveToIdle_IT()
380
381 (#) Non-Blocking mode API with DMA:
382 (+) HAL_UARTEx_ReceiveToIdle_DMA()
383
384 @endverbatim
385 * @{
386 */
387
388 /**
389 * @brief By default in multiprocessor mode, when the wake up method is set
390 * to address mark, the UART handles only 4-bit long addresses detection;
391 * this API allows to enable longer addresses detection (6-, 7- or 8-bit
392 * long).
393 * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
394 * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
395 * @param huart UART handle.
396 * @param AddressLength This parameter can be one of the following values:
397 * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
398 * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
399 * @retval HAL status
400 */
HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef * huart,uint32_t AddressLength)401 HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
402 {
403 /* Check the UART handle allocation */
404 if (huart == NULL)
405 {
406 return HAL_ERROR;
407 }
408
409 /* Check the address length parameter */
410 assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
411
412 huart->gState = HAL_UART_STATE_BUSY;
413
414 /* Disable the Peripheral */
415 __HAL_UART_DISABLE(huart);
416
417 /* Set the address length */
418 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
419
420 /* Enable the Peripheral */
421 __HAL_UART_ENABLE(huart);
422
423 /* TEACK and/or REACK to check before moving huart->gState to Ready */
424 return (UART_CheckIdleState(huart));
425 }
426
427 #if defined(USART_CR1_UESM)
428 /**
429 * @brief Set Wakeup from Stop mode interrupt flag selection.
430 * @note It is the application responsibility to enable the interrupt used as
431 * usart_wkup interrupt source before entering low-power mode.
432 * @param huart UART handle.
433 * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
434 * This parameter can be one of the following values:
435 * @arg @ref UART_WAKEUP_ON_ADDRESS
436 * @arg @ref UART_WAKEUP_ON_STARTBIT
437 * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
438 * @retval HAL status
439 */
HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)440 HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
441 {
442 HAL_StatusTypeDef status = HAL_OK;
443 uint32_t tickstart;
444
445 /* check the wake-up from stop mode UART instance */
446 assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
447 /* check the wake-up selection parameter */
448 assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
449
450 /* Process Locked */
451 __HAL_LOCK(huart);
452
453 huart->gState = HAL_UART_STATE_BUSY;
454
455 /* Disable the Peripheral */
456 __HAL_UART_DISABLE(huart);
457
458 #if defined(USART_CR3_WUS)
459 /* Set the wake-up selection scheme */
460 MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
461 #endif /* USART_CR3_WUS */
462
463 if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
464 {
465 UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
466 }
467
468 /* Enable the Peripheral */
469 __HAL_UART_ENABLE(huart);
470
471 /* Init tickstart for timeout management */
472 tickstart = HAL_GetTick();
473
474 /* Wait until REACK flag is set */
475 if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
476 {
477 status = HAL_TIMEOUT;
478 }
479 else
480 {
481 /* Initialize the UART State */
482 huart->gState = HAL_UART_STATE_READY;
483 }
484
485 /* Process Unlocked */
486 __HAL_UNLOCK(huart);
487
488 return status;
489 }
490
491 /**
492 * @brief Enable UART Stop Mode.
493 * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
494 * @param huart UART handle.
495 * @retval HAL status
496 */
HAL_UARTEx_EnableStopMode(UART_HandleTypeDef * huart)497 HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
498 {
499 /* Process Locked */
500 __HAL_LOCK(huart);
501
502 /* Set UESM bit */
503 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
504
505 /* Process Unlocked */
506 __HAL_UNLOCK(huart);
507
508 return HAL_OK;
509 }
510
511 /**
512 * @brief Disable UART Stop Mode.
513 * @param huart UART handle.
514 * @retval HAL status
515 */
HAL_UARTEx_DisableStopMode(UART_HandleTypeDef * huart)516 HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
517 {
518 /* Process Locked */
519 __HAL_LOCK(huart);
520
521 /* Clear UESM bit */
522 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
523
524 /* Process Unlocked */
525 __HAL_UNLOCK(huart);
526
527 return HAL_OK;
528 }
529
530 #endif /* USART_CR1_UESM */
531 /**
532 * @brief Enable the FIFO mode.
533 * @param huart UART handle.
534 * @retval HAL status
535 */
HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef * huart)536 HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart)
537 {
538 uint32_t tmpcr1;
539
540 /* Check parameters */
541 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
542
543 /* Process Locked */
544 __HAL_LOCK(huart);
545
546 huart->gState = HAL_UART_STATE_BUSY;
547
548 /* Save actual UART configuration */
549 tmpcr1 = READ_REG(huart->Instance->CR1);
550
551 /* Disable UART */
552 __HAL_UART_DISABLE(huart);
553
554 /* Enable FIFO mode */
555 SET_BIT(tmpcr1, USART_CR1_FIFOEN);
556 huart->FifoMode = UART_FIFOMODE_ENABLE;
557
558 /* Restore UART configuration */
559 WRITE_REG(huart->Instance->CR1, tmpcr1);
560
561 /* Determine the number of data to process during RX/TX ISR execution */
562 UARTEx_SetNbDataToProcess(huart);
563
564 huart->gState = HAL_UART_STATE_READY;
565
566 /* Process Unlocked */
567 __HAL_UNLOCK(huart);
568
569 return HAL_OK;
570 }
571
572 /**
573 * @brief Disable the FIFO mode.
574 * @param huart UART handle.
575 * @retval HAL status
576 */
HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef * huart)577 HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart)
578 {
579 uint32_t tmpcr1;
580
581 /* Check parameters */
582 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
583
584 /* Process Locked */
585 __HAL_LOCK(huart);
586
587 huart->gState = HAL_UART_STATE_BUSY;
588
589 /* Save actual UART configuration */
590 tmpcr1 = READ_REG(huart->Instance->CR1);
591
592 /* Disable UART */
593 __HAL_UART_DISABLE(huart);
594
595 /* Disable FIFO mode */
596 CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN);
597 huart->FifoMode = UART_FIFOMODE_DISABLE;
598
599 /* Restore UART configuration */
600 WRITE_REG(huart->Instance->CR1, tmpcr1);
601
602 huart->gState = HAL_UART_STATE_READY;
603
604 /* Process Unlocked */
605 __HAL_UNLOCK(huart);
606
607 return HAL_OK;
608 }
609
610 /**
611 * @brief Set the TXFIFO threshold.
612 * @param huart UART handle.
613 * @param Threshold TX FIFO threshold value
614 * This parameter can be one of the following values:
615 * @arg @ref UART_TXFIFO_THRESHOLD_1_8
616 * @arg @ref UART_TXFIFO_THRESHOLD_1_4
617 * @arg @ref UART_TXFIFO_THRESHOLD_1_2
618 * @arg @ref UART_TXFIFO_THRESHOLD_3_4
619 * @arg @ref UART_TXFIFO_THRESHOLD_7_8
620 * @arg @ref UART_TXFIFO_THRESHOLD_8_8
621 * @retval HAL status
622 */
HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef * huart,uint32_t Threshold)623 HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
624 {
625 uint32_t tmpcr1;
626
627 /* Check parameters */
628 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
629 assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold));
630
631 /* Process Locked */
632 __HAL_LOCK(huart);
633
634 huart->gState = HAL_UART_STATE_BUSY;
635
636 /* Save actual UART configuration */
637 tmpcr1 = READ_REG(huart->Instance->CR1);
638
639 /* Disable UART */
640 __HAL_UART_DISABLE(huart);
641
642 /* Update TX threshold configuration */
643 MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold);
644
645 /* Determine the number of data to process during RX/TX ISR execution */
646 UARTEx_SetNbDataToProcess(huart);
647
648 /* Restore UART configuration */
649 WRITE_REG(huart->Instance->CR1, tmpcr1);
650
651 huart->gState = HAL_UART_STATE_READY;
652
653 /* Process Unlocked */
654 __HAL_UNLOCK(huart);
655
656 return HAL_OK;
657 }
658
659 /**
660 * @brief Set the RXFIFO threshold.
661 * @param huart UART handle.
662 * @param Threshold RX FIFO threshold value
663 * This parameter can be one of the following values:
664 * @arg @ref UART_RXFIFO_THRESHOLD_1_8
665 * @arg @ref UART_RXFIFO_THRESHOLD_1_4
666 * @arg @ref UART_RXFIFO_THRESHOLD_1_2
667 * @arg @ref UART_RXFIFO_THRESHOLD_3_4
668 * @arg @ref UART_RXFIFO_THRESHOLD_7_8
669 * @arg @ref UART_RXFIFO_THRESHOLD_8_8
670 * @retval HAL status
671 */
HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef * huart,uint32_t Threshold)672 HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
673 {
674 uint32_t tmpcr1;
675
676 /* Check the parameters */
677 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
678 assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold));
679
680 /* Process Locked */
681 __HAL_LOCK(huart);
682
683 huart->gState = HAL_UART_STATE_BUSY;
684
685 /* Save actual UART configuration */
686 tmpcr1 = READ_REG(huart->Instance->CR1);
687
688 /* Disable UART */
689 __HAL_UART_DISABLE(huart);
690
691 /* Update RX threshold configuration */
692 MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold);
693
694 /* Determine the number of data to process during RX/TX ISR execution */
695 UARTEx_SetNbDataToProcess(huart);
696
697 /* Restore UART configuration */
698 WRITE_REG(huart->Instance->CR1, tmpcr1);
699
700 huart->gState = HAL_UART_STATE_READY;
701
702 /* Process Unlocked */
703 __HAL_UNLOCK(huart);
704
705 return HAL_OK;
706 }
707
708 /**
709 * @brief Receive an amount of data in blocking mode till either the expected number of data
710 * is received or an IDLE event occurs.
711 * @note HAL_OK is returned if reception is completed (expected number of data has been received)
712 * or if reception is stopped after IDLE event (less than the expected number of data has been received)
713 * In this case, RxLen output parameter indicates number of data available in reception buffer.
714 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
715 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
716 * of uint16_t available through pData.
717 * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
718 * is not empty. Read operations from the RDR register are performed when
719 * RXFNE flag is set. From hardware perspective, RXFNE flag and
720 * RXNE are mapped on the same bit-field.
721 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
722 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
723 * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
724 * use of specific alignment compilation directives or pragmas might be required to ensure proper
725 * alignment for pData.
726 * @param huart UART handle.
727 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
728 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
729 * @param RxLen Number of data elements finally received
730 * (could be lower than Size, in case reception ends on IDLE event)
731 * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
732 * @retval HAL status
733 */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)734 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
735 uint32_t Timeout)
736 {
737 uint8_t *pdata8bits;
738 uint16_t *pdata16bits;
739 uint16_t uhMask;
740 uint32_t tickstart;
741
742 /* Check that a Rx process is not already ongoing */
743 if (huart->RxState == HAL_UART_STATE_READY)
744 {
745 if ((pData == NULL) || (Size == 0U))
746 {
747 return HAL_ERROR;
748 }
749
750 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
751 should be aligned on a uint16_t frontier, as data to be received from RDR will be
752 handled through a uint16_t cast. */
753 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
754 {
755 if ((((uint32_t)pData) & 1U) != 0U)
756 {
757 return HAL_ERROR;
758 }
759 }
760
761 huart->ErrorCode = HAL_UART_ERROR_NONE;
762 huart->RxState = HAL_UART_STATE_BUSY_RX;
763 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
764 huart->RxEventType = HAL_UART_RXEVENT_TC;
765
766 /* Init tickstart for timeout management */
767 tickstart = HAL_GetTick();
768
769 huart->RxXferSize = Size;
770 huart->RxXferCount = Size;
771
772 /* Computation of UART mask to apply to RDR register */
773 UART_MASK_COMPUTATION(huart);
774 uhMask = huart->Mask;
775
776 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
777 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
778 {
779 pdata8bits = NULL;
780 pdata16bits = (uint16_t *) pData;
781 }
782 else
783 {
784 pdata8bits = pData;
785 pdata16bits = NULL;
786 }
787
788 /* Initialize output number of received elements */
789 *RxLen = 0U;
790
791 /* as long as data have to be received */
792 while (huart->RxXferCount > 0U)
793 {
794 /* Check if IDLE flag is set */
795 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
796 {
797 /* Clear IDLE flag in ISR */
798 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
799
800 /* If Set, but no data ever received, clear flag without exiting loop */
801 /* If Set, and data has already been received, this means Idle Event is valid : End reception */
802 if (*RxLen > 0U)
803 {
804 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
805 huart->RxState = HAL_UART_STATE_READY;
806
807 return HAL_OK;
808 }
809 }
810
811 /* Check if RXNE flag is set */
812 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
813 {
814 if (pdata8bits == NULL)
815 {
816 *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
817 pdata16bits++;
818 }
819 else
820 {
821 *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
822 pdata8bits++;
823 }
824 /* Increment number of received elements */
825 *RxLen += 1U;
826 huart->RxXferCount--;
827 }
828
829 /* Check for the Timeout */
830 if (Timeout != HAL_MAX_DELAY)
831 {
832 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
833 {
834 huart->RxState = HAL_UART_STATE_READY;
835
836 return HAL_TIMEOUT;
837 }
838 }
839 }
840
841 /* Set number of received elements in output parameter : RxLen */
842 *RxLen = huart->RxXferSize - huart->RxXferCount;
843 /* At end of Rx process, restore huart->RxState to Ready */
844 huart->RxState = HAL_UART_STATE_READY;
845
846 return HAL_OK;
847 }
848 else
849 {
850 return HAL_BUSY;
851 }
852 }
853
854 /**
855 * @brief Receive an amount of data in interrupt mode till either the expected number of data
856 * is received or an IDLE event occurs.
857 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
858 * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
859 * number of received data elements.
860 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
861 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
862 * of uint16_t available through pData.
863 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
864 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
865 * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
866 * use of specific alignment compilation directives or pragmas might be required
867 * to ensure proper alignment for pData.
868 * @param huart UART handle.
869 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
870 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
871 * @retval HAL status
872 */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)873 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
874 {
875 HAL_StatusTypeDef status = HAL_OK;
876
877 /* Check that a Rx process is not already ongoing */
878 if (huart->RxState == HAL_UART_STATE_READY)
879 {
880 if ((pData == NULL) || (Size == 0U))
881 {
882 return HAL_ERROR;
883 }
884
885 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
886 should be aligned on a uint16_t frontier, as data to be received from RDR will be
887 handled through a uint16_t cast. */
888 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
889 {
890 if ((((uint32_t)pData) & 1U) != 0U)
891 {
892 return HAL_ERROR;
893 }
894 }
895
896 /* Set Reception type to reception till IDLE Event*/
897 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
898 huart->RxEventType = HAL_UART_RXEVENT_TC;
899
900 (void)UART_Start_Receive_IT(huart, pData, Size);
901
902 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
903 {
904 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
905 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
906 }
907 else
908 {
909 /* In case of errors already pending when reception is started,
910 Interrupts may have already been raised and lead to reception abortion.
911 (Overrun error for instance).
912 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
913 status = HAL_ERROR;
914 }
915
916 return status;
917 }
918 else
919 {
920 return HAL_BUSY;
921 }
922 }
923
924 #if defined(HAL_DMA_MODULE_ENABLED)
925 /**
926 * @brief Receive an amount of data in DMA mode till either the expected number
927 * of data is received or an IDLE event occurs.
928 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
929 * to DMA services, transferring automatically received data elements in user reception buffer and
930 * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
931 * reception phase as ended. In all cases, callback execution will indicate number of received data elements.
932 * @note When the UART parity is enabled (PCE = 1), the received data contain
933 * the parity bit (MSB position).
934 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
935 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
936 * of uint16_t available through pData.
937 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
938 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
939 * (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
940 * use of specific alignment compilation directives or pragmas might be required
941 * to ensure proper alignment for pData.
942 * @param huart UART handle.
943 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
944 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
945 * @retval HAL status
946 */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)947 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
948 {
949 HAL_StatusTypeDef status;
950
951 /* Check that a Rx process is not already ongoing */
952 if (huart->RxState == HAL_UART_STATE_READY)
953 {
954 if ((pData == NULL) || (Size == 0U))
955 {
956 return HAL_ERROR;
957 }
958
959 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
960 should be aligned on a uint16_t frontier, as data copy from RDR will be
961 handled by DMA from a uint16_t frontier. */
962 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
963 {
964 if ((((uint32_t)pData) & 1U) != 0U)
965 {
966 return HAL_ERROR;
967 }
968 }
969
970 /* Set Reception type to reception till IDLE Event*/
971 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
972 huart->RxEventType = HAL_UART_RXEVENT_TC;
973
974 status = UART_Start_Receive_DMA(huart, pData, Size);
975
976 /* Check Rx process has been successfully started */
977 if (status == HAL_OK)
978 {
979 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
980 {
981 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
982 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
983 }
984 else
985 {
986 /* In case of errors already pending when reception is started,
987 Interrupts may have already been raised and lead to reception abortion.
988 (Overrun error for instance).
989 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
990 status = HAL_ERROR;
991 }
992 }
993
994 return status;
995 }
996 else
997 {
998 return HAL_BUSY;
999 }
1000 }
1001 #endif /* HAL_DMA_MODULE_ENABLED */
1002
1003 /**
1004 * @brief Provide Rx Event type that has lead to RxEvent callback execution.
1005 * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
1006 * of reception process is provided to application through calls of Rx Event callback (either default one
1007 * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
1008 * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
1009 * to Rx Event callback execution.
1010 * @note This function is expected to be called within the user implementation of Rx Event Callback,
1011 * in order to provide the accurate value :
1012 * In Interrupt Mode :
1013 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1014 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1015 * received data is lower than expected one)
1016 * In DMA Mode :
1017 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1018 * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
1019 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1020 * received data is lower than expected one).
1021 * In DMA mode, RxEvent callback could be called several times;
1022 * When DMA is configured in Normal Mode, HT event does not stop Reception process;
1023 * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
1024 * @param huart UART handle.
1025 * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
1026 */
HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef * huart)1027 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef *huart)
1028 {
1029 /* Return Rx Event type value, as stored in UART handle */
1030 return (huart->RxEventType);
1031 }
1032
1033 /**
1034 * @}
1035 */
1036
1037 /**
1038 * @}
1039 */
1040
1041 /** @addtogroup UARTEx_Private_Functions
1042 * @{
1043 */
1044 #if defined(USART_CR1_UESM)
1045
1046 /**
1047 * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
1048 * @param huart UART handle.
1049 * @param WakeUpSelection UART wake up from stop mode parameters.
1050 * @retval None
1051 */
UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)1052 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
1053 {
1054 assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
1055
1056 /* Set the USART address length */
1057 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
1058
1059 /* Set the USART address node */
1060 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
1061 }
1062 #endif /* USART_CR1_UESM */
1063
1064 /**
1065 * @brief Calculate the number of data to process in RX/TX ISR.
1066 * @note The RX FIFO depth and the TX FIFO depth is extracted from
1067 * the UART configuration registers.
1068 * @param huart UART handle.
1069 * @retval None
1070 */
UARTEx_SetNbDataToProcess(UART_HandleTypeDef * huart)1071 static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart)
1072 {
1073 uint8_t rx_fifo_depth;
1074 uint8_t tx_fifo_depth;
1075 uint8_t rx_fifo_threshold;
1076 uint8_t tx_fifo_threshold;
1077 static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U};
1078 static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U};
1079
1080 if (huart->FifoMode == UART_FIFOMODE_DISABLE)
1081 {
1082 huart->NbTxDataToProcess = 1U;
1083 huart->NbRxDataToProcess = 1U;
1084 }
1085 else
1086 {
1087 rx_fifo_depth = RX_FIFO_DEPTH;
1088 tx_fifo_depth = TX_FIFO_DEPTH;
1089 rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
1090 tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
1091 huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) /
1092 (uint16_t)denominator[tx_fifo_threshold];
1093 huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) /
1094 (uint16_t)denominator[rx_fifo_threshold];
1095 }
1096 }
1097 /**
1098 * @}
1099 */
1100
1101 #endif /* HAL_UART_MODULE_ENABLED */
1102
1103 /**
1104 * @}
1105 */
1106
1107 /**
1108 * @}
1109 */
1110