1 /**
2   ******************************************************************************
3   * @file    stm32u0xx_hal_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Timer (TIM) peripheral:
8   *           + TIM Time Base Initialization
9   *           + TIM Time Base Start
10   *           + TIM Time Base Start Interruption
11   *           + TIM Time Base Start DMA
12   *           + TIM Output Compare/PWM Initialization
13   *           + TIM Output Compare/PWM Channel Configuration
14   *           + TIM Output Compare/PWM  Start
15   *           + TIM Output Compare/PWM  Start Interruption
16   *           + TIM Output Compare/PWM Start DMA
17   *           + TIM Input Capture Initialization
18   *           + TIM Input Capture Channel Configuration
19   *           + TIM Input Capture Start
20   *           + TIM Input Capture Start Interruption
21   *           + TIM Input Capture Start DMA
22   *           + TIM One Pulse Initialization
23   *           + TIM One Pulse Channel Configuration
24   *           + TIM One Pulse Start
25   *           + TIM Encoder Interface Initialization
26   *           + TIM Encoder Interface Start
27   *           + TIM Encoder Interface Start Interruption
28   *           + TIM Encoder Interface Start DMA
29   *           + Commutation Event configuration with Interruption and DMA
30   *           + TIM OCRef clear configuration
31   *           + TIM External Clock configuration
32   ******************************************************************************
33   * @attention
34   *
35   * Copyright (c) 2023 STMicroelectronics.
36   * All rights reserved.
37   *
38   * This software is licensed under terms that can be found in the LICENSE file
39   * in the root directory of this software component.
40   * If no LICENSE file comes with this software, it is provided AS-IS.
41   *
42   ******************************************************************************
43   @verbatim
44   ==============================================================================
45                       ##### TIMER Generic features #####
46   ==============================================================================
47   [..] The Timer features include:
48        (#) 16-bit up, down, up/down auto-reload counter.
49        (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50            counter clock frequency either by any factor between 1 and 65536.
51        (#) Up to 4 independent channels for:
52            (++) Input Capture
53            (++) Output Compare
54            (++) PWM generation (Edge and Center-aligned Mode)
55            (++) One-pulse mode output
56        (#) Synchronization circuit to control the timer with external signals and to interconnect
57             several timers together.
58        (#) Supports incremental encoder for positioning purposes
59 
60             ##### How to use this driver #####
61   ==============================================================================
62     [..]
63      (#) Initialize the TIM low level resources by implementing the following functions
64          depending on the selected feature:
65            (++) Time Base : HAL_TIM_Base_MspInit()
66            (++) Input Capture : HAL_TIM_IC_MspInit()
67            (++) Output Compare : HAL_TIM_OC_MspInit()
68            (++) PWM generation : HAL_TIM_PWM_MspInit()
69            (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70            (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71 
72      (#) Initialize the TIM low level resources :
73         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74         (##) TIM pins configuration
75             (+++) Enable the clock for the TIM GPIOs using the following function:
76              __HAL_RCC_GPIOx_CLK_ENABLE();
77             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78 
79      (#) The external Clock can be configured, if needed (the default clock is the
80          internal clock from the APBx), using the following function:
81          HAL_TIM_ConfigClockSource, the clock configuration should be done before
82          any start function.
83 
84      (#) Configure the TIM in the desired functioning mode using one of the
85        Initialization function of this driver:
86        (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87        (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88             Output Compare signal.
89        (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90             PWM signal.
91        (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92             external signal.
93        (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94             in One Pulse Mode.
95        (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96 
97      (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98            (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99            (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100            (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101            (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102            (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103            (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104 
105      (#) The DMA Burst is managed with the two following functions:
106          HAL_TIM_DMABurst_WriteStart()
107          HAL_TIM_DMABurst_ReadStart()
108 
109     *** Callback registration ***
110   =============================================
111 
112   [..]
113   The compilation define  USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115 
116   [..]
117   Use Function HAL_TIM_RegisterCallback() to register a callback.
118   HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119   the Callback ID and a pointer to the user callback function.
120 
121   [..]
122   Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123   weak function.
124   HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125   and the Callback ID.
126 
127   [..]
128   These functions allow to register/unregister following callbacks:
129     (+) Base_MspInitCallback              : TIM Base Msp Init Callback.
130     (+) Base_MspDeInitCallback            : TIM Base Msp DeInit Callback.
131     (+) IC_MspInitCallback                : TIM IC Msp Init Callback.
132     (+) IC_MspDeInitCallback              : TIM IC Msp DeInit Callback.
133     (+) OC_MspInitCallback                : TIM OC Msp Init Callback.
134     (+) OC_MspDeInitCallback              : TIM OC Msp DeInit Callback.
135     (+) PWM_MspInitCallback               : TIM PWM Msp Init Callback.
136     (+) PWM_MspDeInitCallback             : TIM PWM Msp DeInit Callback.
137     (+) OnePulse_MspInitCallback          : TIM One Pulse Msp Init Callback.
138     (+) OnePulse_MspDeInitCallback        : TIM One Pulse Msp DeInit Callback.
139     (+) Encoder_MspInitCallback           : TIM Encoder Msp Init Callback.
140     (+) Encoder_MspDeInitCallback         : TIM Encoder Msp DeInit Callback.
141     (+) HallSensor_MspInitCallback        : TIM Hall Sensor Msp Init Callback.
142     (+) HallSensor_MspDeInitCallback      : TIM Hall Sensor Msp DeInit Callback.
143     (+) PeriodElapsedCallback             : TIM Period Elapsed Callback.
144     (+) PeriodElapsedHalfCpltCallback     : TIM Period Elapsed half complete Callback.
145     (+) TriggerCallback                   : TIM Trigger Callback.
146     (+) TriggerHalfCpltCallback           : TIM Trigger half complete Callback.
147     (+) IC_CaptureCallback                : TIM Input Capture Callback.
148     (+) IC_CaptureHalfCpltCallback        : TIM Input Capture half complete Callback.
149     (+) OC_DelayElapsedCallback           : TIM Output Compare Delay Elapsed Callback.
150     (+) PWM_PulseFinishedCallback         : TIM PWM Pulse Finished Callback.
151     (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152     (+) ErrorCallback                     : TIM Error Callback.
153     (+) CommutationCallback               : TIM Commutation Callback.
154     (+) CommutationHalfCpltCallback       : TIM Commutation half complete Callback.
155     (+) BreakCallback                     : TIM Break Callback.
156     (+) Break2Callback                    : TIM Break2 Callback.
157 
158   [..]
159 By default, after the Init and when the state is HAL_TIM_STATE_RESET
160 all interrupt callbacks are set to the corresponding weak functions:
161   examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
162 
163   [..]
164   Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
165   functionalities in the Init / DeInit only when these callbacks are null
166   (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
167     keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
168 
169   [..]
170     Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
171     Exception done MspInit / MspDeInit that can be registered / unregistered
172     in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
173     thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
174   In that case first register the MspInit/MspDeInit user callbacks
175       using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
176 
177   [..]
178       When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
179       not defined, the callback registration feature is not available and all callbacks
180       are set to the corresponding weak functions.
181 
182   @endverbatim
183   ******************************************************************************
184   */
185 
186 /* Includes ------------------------------------------------------------------*/
187 #include "stm32u0xx_hal.h"
188 
189 /** @addtogroup STM32U0xx_HAL_Driver
190   * @{
191   */
192 
193 /** @defgroup TIM TIM
194   * @brief TIM HAL module driver
195   * @{
196   */
197 
198 #ifdef HAL_TIM_MODULE_ENABLED
199 
200 /* Private typedef -----------------------------------------------------------*/
201 /* Private define ------------------------------------------------------------*/
202 /** @addtogroup TIM_Private_Constants
203   * @{
204   */
205 #define TIMx_OR1_OCREF_CLR 0x00000001U
206 /**
207   * @}
208   */
209 
210 /* Private macros ------------------------------------------------------------*/
211 /* Private variables ---------------------------------------------------------*/
212 /* Private function prototypes -----------------------------------------------*/
213 /** @addtogroup TIM_Private_Functions
214   * @{
215   */
216 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
217 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
218 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
219 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
220 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
221 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
222 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
223                               uint32_t TIM_ICFilter);
224 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
225 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
226                               uint32_t TIM_ICFilter);
227 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
228                               uint32_t TIM_ICFilter);
229 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
230 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
231 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
232 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
233 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
234 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
235 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
236                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig);
237 /**
238   * @}
239   */
240 /* Exported functions --------------------------------------------------------*/
241 
242 /** @defgroup TIM_Exported_Functions TIM Exported Functions
243   * @{
244   */
245 
246 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
247   *  @brief    Time Base functions
248   *
249 @verbatim
250   ==============================================================================
251               ##### Time Base functions #####
252   ==============================================================================
253   [..]
254     This section provides functions allowing to:
255     (+) Initialize and configure the TIM base.
256     (+) De-initialize the TIM base.
257     (+) Start the Time Base.
258     (+) Stop the Time Base.
259     (+) Start the Time Base and enable interrupt.
260     (+) Stop the Time Base and disable interrupt.
261     (+) Start the Time Base and enable DMA transfer.
262     (+) Stop the Time Base and disable DMA transfer.
263 
264 @endverbatim
265   * @{
266   */
267 /**
268   * @brief  Initializes the TIM Time base Unit according to the specified
269   *         parameters in the TIM_HandleTypeDef and initialize the associated handle.
270   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
271   *         requires a timer reset to avoid unexpected direction
272   *         due to DIR bit readonly in center aligned mode.
273   *         Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
274   * @param  htim TIM Base handle
275   * @retval HAL status
276   */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)277 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
278 {
279   /* Check the TIM handle allocation */
280   if (htim == NULL)
281   {
282     return HAL_ERROR;
283   }
284 
285   /* Check the parameters */
286   assert_param(IS_TIM_INSTANCE(htim->Instance));
287   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
288   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
289   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
290   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
291 
292   if (htim->State == HAL_TIM_STATE_RESET)
293   {
294     /* Allocate lock resource and initialize it */
295     htim->Lock = HAL_UNLOCKED;
296 
297 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
298     /* Reset interrupt callbacks to legacy weak callbacks */
299     TIM_ResetCallback(htim);
300 
301     if (htim->Base_MspInitCallback == NULL)
302     {
303       htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
304     }
305     /* Init the low level hardware : GPIO, CLOCK, NVIC */
306     htim->Base_MspInitCallback(htim);
307 #else
308     /* Init the low level hardware : GPIO, CLOCK, NVIC */
309     HAL_TIM_Base_MspInit(htim);
310 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
311   }
312 
313   /* Set the TIM state */
314   htim->State = HAL_TIM_STATE_BUSY;
315 
316   /* Set the Time Base configuration */
317   TIM_Base_SetConfig(htim->Instance, &htim->Init);
318 
319   /* Initialize the DMA burst operation state */
320   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
321 
322   /* Initialize the TIM channels state */
323   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
324   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
325 
326   /* Initialize the TIM state*/
327   htim->State = HAL_TIM_STATE_READY;
328 
329   return HAL_OK;
330 }
331 
332 /**
333   * @brief  DeInitializes the TIM Base peripheral
334   * @param  htim TIM Base handle
335   * @retval HAL status
336   */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)337 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
338 {
339   /* Check the parameters */
340   assert_param(IS_TIM_INSTANCE(htim->Instance));
341 
342   htim->State = HAL_TIM_STATE_BUSY;
343 
344   /* Disable the TIM Peripheral Clock */
345   __HAL_TIM_DISABLE(htim);
346 
347 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
348   if (htim->Base_MspDeInitCallback == NULL)
349   {
350     htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
351   }
352   /* DeInit the low level hardware */
353   htim->Base_MspDeInitCallback(htim);
354 #else
355   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
356   HAL_TIM_Base_MspDeInit(htim);
357 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
358 
359   /* Change the DMA burst operation state */
360   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
361 
362   /* Change the TIM channels state */
363   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
364   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
365 
366   /* Change TIM state */
367   htim->State = HAL_TIM_STATE_RESET;
368 
369   /* Release Lock */
370   __HAL_UNLOCK(htim);
371 
372   return HAL_OK;
373 }
374 
375 /**
376   * @brief  Initializes the TIM Base MSP.
377   * @param  htim TIM Base handle
378   * @retval None
379   */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)380 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
381 {
382   /* Prevent unused argument(s) compilation warning */
383   UNUSED(htim);
384 
385   /* NOTE : This function should not be modified, when the callback is needed,
386             the HAL_TIM_Base_MspInit could be implemented in the user file
387    */
388 }
389 
390 /**
391   * @brief  DeInitializes TIM Base MSP.
392   * @param  htim TIM Base handle
393   * @retval None
394   */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)395 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
396 {
397   /* Prevent unused argument(s) compilation warning */
398   UNUSED(htim);
399 
400   /* NOTE : This function should not be modified, when the callback is needed,
401             the HAL_TIM_Base_MspDeInit could be implemented in the user file
402    */
403 }
404 
405 
406 /**
407   * @brief  Starts the TIM Base generation.
408   * @param  htim TIM Base handle
409   * @retval HAL status
410   */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)411 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
412 {
413   uint32_t tmpsmcr;
414 
415   /* Check the parameters */
416   assert_param(IS_TIM_INSTANCE(htim->Instance));
417 
418   /* Check the TIM state */
419   if (htim->State != HAL_TIM_STATE_READY)
420   {
421     return HAL_ERROR;
422   }
423 
424   /* Set the TIM state */
425   htim->State = HAL_TIM_STATE_BUSY;
426 
427   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
428   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
429   {
430     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
431     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
432     {
433       __HAL_TIM_ENABLE(htim);
434     }
435   }
436   else
437   {
438     __HAL_TIM_ENABLE(htim);
439   }
440 
441   /* Return function status */
442   return HAL_OK;
443 }
444 
445 /**
446   * @brief  Stops the TIM Base generation.
447   * @param  htim TIM Base handle
448   * @retval HAL status
449   */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)450 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
451 {
452   /* Check the parameters */
453   assert_param(IS_TIM_INSTANCE(htim->Instance));
454 
455   /* Disable the Peripheral */
456   __HAL_TIM_DISABLE(htim);
457 
458   /* Set the TIM state */
459   htim->State = HAL_TIM_STATE_READY;
460 
461   /* Return function status */
462   return HAL_OK;
463 }
464 
465 /**
466   * @brief  Starts the TIM Base generation in interrupt mode.
467   * @param  htim TIM Base handle
468   * @retval HAL status
469   */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)470 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
471 {
472   uint32_t tmpsmcr;
473 
474   /* Check the parameters */
475   assert_param(IS_TIM_INSTANCE(htim->Instance));
476 
477   /* Check the TIM state */
478   if (htim->State != HAL_TIM_STATE_READY)
479   {
480     return HAL_ERROR;
481   }
482 
483   /* Set the TIM state */
484   htim->State = HAL_TIM_STATE_BUSY;
485 
486   /* Enable the TIM Update interrupt */
487   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
488 
489   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
490   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
491   {
492     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
493     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
494     {
495       __HAL_TIM_ENABLE(htim);
496     }
497   }
498   else
499   {
500     __HAL_TIM_ENABLE(htim);
501   }
502 
503   /* Return function status */
504   return HAL_OK;
505 }
506 
507 /**
508   * @brief  Stops the TIM Base generation in interrupt mode.
509   * @param  htim TIM Base handle
510   * @retval HAL status
511   */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)512 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
513 {
514   /* Check the parameters */
515   assert_param(IS_TIM_INSTANCE(htim->Instance));
516 
517   /* Disable the TIM Update interrupt */
518   __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
519 
520   /* Disable the Peripheral */
521   __HAL_TIM_DISABLE(htim);
522 
523   /* Set the TIM state */
524   htim->State = HAL_TIM_STATE_READY;
525 
526   /* Return function status */
527   return HAL_OK;
528 }
529 
530 /**
531   * @brief  Starts the TIM Base generation in DMA mode.
532   * @param  htim TIM Base handle
533   * @param  pData The source Buffer address.
534   * @param  Length The length of data to be transferred from memory to peripheral.
535   * @retval HAL status
536   */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)537 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
538 {
539   uint32_t tmpsmcr;
540 
541   /* Check the parameters */
542   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
543 
544   /* Set the TIM state */
545   if (htim->State == HAL_TIM_STATE_BUSY)
546   {
547     return HAL_BUSY;
548   }
549   else if (htim->State == HAL_TIM_STATE_READY)
550   {
551     if ((pData == NULL) || (Length == 0U))
552     {
553       return HAL_ERROR;
554     }
555     else
556     {
557       htim->State = HAL_TIM_STATE_BUSY;
558     }
559   }
560   else
561   {
562     return HAL_ERROR;
563   }
564 
565   /* Set the DMA Period elapsed callbacks */
566   htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
567   htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
568 
569   /* Set the DMA error callback */
570   htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
571 
572   /* Enable the DMA channel */
573   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
574                        Length) != HAL_OK)
575   {
576     /* Return error status */
577     return HAL_ERROR;
578   }
579 
580   /* Enable the TIM Update DMA request */
581   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
582 
583   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
584   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
585   {
586     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
587     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
588     {
589       __HAL_TIM_ENABLE(htim);
590     }
591   }
592   else
593   {
594     __HAL_TIM_ENABLE(htim);
595   }
596 
597   /* Return function status */
598   return HAL_OK;
599 }
600 
601 /**
602   * @brief  Stops the TIM Base generation in DMA mode.
603   * @param  htim TIM Base handle
604   * @retval HAL status
605   */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)606 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
607 {
608   /* Check the parameters */
609   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
610 
611   /* Disable the TIM Update DMA request */
612   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
613 
614   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
615 
616   /* Disable the Peripheral */
617   __HAL_TIM_DISABLE(htim);
618 
619   /* Set the TIM state */
620   htim->State = HAL_TIM_STATE_READY;
621 
622   /* Return function status */
623   return HAL_OK;
624 }
625 
626 /**
627   * @}
628   */
629 
630 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
631   *  @brief    TIM Output Compare functions
632   *
633 @verbatim
634   ==============================================================================
635                   ##### TIM Output Compare functions #####
636   ==============================================================================
637   [..]
638     This section provides functions allowing to:
639     (+) Initialize and configure the TIM Output Compare.
640     (+) De-initialize the TIM Output Compare.
641     (+) Start the TIM Output Compare.
642     (+) Stop the TIM Output Compare.
643     (+) Start the TIM Output Compare and enable interrupt.
644     (+) Stop the TIM Output Compare and disable interrupt.
645     (+) Start the TIM Output Compare and enable DMA transfer.
646     (+) Stop the TIM Output Compare and disable DMA transfer.
647 
648 @endverbatim
649   * @{
650   */
651 /**
652   * @brief  Initializes the TIM Output Compare according to the specified
653   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
654   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
655   *         requires a timer reset to avoid unexpected direction
656   *         due to DIR bit readonly in center aligned mode.
657   *         Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
658   * @param  htim TIM Output Compare handle
659   * @retval HAL status
660   */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)661 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
662 {
663   /* Check the TIM handle allocation */
664   if (htim == NULL)
665   {
666     return HAL_ERROR;
667   }
668 
669   /* Check the parameters */
670   assert_param(IS_TIM_INSTANCE(htim->Instance));
671   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
672   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
673   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
674   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
675 
676   if (htim->State == HAL_TIM_STATE_RESET)
677   {
678     /* Allocate lock resource and initialize it */
679     htim->Lock = HAL_UNLOCKED;
680 
681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
682     /* Reset interrupt callbacks to legacy weak callbacks */
683     TIM_ResetCallback(htim);
684 
685     if (htim->OC_MspInitCallback == NULL)
686     {
687       htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
688     }
689     /* Init the low level hardware : GPIO, CLOCK, NVIC */
690     htim->OC_MspInitCallback(htim);
691 #else
692     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
693     HAL_TIM_OC_MspInit(htim);
694 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
695   }
696 
697   /* Set the TIM state */
698   htim->State = HAL_TIM_STATE_BUSY;
699 
700   /* Init the base time for the Output Compare */
701   TIM_Base_SetConfig(htim->Instance,  &htim->Init);
702 
703   /* Initialize the DMA burst operation state */
704   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
705 
706   /* Initialize the TIM channels state */
707   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
708   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
709 
710   /* Initialize the TIM state*/
711   htim->State = HAL_TIM_STATE_READY;
712 
713   return HAL_OK;
714 }
715 
716 /**
717   * @brief  DeInitializes the TIM peripheral
718   * @param  htim TIM Output Compare handle
719   * @retval HAL status
720   */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)721 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
722 {
723   /* Check the parameters */
724   assert_param(IS_TIM_INSTANCE(htim->Instance));
725 
726   htim->State = HAL_TIM_STATE_BUSY;
727 
728   /* Disable the TIM Peripheral Clock */
729   __HAL_TIM_DISABLE(htim);
730 
731 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
732   if (htim->OC_MspDeInitCallback == NULL)
733   {
734     htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
735   }
736   /* DeInit the low level hardware */
737   htim->OC_MspDeInitCallback(htim);
738 #else
739   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
740   HAL_TIM_OC_MspDeInit(htim);
741 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
742 
743   /* Change the DMA burst operation state */
744   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
745 
746   /* Change the TIM channels state */
747   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
748   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
749 
750   /* Change TIM state */
751   htim->State = HAL_TIM_STATE_RESET;
752 
753   /* Release Lock */
754   __HAL_UNLOCK(htim);
755 
756   return HAL_OK;
757 }
758 
759 /**
760   * @brief  Initializes the TIM Output Compare MSP.
761   * @param  htim TIM Output Compare handle
762   * @retval None
763   */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)764 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
765 {
766   /* Prevent unused argument(s) compilation warning */
767   UNUSED(htim);
768 
769   /* NOTE : This function should not be modified, when the callback is needed,
770             the HAL_TIM_OC_MspInit could be implemented in the user file
771    */
772 }
773 
774 /**
775   * @brief  DeInitializes TIM Output Compare MSP.
776   * @param  htim TIM Output Compare handle
777   * @retval None
778   */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)779 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
780 {
781   /* Prevent unused argument(s) compilation warning */
782   UNUSED(htim);
783 
784   /* NOTE : This function should not be modified, when the callback is needed,
785             the HAL_TIM_OC_MspDeInit could be implemented in the user file
786    */
787 }
788 
789 /**
790   * @brief  Starts the TIM Output Compare signal generation.
791   * @param  htim TIM Output Compare handle
792   * @param  Channel TIM Channel to be enabled
793   *          This parameter can be one of the following values:
794   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
795   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
796   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
797   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
798   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
799   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
800   * @retval HAL status
801   */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)802 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
803 {
804   uint32_t tmpsmcr;
805 
806   /* Check the parameters */
807   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
808 
809   /* Check the TIM channel state */
810   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
811   {
812     return HAL_ERROR;
813   }
814 
815   /* Set the TIM channel state */
816   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
817 
818   /* Enable the Output compare channel */
819   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
820 
821   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
822   {
823     /* Enable the main output */
824     __HAL_TIM_MOE_ENABLE(htim);
825   }
826 
827   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
828   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
829   {
830     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
831     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
832     {
833       __HAL_TIM_ENABLE(htim);
834     }
835   }
836   else
837   {
838     __HAL_TIM_ENABLE(htim);
839   }
840 
841   /* Return function status */
842   return HAL_OK;
843 }
844 
845 /**
846   * @brief  Stops the TIM Output Compare signal generation.
847   * @param  htim TIM Output Compare handle
848   * @param  Channel TIM Channel to be disabled
849   *          This parameter can be one of the following values:
850   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
851   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
852   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
853   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
854   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
855   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
856   * @retval HAL status
857   */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)858 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
859 {
860   /* Check the parameters */
861   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
862 
863   /* Disable the Output compare channel */
864   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
865 
866   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
867   {
868     /* Disable the Main Output */
869     __HAL_TIM_MOE_DISABLE(htim);
870   }
871 
872   /* Disable the Peripheral */
873   __HAL_TIM_DISABLE(htim);
874 
875   /* Set the TIM channel state */
876   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
877 
878   /* Return function status */
879   return HAL_OK;
880 }
881 
882 /**
883   * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
884   * @param  htim TIM Output Compare handle
885   * @param  Channel TIM Channel to be enabled
886   *          This parameter can be one of the following values:
887   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
888   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
889   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
890   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
891   * @retval HAL status
892   */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)893 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
894 {
895   HAL_StatusTypeDef status = HAL_OK;
896   uint32_t tmpsmcr;
897 
898   /* Check the parameters */
899   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
900 
901   /* Check the TIM channel state */
902   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
903   {
904     return HAL_ERROR;
905   }
906 
907   /* Set the TIM channel state */
908   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
909 
910   switch (Channel)
911   {
912     case TIM_CHANNEL_1:
913     {
914       /* Enable the TIM Capture/Compare 1 interrupt */
915       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
916       break;
917     }
918 
919     case TIM_CHANNEL_2:
920     {
921       /* Enable the TIM Capture/Compare 2 interrupt */
922       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
923       break;
924     }
925 
926     case TIM_CHANNEL_3:
927     {
928       /* Enable the TIM Capture/Compare 3 interrupt */
929       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
930       break;
931     }
932 
933     case TIM_CHANNEL_4:
934     {
935       /* Enable the TIM Capture/Compare 4 interrupt */
936       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
937       break;
938     }
939 
940     default:
941       status = HAL_ERROR;
942       break;
943   }
944 
945   if (status == HAL_OK)
946   {
947     /* Enable the Output compare channel */
948     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
949 
950     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
951     {
952       /* Enable the main output */
953       __HAL_TIM_MOE_ENABLE(htim);
954     }
955 
956     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
957     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
958     {
959       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
960       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
961       {
962         __HAL_TIM_ENABLE(htim);
963       }
964     }
965     else
966     {
967       __HAL_TIM_ENABLE(htim);
968     }
969   }
970 
971   /* Return function status */
972   return status;
973 }
974 
975 /**
976   * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
977   * @param  htim TIM Output Compare handle
978   * @param  Channel TIM Channel to be disabled
979   *          This parameter can be one of the following values:
980   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
981   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
982   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
983   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
984   * @retval HAL status
985   */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)986 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
987 {
988   HAL_StatusTypeDef status = HAL_OK;
989 
990   /* Check the parameters */
991   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
992 
993   switch (Channel)
994   {
995     case TIM_CHANNEL_1:
996     {
997       /* Disable the TIM Capture/Compare 1 interrupt */
998       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
999       break;
1000     }
1001 
1002     case TIM_CHANNEL_2:
1003     {
1004       /* Disable the TIM Capture/Compare 2 interrupt */
1005       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1006       break;
1007     }
1008 
1009     case TIM_CHANNEL_3:
1010     {
1011       /* Disable the TIM Capture/Compare 3 interrupt */
1012       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1013       break;
1014     }
1015 
1016     case TIM_CHANNEL_4:
1017     {
1018       /* Disable the TIM Capture/Compare 4 interrupt */
1019       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1020       break;
1021     }
1022 
1023     default:
1024       status = HAL_ERROR;
1025       break;
1026   }
1027 
1028   if (status == HAL_OK)
1029   {
1030     /* Disable the Output compare channel */
1031     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1032 
1033     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1034     {
1035       /* Disable the Main Output */
1036       __HAL_TIM_MOE_DISABLE(htim);
1037     }
1038 
1039     /* Disable the Peripheral */
1040     __HAL_TIM_DISABLE(htim);
1041 
1042     /* Set the TIM channel state */
1043     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1044   }
1045 
1046   /* Return function status */
1047   return status;
1048 }
1049 
1050 /**
1051   * @brief  Starts the TIM Output Compare signal generation in DMA mode.
1052   * @param  htim TIM Output Compare handle
1053   * @param  Channel TIM Channel to be enabled
1054   *          This parameter can be one of the following values:
1055   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1056   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1057   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1058   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1059   * @param  pData The source Buffer address.
1060   * @param  Length The length of data to be transferred from memory to TIM peripheral
1061   * @retval HAL status
1062   */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1063 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1064                                        uint16_t Length)
1065 {
1066   HAL_StatusTypeDef status = HAL_OK;
1067   uint32_t tmpsmcr;
1068 
1069   /* Check the parameters */
1070   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1071 
1072   /* Set the TIM channel state */
1073   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1074   {
1075     return HAL_BUSY;
1076   }
1077   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1078   {
1079     if ((pData == NULL) || (Length == 0U))
1080     {
1081       return HAL_ERROR;
1082     }
1083     else
1084     {
1085       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1086     }
1087   }
1088   else
1089   {
1090     return HAL_ERROR;
1091   }
1092 
1093   switch (Channel)
1094   {
1095     case TIM_CHANNEL_1:
1096     {
1097       /* Set the DMA compare callbacks */
1098       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1099       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1100 
1101       /* Set the DMA error callback */
1102       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1103 
1104       /* Enable the DMA channel */
1105       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1106                            Length) != HAL_OK)
1107       {
1108         /* Return error status */
1109         return HAL_ERROR;
1110       }
1111 
1112       /* Enable the TIM Capture/Compare 1 DMA request */
1113       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1114       break;
1115     }
1116 
1117     case TIM_CHANNEL_2:
1118     {
1119       /* Set the DMA compare callbacks */
1120       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1121       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1122 
1123       /* Set the DMA error callback */
1124       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1125 
1126       /* Enable the DMA channel */
1127       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1128                            Length) != HAL_OK)
1129       {
1130         /* Return error status */
1131         return HAL_ERROR;
1132       }
1133 
1134       /* Enable the TIM Capture/Compare 2 DMA request */
1135       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1136       break;
1137     }
1138 
1139     case TIM_CHANNEL_3:
1140     {
1141       /* Set the DMA compare callbacks */
1142       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1143       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1144 
1145       /* Set the DMA error callback */
1146       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1147 
1148       /* Enable the DMA channel */
1149       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1150                            Length) != HAL_OK)
1151       {
1152         /* Return error status */
1153         return HAL_ERROR;
1154       }
1155       /* Enable the TIM Capture/Compare 3 DMA request */
1156       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1157       break;
1158     }
1159 
1160     case TIM_CHANNEL_4:
1161     {
1162       /* Set the DMA compare callbacks */
1163       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1164       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1165 
1166       /* Set the DMA error callback */
1167       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1168 
1169       /* Enable the DMA channel */
1170       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1171                            Length) != HAL_OK)
1172       {
1173         /* Return error status */
1174         return HAL_ERROR;
1175       }
1176       /* Enable the TIM Capture/Compare 4 DMA request */
1177       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1178       break;
1179     }
1180 
1181     default:
1182       status = HAL_ERROR;
1183       break;
1184   }
1185 
1186   if (status == HAL_OK)
1187   {
1188     /* Enable the Output compare channel */
1189     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1190 
1191     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1192     {
1193       /* Enable the main output */
1194       __HAL_TIM_MOE_ENABLE(htim);
1195     }
1196 
1197     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1198     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1199     {
1200       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1201       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1202       {
1203         __HAL_TIM_ENABLE(htim);
1204       }
1205     }
1206     else
1207     {
1208       __HAL_TIM_ENABLE(htim);
1209     }
1210   }
1211 
1212   /* Return function status */
1213   return status;
1214 }
1215 
1216 /**
1217   * @brief  Stops the TIM Output Compare signal generation in DMA mode.
1218   * @param  htim TIM Output Compare handle
1219   * @param  Channel TIM Channel to be disabled
1220   *          This parameter can be one of the following values:
1221   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1222   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1223   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1224   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1225   * @retval HAL status
1226   */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1227 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1228 {
1229   HAL_StatusTypeDef status = HAL_OK;
1230 
1231   /* Check the parameters */
1232   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1233 
1234   switch (Channel)
1235   {
1236     case TIM_CHANNEL_1:
1237     {
1238       /* Disable the TIM Capture/Compare 1 DMA request */
1239       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1240       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1241       break;
1242     }
1243 
1244     case TIM_CHANNEL_2:
1245     {
1246       /* Disable the TIM Capture/Compare 2 DMA request */
1247       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1248       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1249       break;
1250     }
1251 
1252     case TIM_CHANNEL_3:
1253     {
1254       /* Disable the TIM Capture/Compare 3 DMA request */
1255       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1256       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1257       break;
1258     }
1259 
1260     case TIM_CHANNEL_4:
1261     {
1262       /* Disable the TIM Capture/Compare 4 interrupt */
1263       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1264       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1265       break;
1266     }
1267 
1268     default:
1269       status = HAL_ERROR;
1270       break;
1271   }
1272 
1273   if (status == HAL_OK)
1274   {
1275     /* Disable the Output compare channel */
1276     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1277 
1278     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1279     {
1280       /* Disable the Main Output */
1281       __HAL_TIM_MOE_DISABLE(htim);
1282     }
1283 
1284     /* Disable the Peripheral */
1285     __HAL_TIM_DISABLE(htim);
1286 
1287     /* Set the TIM channel state */
1288     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1289   }
1290 
1291   /* Return function status */
1292   return status;
1293 }
1294 
1295 /**
1296   * @}
1297   */
1298 
1299 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1300   *  @brief    TIM PWM functions
1301   *
1302 @verbatim
1303   ==============================================================================
1304                           ##### TIM PWM functions #####
1305   ==============================================================================
1306   [..]
1307     This section provides functions allowing to:
1308     (+) Initialize and configure the TIM PWM.
1309     (+) De-initialize the TIM PWM.
1310     (+) Start the TIM PWM.
1311     (+) Stop the TIM PWM.
1312     (+) Start the TIM PWM and enable interrupt.
1313     (+) Stop the TIM PWM and disable interrupt.
1314     (+) Start the TIM PWM and enable DMA transfer.
1315     (+) Stop the TIM PWM and disable DMA transfer.
1316 
1317 @endverbatim
1318   * @{
1319   */
1320 /**
1321   * @brief  Initializes the TIM PWM Time Base according to the specified
1322   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1323   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1324   *         requires a timer reset to avoid unexpected direction
1325   *         due to DIR bit readonly in center aligned mode.
1326   *         Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1327   * @param  htim TIM PWM handle
1328   * @retval HAL status
1329   */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1330 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1331 {
1332   /* Check the TIM handle allocation */
1333   if (htim == NULL)
1334   {
1335     return HAL_ERROR;
1336   }
1337 
1338   /* Check the parameters */
1339   assert_param(IS_TIM_INSTANCE(htim->Instance));
1340   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1341   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1342   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1343   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1344 
1345   if (htim->State == HAL_TIM_STATE_RESET)
1346   {
1347     /* Allocate lock resource and initialize it */
1348     htim->Lock = HAL_UNLOCKED;
1349 
1350 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1351     /* Reset interrupt callbacks to legacy weak callbacks */
1352     TIM_ResetCallback(htim);
1353 
1354     if (htim->PWM_MspInitCallback == NULL)
1355     {
1356       htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1357     }
1358     /* Init the low level hardware : GPIO, CLOCK, NVIC */
1359     htim->PWM_MspInitCallback(htim);
1360 #else
1361     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1362     HAL_TIM_PWM_MspInit(htim);
1363 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1364   }
1365 
1366   /* Set the TIM state */
1367   htim->State = HAL_TIM_STATE_BUSY;
1368 
1369   /* Init the base time for the PWM */
1370   TIM_Base_SetConfig(htim->Instance, &htim->Init);
1371 
1372   /* Initialize the DMA burst operation state */
1373   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1374 
1375   /* Initialize the TIM channels state */
1376   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1377   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1378 
1379   /* Initialize the TIM state*/
1380   htim->State = HAL_TIM_STATE_READY;
1381 
1382   return HAL_OK;
1383 }
1384 
1385 /**
1386   * @brief  DeInitializes the TIM peripheral
1387   * @param  htim TIM PWM handle
1388   * @retval HAL status
1389   */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1390 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1391 {
1392   /* Check the parameters */
1393   assert_param(IS_TIM_INSTANCE(htim->Instance));
1394 
1395   htim->State = HAL_TIM_STATE_BUSY;
1396 
1397   /* Disable the TIM Peripheral Clock */
1398   __HAL_TIM_DISABLE(htim);
1399 
1400 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1401   if (htim->PWM_MspDeInitCallback == NULL)
1402   {
1403     htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1404   }
1405   /* DeInit the low level hardware */
1406   htim->PWM_MspDeInitCallback(htim);
1407 #else
1408   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1409   HAL_TIM_PWM_MspDeInit(htim);
1410 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1411 
1412   /* Change the DMA burst operation state */
1413   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1414 
1415   /* Change the TIM channels state */
1416   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1417   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1418 
1419   /* Change TIM state */
1420   htim->State = HAL_TIM_STATE_RESET;
1421 
1422   /* Release Lock */
1423   __HAL_UNLOCK(htim);
1424 
1425   return HAL_OK;
1426 }
1427 
1428 /**
1429   * @brief  Initializes the TIM PWM MSP.
1430   * @param  htim TIM PWM handle
1431   * @retval None
1432   */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1434 {
1435   /* Prevent unused argument(s) compilation warning */
1436   UNUSED(htim);
1437 
1438   /* NOTE : This function should not be modified, when the callback is needed,
1439             the HAL_TIM_PWM_MspInit could be implemented in the user file
1440    */
1441 }
1442 
1443 /**
1444   * @brief  DeInitializes TIM PWM MSP.
1445   * @param  htim TIM PWM handle
1446   * @retval None
1447   */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1448 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1449 {
1450   /* Prevent unused argument(s) compilation warning */
1451   UNUSED(htim);
1452 
1453   /* NOTE : This function should not be modified, when the callback is needed,
1454             the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1455    */
1456 }
1457 
1458 /**
1459   * @brief  Starts the PWM signal generation.
1460   * @param  htim TIM handle
1461   * @param  Channel TIM Channels to be enabled
1462   *          This parameter can be one of the following values:
1463   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1464   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1465   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1466   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1467   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
1468   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
1469   * @retval HAL status
1470   */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1471 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1472 {
1473   uint32_t tmpsmcr;
1474 
1475   /* Check the parameters */
1476   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1477 
1478   /* Check the TIM channel state */
1479   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1480   {
1481     return HAL_ERROR;
1482   }
1483 
1484   /* Set the TIM channel state */
1485   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1486 
1487   /* Enable the Capture compare channel */
1488   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1489 
1490   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1491   {
1492     /* Enable the main output */
1493     __HAL_TIM_MOE_ENABLE(htim);
1494   }
1495 
1496   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1497   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1498   {
1499     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1500     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1501     {
1502       __HAL_TIM_ENABLE(htim);
1503     }
1504   }
1505   else
1506   {
1507     __HAL_TIM_ENABLE(htim);
1508   }
1509 
1510   /* Return function status */
1511   return HAL_OK;
1512 }
1513 
1514 /**
1515   * @brief  Stops the PWM signal generation.
1516   * @param  htim TIM PWM handle
1517   * @param  Channel TIM Channels to be disabled
1518   *          This parameter can be one of the following values:
1519   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1520   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1521   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1522   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1523   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
1524   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
1525   * @retval HAL status
1526   */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1527 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1528 {
1529   /* Check the parameters */
1530   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1531 
1532   /* Disable the Capture compare channel */
1533   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1534 
1535   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1536   {
1537     /* Disable the Main Output */
1538     __HAL_TIM_MOE_DISABLE(htim);
1539   }
1540 
1541   /* Disable the Peripheral */
1542   __HAL_TIM_DISABLE(htim);
1543 
1544   /* Set the TIM channel state */
1545   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1546 
1547   /* Return function status */
1548   return HAL_OK;
1549 }
1550 
1551 /**
1552   * @brief  Starts the PWM signal generation in interrupt mode.
1553   * @param  htim TIM PWM handle
1554   * @param  Channel TIM Channel to be enabled
1555   *          This parameter can be one of the following values:
1556   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1557   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1558   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1559   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1560   * @retval HAL status
1561   */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1562 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1563 {
1564   HAL_StatusTypeDef status = HAL_OK;
1565   uint32_t tmpsmcr;
1566 
1567   /* Check the parameters */
1568   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1569 
1570   /* Check the TIM channel state */
1571   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1572   {
1573     return HAL_ERROR;
1574   }
1575 
1576   /* Set the TIM channel state */
1577   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1578 
1579   switch (Channel)
1580   {
1581     case TIM_CHANNEL_1:
1582     {
1583       /* Enable the TIM Capture/Compare 1 interrupt */
1584       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1585       break;
1586     }
1587 
1588     case TIM_CHANNEL_2:
1589     {
1590       /* Enable the TIM Capture/Compare 2 interrupt */
1591       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1592       break;
1593     }
1594 
1595     case TIM_CHANNEL_3:
1596     {
1597       /* Enable the TIM Capture/Compare 3 interrupt */
1598       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1599       break;
1600     }
1601 
1602     case TIM_CHANNEL_4:
1603     {
1604       /* Enable the TIM Capture/Compare 4 interrupt */
1605       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1606       break;
1607     }
1608 
1609     default:
1610       status = HAL_ERROR;
1611       break;
1612   }
1613 
1614   if (status == HAL_OK)
1615   {
1616     /* Enable the Capture compare channel */
1617     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1618 
1619     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1620     {
1621       /* Enable the main output */
1622       __HAL_TIM_MOE_ENABLE(htim);
1623     }
1624 
1625     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1626     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1627     {
1628       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1629       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1630       {
1631         __HAL_TIM_ENABLE(htim);
1632       }
1633     }
1634     else
1635     {
1636       __HAL_TIM_ENABLE(htim);
1637     }
1638   }
1639 
1640   /* Return function status */
1641   return status;
1642 }
1643 
1644 /**
1645   * @brief  Stops the PWM signal generation in interrupt mode.
1646   * @param  htim TIM PWM handle
1647   * @param  Channel TIM Channels to be disabled
1648   *          This parameter can be one of the following values:
1649   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1650   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1651   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1652   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1653   * @retval HAL status
1654   */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1655 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1656 {
1657   HAL_StatusTypeDef status = HAL_OK;
1658 
1659   /* Check the parameters */
1660   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1661 
1662   switch (Channel)
1663   {
1664     case TIM_CHANNEL_1:
1665     {
1666       /* Disable the TIM Capture/Compare 1 interrupt */
1667       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1668       break;
1669     }
1670 
1671     case TIM_CHANNEL_2:
1672     {
1673       /* Disable the TIM Capture/Compare 2 interrupt */
1674       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1675       break;
1676     }
1677 
1678     case TIM_CHANNEL_3:
1679     {
1680       /* Disable the TIM Capture/Compare 3 interrupt */
1681       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1682       break;
1683     }
1684 
1685     case TIM_CHANNEL_4:
1686     {
1687       /* Disable the TIM Capture/Compare 4 interrupt */
1688       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1689       break;
1690     }
1691 
1692     default:
1693       status = HAL_ERROR;
1694       break;
1695   }
1696 
1697   if (status == HAL_OK)
1698   {
1699     /* Disable the Capture compare channel */
1700     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1701 
1702     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1703     {
1704       /* Disable the Main Output */
1705       __HAL_TIM_MOE_DISABLE(htim);
1706     }
1707 
1708     /* Disable the Peripheral */
1709     __HAL_TIM_DISABLE(htim);
1710 
1711     /* Set the TIM channel state */
1712     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1713   }
1714 
1715   /* Return function status */
1716   return status;
1717 }
1718 
1719 /**
1720   * @brief  Starts the TIM PWM signal generation in DMA mode.
1721   * @param  htim TIM PWM handle
1722   * @param  Channel TIM Channels to be enabled
1723   *          This parameter can be one of the following values:
1724   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1725   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1726   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1727   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1728   * @param  pData The source Buffer address.
1729   * @param  Length The length of data to be transferred from memory to TIM peripheral
1730   * @retval HAL status
1731   */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1732 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1733                                         uint16_t Length)
1734 {
1735   HAL_StatusTypeDef status = HAL_OK;
1736   uint32_t tmpsmcr;
1737 
1738   /* Check the parameters */
1739   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1740 
1741   /* Set the TIM channel state */
1742   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1743   {
1744     return HAL_BUSY;
1745   }
1746   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1747   {
1748     if ((pData == NULL) || (Length == 0U))
1749     {
1750       return HAL_ERROR;
1751     }
1752     else
1753     {
1754       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1755     }
1756   }
1757   else
1758   {
1759     return HAL_ERROR;
1760   }
1761 
1762   switch (Channel)
1763   {
1764     case TIM_CHANNEL_1:
1765     {
1766       /* Set the DMA compare callbacks */
1767       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1768       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1769 
1770       /* Set the DMA error callback */
1771       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1772 
1773       /* Enable the DMA channel */
1774       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1775                            Length) != HAL_OK)
1776       {
1777         /* Return error status */
1778         return HAL_ERROR;
1779       }
1780 
1781       /* Enable the TIM Capture/Compare 1 DMA request */
1782       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1783       break;
1784     }
1785 
1786     case TIM_CHANNEL_2:
1787     {
1788       /* Set the DMA compare callbacks */
1789       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1790       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1791 
1792       /* Set the DMA error callback */
1793       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1794 
1795       /* Enable the DMA channel */
1796       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1797                            Length) != HAL_OK)
1798       {
1799         /* Return error status */
1800         return HAL_ERROR;
1801       }
1802       /* Enable the TIM Capture/Compare 2 DMA request */
1803       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1804       break;
1805     }
1806 
1807     case TIM_CHANNEL_3:
1808     {
1809       /* Set the DMA compare callbacks */
1810       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1811       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1812 
1813       /* Set the DMA error callback */
1814       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1815 
1816       /* Enable the DMA channel */
1817       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1818                            Length) != HAL_OK)
1819       {
1820         /* Return error status */
1821         return HAL_ERROR;
1822       }
1823       /* Enable the TIM Output Capture/Compare 3 request */
1824       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1825       break;
1826     }
1827 
1828     case TIM_CHANNEL_4:
1829     {
1830       /* Set the DMA compare callbacks */
1831       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1832       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1833 
1834       /* Set the DMA error callback */
1835       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1836 
1837       /* Enable the DMA channel */
1838       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1839                            Length) != HAL_OK)
1840       {
1841         /* Return error status */
1842         return HAL_ERROR;
1843       }
1844       /* Enable the TIM Capture/Compare 4 DMA request */
1845       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1846       break;
1847     }
1848 
1849     default:
1850       status = HAL_ERROR;
1851       break;
1852   }
1853 
1854   if (status == HAL_OK)
1855   {
1856     /* Enable the Capture compare channel */
1857     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1858 
1859     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1860     {
1861       /* Enable the main output */
1862       __HAL_TIM_MOE_ENABLE(htim);
1863     }
1864 
1865     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1866     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1867     {
1868       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1869       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1870       {
1871         __HAL_TIM_ENABLE(htim);
1872       }
1873     }
1874     else
1875     {
1876       __HAL_TIM_ENABLE(htim);
1877     }
1878   }
1879 
1880   /* Return function status */
1881   return status;
1882 }
1883 
1884 /**
1885   * @brief  Stops the TIM PWM signal generation in DMA mode.
1886   * @param  htim TIM PWM handle
1887   * @param  Channel TIM Channels to be disabled
1888   *          This parameter can be one of the following values:
1889   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1890   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1891   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1892   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1893   * @retval HAL status
1894   */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1895 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1896 {
1897   HAL_StatusTypeDef status = HAL_OK;
1898 
1899   /* Check the parameters */
1900   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
1901 
1902   switch (Channel)
1903   {
1904     case TIM_CHANNEL_1:
1905     {
1906       /* Disable the TIM Capture/Compare 1 DMA request */
1907       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1908       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1909       break;
1910     }
1911 
1912     case TIM_CHANNEL_2:
1913     {
1914       /* Disable the TIM Capture/Compare 2 DMA request */
1915       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1916       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1917       break;
1918     }
1919 
1920     case TIM_CHANNEL_3:
1921     {
1922       /* Disable the TIM Capture/Compare 3 DMA request */
1923       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1924       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1925       break;
1926     }
1927 
1928     case TIM_CHANNEL_4:
1929     {
1930       /* Disable the TIM Capture/Compare 4 interrupt */
1931       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1932       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1933       break;
1934     }
1935 
1936     default:
1937       status = HAL_ERROR;
1938       break;
1939   }
1940 
1941   if (status == HAL_OK)
1942   {
1943     /* Disable the Capture compare channel */
1944     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1945 
1946     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1947     {
1948       /* Disable the Main Output */
1949       __HAL_TIM_MOE_DISABLE(htim);
1950     }
1951 
1952     /* Disable the Peripheral */
1953     __HAL_TIM_DISABLE(htim);
1954 
1955     /* Set the TIM channel state */
1956     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1957   }
1958 
1959   /* Return function status */
1960   return status;
1961 }
1962 
1963 /**
1964   * @}
1965   */
1966 
1967 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1968   *  @brief    TIM Input Capture functions
1969   *
1970 @verbatim
1971   ==============================================================================
1972               ##### TIM Input Capture functions #####
1973   ==============================================================================
1974  [..]
1975    This section provides functions allowing to:
1976    (+) Initialize and configure the TIM Input Capture.
1977    (+) De-initialize the TIM Input Capture.
1978    (+) Start the TIM Input Capture.
1979    (+) Stop the TIM Input Capture.
1980    (+) Start the TIM Input Capture and enable interrupt.
1981    (+) Stop the TIM Input Capture and disable interrupt.
1982    (+) Start the TIM Input Capture and enable DMA transfer.
1983    (+) Stop the TIM Input Capture and disable DMA transfer.
1984 
1985 @endverbatim
1986   * @{
1987   */
1988 /**
1989   * @brief  Initializes the TIM Input Capture Time base according to the specified
1990   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1991   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1992   *         requires a timer reset to avoid unexpected direction
1993   *         due to DIR bit readonly in center aligned mode.
1994   *         Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1995   * @param  htim TIM Input Capture handle
1996   * @retval HAL status
1997   */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1998 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1999 {
2000   /* Check the TIM handle allocation */
2001   if (htim == NULL)
2002   {
2003     return HAL_ERROR;
2004   }
2005 
2006   /* Check the parameters */
2007   assert_param(IS_TIM_INSTANCE(htim->Instance));
2008   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2009   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2010   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2011   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2012 
2013   if (htim->State == HAL_TIM_STATE_RESET)
2014   {
2015     /* Allocate lock resource and initialize it */
2016     htim->Lock = HAL_UNLOCKED;
2017 
2018 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2019     /* Reset interrupt callbacks to legacy weak callbacks */
2020     TIM_ResetCallback(htim);
2021 
2022     if (htim->IC_MspInitCallback == NULL)
2023     {
2024       htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2025     }
2026     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2027     htim->IC_MspInitCallback(htim);
2028 #else
2029     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2030     HAL_TIM_IC_MspInit(htim);
2031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2032   }
2033 
2034   /* Set the TIM state */
2035   htim->State = HAL_TIM_STATE_BUSY;
2036 
2037   /* Init the base time for the input capture */
2038   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2039 
2040   /* Initialize the DMA burst operation state */
2041   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2042 
2043   /* Initialize the TIM channels state */
2044   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2045   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2046 
2047   /* Initialize the TIM state*/
2048   htim->State = HAL_TIM_STATE_READY;
2049 
2050   return HAL_OK;
2051 }
2052 
2053 /**
2054   * @brief  DeInitializes the TIM peripheral
2055   * @param  htim TIM Input Capture handle
2056   * @retval HAL status
2057   */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2058 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2059 {
2060   /* Check the parameters */
2061   assert_param(IS_TIM_INSTANCE(htim->Instance));
2062 
2063   htim->State = HAL_TIM_STATE_BUSY;
2064 
2065   /* Disable the TIM Peripheral Clock */
2066   __HAL_TIM_DISABLE(htim);
2067 
2068 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2069   if (htim->IC_MspDeInitCallback == NULL)
2070   {
2071     htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2072   }
2073   /* DeInit the low level hardware */
2074   htim->IC_MspDeInitCallback(htim);
2075 #else
2076   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2077   HAL_TIM_IC_MspDeInit(htim);
2078 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2079 
2080   /* Change the DMA burst operation state */
2081   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2082 
2083   /* Change the TIM channels state */
2084   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2085   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2086 
2087   /* Change TIM state */
2088   htim->State = HAL_TIM_STATE_RESET;
2089 
2090   /* Release Lock */
2091   __HAL_UNLOCK(htim);
2092 
2093   return HAL_OK;
2094 }
2095 
2096 /**
2097   * @brief  Initializes the TIM Input Capture MSP.
2098   * @param  htim TIM Input Capture handle
2099   * @retval None
2100   */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2101 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2102 {
2103   /* Prevent unused argument(s) compilation warning */
2104   UNUSED(htim);
2105 
2106   /* NOTE : This function should not be modified, when the callback is needed,
2107             the HAL_TIM_IC_MspInit could be implemented in the user file
2108    */
2109 }
2110 
2111 /**
2112   * @brief  DeInitializes TIM Input Capture MSP.
2113   * @param  htim TIM handle
2114   * @retval None
2115   */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2116 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2117 {
2118   /* Prevent unused argument(s) compilation warning */
2119   UNUSED(htim);
2120 
2121   /* NOTE : This function should not be modified, when the callback is needed,
2122             the HAL_TIM_IC_MspDeInit could be implemented in the user file
2123    */
2124 }
2125 
2126 /**
2127   * @brief  Starts the TIM Input Capture measurement.
2128   * @param  htim TIM Input Capture handle
2129   * @param  Channel TIM Channels to be enabled
2130   *          This parameter can be one of the following values:
2131   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2132   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2133   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2134   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2135   * @retval HAL status
2136   */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2137 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2138 {
2139   uint32_t tmpsmcr;
2140   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2141   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2142 
2143   /* Check the parameters */
2144   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2145 
2146   /* Check the TIM channel state */
2147   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2148       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2149   {
2150     return HAL_ERROR;
2151   }
2152 
2153   /* Set the TIM channel state */
2154   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2155   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2156 
2157   /* Enable the Input Capture channel */
2158   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2159 
2160   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2161   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2162   {
2163     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2164     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2165     {
2166       __HAL_TIM_ENABLE(htim);
2167     }
2168   }
2169   else
2170   {
2171     __HAL_TIM_ENABLE(htim);
2172   }
2173 
2174   /* Return function status */
2175   return HAL_OK;
2176 }
2177 
2178 /**
2179   * @brief  Stops the TIM Input Capture measurement.
2180   * @param  htim TIM Input Capture handle
2181   * @param  Channel TIM Channels to be disabled
2182   *          This parameter can be one of the following values:
2183   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2184   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2185   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2186   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2187   * @retval HAL status
2188   */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2189 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2190 {
2191   /* Check the parameters */
2192   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2193 
2194   /* Disable the Input Capture channel */
2195   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2196 
2197   /* Disable the Peripheral */
2198   __HAL_TIM_DISABLE(htim);
2199 
2200   /* Set the TIM channel state */
2201   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2202   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2203 
2204   /* Return function status */
2205   return HAL_OK;
2206 }
2207 
2208 /**
2209   * @brief  Starts the TIM Input Capture measurement in interrupt mode.
2210   * @param  htim TIM Input Capture handle
2211   * @param  Channel TIM Channels to be enabled
2212   *          This parameter can be one of the following values:
2213   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2214   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2215   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2216   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2217   * @retval HAL status
2218   */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2219 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2220 {
2221   HAL_StatusTypeDef status = HAL_OK;
2222   uint32_t tmpsmcr;
2223 
2224   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2225   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2226 
2227   /* Check the parameters */
2228   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2229 
2230   /* Check the TIM channel state */
2231   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2232       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2233   {
2234     return HAL_ERROR;
2235   }
2236 
2237   /* Set the TIM channel state */
2238   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2239   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2240 
2241   switch (Channel)
2242   {
2243     case TIM_CHANNEL_1:
2244     {
2245       /* Enable the TIM Capture/Compare 1 interrupt */
2246       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2247       break;
2248     }
2249 
2250     case TIM_CHANNEL_2:
2251     {
2252       /* Enable the TIM Capture/Compare 2 interrupt */
2253       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2254       break;
2255     }
2256 
2257     case TIM_CHANNEL_3:
2258     {
2259       /* Enable the TIM Capture/Compare 3 interrupt */
2260       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2261       break;
2262     }
2263 
2264     case TIM_CHANNEL_4:
2265     {
2266       /* Enable the TIM Capture/Compare 4 interrupt */
2267       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2268       break;
2269     }
2270 
2271     default:
2272       status = HAL_ERROR;
2273       break;
2274   }
2275 
2276   if (status == HAL_OK)
2277   {
2278     /* Enable the Input Capture channel */
2279     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2280 
2281     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2282     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2283     {
2284       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2285       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2286       {
2287         __HAL_TIM_ENABLE(htim);
2288       }
2289     }
2290     else
2291     {
2292       __HAL_TIM_ENABLE(htim);
2293     }
2294   }
2295 
2296   /* Return function status */
2297   return status;
2298 }
2299 
2300 /**
2301   * @brief  Stops the TIM Input Capture measurement in interrupt mode.
2302   * @param  htim TIM Input Capture handle
2303   * @param  Channel TIM Channels to be disabled
2304   *          This parameter can be one of the following values:
2305   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2306   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2307   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2308   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2309   * @retval HAL status
2310   */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2311 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2312 {
2313   HAL_StatusTypeDef status = HAL_OK;
2314 
2315   /* Check the parameters */
2316   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2317 
2318   switch (Channel)
2319   {
2320     case TIM_CHANNEL_1:
2321     {
2322       /* Disable the TIM Capture/Compare 1 interrupt */
2323       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2324       break;
2325     }
2326 
2327     case TIM_CHANNEL_2:
2328     {
2329       /* Disable the TIM Capture/Compare 2 interrupt */
2330       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2331       break;
2332     }
2333 
2334     case TIM_CHANNEL_3:
2335     {
2336       /* Disable the TIM Capture/Compare 3 interrupt */
2337       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2338       break;
2339     }
2340 
2341     case TIM_CHANNEL_4:
2342     {
2343       /* Disable the TIM Capture/Compare 4 interrupt */
2344       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2345       break;
2346     }
2347 
2348     default:
2349       status = HAL_ERROR;
2350       break;
2351   }
2352 
2353   if (status == HAL_OK)
2354   {
2355     /* Disable the Input Capture channel */
2356     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2357 
2358     /* Disable the Peripheral */
2359     __HAL_TIM_DISABLE(htim);
2360 
2361     /* Set the TIM channel state */
2362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2364   }
2365 
2366   /* Return function status */
2367   return status;
2368 }
2369 
2370 /**
2371   * @brief  Starts the TIM Input Capture measurement in DMA mode.
2372   * @param  htim TIM Input Capture handle
2373   * @param  Channel TIM Channels to be enabled
2374   *          This parameter can be one of the following values:
2375   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2376   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2377   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2378   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2379   * @param  pData The destination Buffer address.
2380   * @param  Length The length of data to be transferred from TIM peripheral to memory.
2381   * @retval HAL status
2382   */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2383 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2384 {
2385   HAL_StatusTypeDef status = HAL_OK;
2386   uint32_t tmpsmcr;
2387 
2388   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2389   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2390 
2391   /* Check the parameters */
2392   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2393   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2394 
2395   /* Set the TIM channel state */
2396   if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2397       || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2398   {
2399     return HAL_BUSY;
2400   }
2401   else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2402            && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2403   {
2404     if ((pData == NULL) || (Length == 0U))
2405     {
2406       return HAL_ERROR;
2407     }
2408     else
2409     {
2410       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2411       TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2412     }
2413   }
2414   else
2415   {
2416     return HAL_ERROR;
2417   }
2418 
2419   /* Enable the Input Capture channel */
2420   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2421 
2422   switch (Channel)
2423   {
2424     case TIM_CHANNEL_1:
2425     {
2426       /* Set the DMA capture callbacks */
2427       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2428       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2429 
2430       /* Set the DMA error callback */
2431       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2432 
2433       /* Enable the DMA channel */
2434       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2435                            Length) != HAL_OK)
2436       {
2437         /* Return error status */
2438         return HAL_ERROR;
2439       }
2440       /* Enable the TIM Capture/Compare 1 DMA request */
2441       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2442       break;
2443     }
2444 
2445     case TIM_CHANNEL_2:
2446     {
2447       /* Set the DMA capture callbacks */
2448       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2449       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2450 
2451       /* Set the DMA error callback */
2452       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2453 
2454       /* Enable the DMA channel */
2455       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2456                            Length) != HAL_OK)
2457       {
2458         /* Return error status */
2459         return HAL_ERROR;
2460       }
2461       /* Enable the TIM Capture/Compare 2  DMA request */
2462       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2463       break;
2464     }
2465 
2466     case TIM_CHANNEL_3:
2467     {
2468       /* Set the DMA capture callbacks */
2469       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2470       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2471 
2472       /* Set the DMA error callback */
2473       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2474 
2475       /* Enable the DMA channel */
2476       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2477                            Length) != HAL_OK)
2478       {
2479         /* Return error status */
2480         return HAL_ERROR;
2481       }
2482       /* Enable the TIM Capture/Compare 3  DMA request */
2483       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2484       break;
2485     }
2486 
2487     case TIM_CHANNEL_4:
2488     {
2489       /* Set the DMA capture callbacks */
2490       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2491       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2492 
2493       /* Set the DMA error callback */
2494       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2495 
2496       /* Enable the DMA channel */
2497       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2498                            Length) != HAL_OK)
2499       {
2500         /* Return error status */
2501         return HAL_ERROR;
2502       }
2503       /* Enable the TIM Capture/Compare 4  DMA request */
2504       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2505       break;
2506     }
2507 
2508     default:
2509       status = HAL_ERROR;
2510       break;
2511   }
2512 
2513   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2514   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2515   {
2516     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2517     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2518     {
2519       __HAL_TIM_ENABLE(htim);
2520     }
2521   }
2522   else
2523   {
2524     __HAL_TIM_ENABLE(htim);
2525   }
2526 
2527   /* Return function status */
2528   return status;
2529 }
2530 
2531 /**
2532   * @brief  Stops the TIM Input Capture measurement in DMA mode.
2533   * @param  htim TIM Input Capture handle
2534   * @param  Channel TIM Channels to be disabled
2535   *          This parameter can be one of the following values:
2536   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2537   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2538   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2539   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2540   * @retval HAL status
2541   */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2542 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2543 {
2544   HAL_StatusTypeDef status = HAL_OK;
2545 
2546   /* Check the parameters */
2547   assert_param(IS_TIM_CCX_CHANNEL(htim->Instance, Channel));
2548   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2549 
2550   /* Disable the Input Capture channel */
2551   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2552 
2553   switch (Channel)
2554   {
2555     case TIM_CHANNEL_1:
2556     {
2557       /* Disable the TIM Capture/Compare 1 DMA request */
2558       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2559       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2560       break;
2561     }
2562 
2563     case TIM_CHANNEL_2:
2564     {
2565       /* Disable the TIM Capture/Compare 2 DMA request */
2566       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2567       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2568       break;
2569     }
2570 
2571     case TIM_CHANNEL_3:
2572     {
2573       /* Disable the TIM Capture/Compare 3  DMA request */
2574       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2575       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2576       break;
2577     }
2578 
2579     case TIM_CHANNEL_4:
2580     {
2581       /* Disable the TIM Capture/Compare 4  DMA request */
2582       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2583       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2584       break;
2585     }
2586 
2587     default:
2588       status = HAL_ERROR;
2589       break;
2590   }
2591 
2592   if (status == HAL_OK)
2593   {
2594     /* Disable the Peripheral */
2595     __HAL_TIM_DISABLE(htim);
2596 
2597     /* Set the TIM channel state */
2598     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2599     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2600   }
2601 
2602   /* Return function status */
2603   return status;
2604 }
2605 /**
2606   * @}
2607   */
2608 
2609 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2610   *  @brief    TIM One Pulse functions
2611   *
2612 @verbatim
2613   ==============================================================================
2614                         ##### TIM One Pulse functions #####
2615   ==============================================================================
2616   [..]
2617     This section provides functions allowing to:
2618     (+) Initialize and configure the TIM One Pulse.
2619     (+) De-initialize the TIM One Pulse.
2620     (+) Start the TIM One Pulse.
2621     (+) Stop the TIM One Pulse.
2622     (+) Start the TIM One Pulse and enable interrupt.
2623     (+) Stop the TIM One Pulse and disable interrupt.
2624     (+) Start the TIM One Pulse and enable DMA transfer.
2625     (+) Stop the TIM One Pulse and disable DMA transfer.
2626 
2627 @endverbatim
2628   * @{
2629   */
2630 /**
2631   * @brief  Initializes the TIM One Pulse Time Base according to the specified
2632   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
2633   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2634   *         requires a timer reset to avoid unexpected direction
2635   *         due to DIR bit readonly in center aligned mode.
2636   *         Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2637   * @note   When the timer instance is initialized in One Pulse mode, timer
2638   *         channels 1 and channel 2 are reserved and cannot be used for other
2639   *         purpose.
2640   * @param  htim TIM One Pulse handle
2641   * @param  OnePulseMode Select the One pulse mode.
2642   *         This parameter can be one of the following values:
2643   *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2644   *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2645   * @retval HAL status
2646   */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2647 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2648 {
2649   /* Check the TIM handle allocation */
2650   if (htim == NULL)
2651   {
2652     return HAL_ERROR;
2653   }
2654 
2655   /* Check the parameters */
2656   assert_param(IS_TIM_INSTANCE(htim->Instance));
2657   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2658   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2659   assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2660   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2661   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2662 
2663   if (htim->State == HAL_TIM_STATE_RESET)
2664   {
2665     /* Allocate lock resource and initialize it */
2666     htim->Lock = HAL_UNLOCKED;
2667 
2668 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2669     /* Reset interrupt callbacks to legacy weak callbacks */
2670     TIM_ResetCallback(htim);
2671 
2672     if (htim->OnePulse_MspInitCallback == NULL)
2673     {
2674       htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2675     }
2676     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2677     htim->OnePulse_MspInitCallback(htim);
2678 #else
2679     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2680     HAL_TIM_OnePulse_MspInit(htim);
2681 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2682   }
2683 
2684   /* Set the TIM state */
2685   htim->State = HAL_TIM_STATE_BUSY;
2686 
2687   /* Configure the Time base in the One Pulse Mode */
2688   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2689 
2690   /* Reset the OPM Bit */
2691   htim->Instance->CR1 &= ~TIM_CR1_OPM;
2692 
2693   /* Configure the OPM Mode */
2694   htim->Instance->CR1 |= OnePulseMode;
2695 
2696   /* Initialize the DMA burst operation state */
2697   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2698 
2699   /* Initialize the TIM channels state */
2700   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2701   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2702   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2703   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2704 
2705   /* Initialize the TIM state*/
2706   htim->State = HAL_TIM_STATE_READY;
2707 
2708   return HAL_OK;
2709 }
2710 
2711 /**
2712   * @brief  DeInitializes the TIM One Pulse
2713   * @param  htim TIM One Pulse handle
2714   * @retval HAL status
2715   */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2716 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2717 {
2718   /* Check the parameters */
2719   assert_param(IS_TIM_INSTANCE(htim->Instance));
2720 
2721   htim->State = HAL_TIM_STATE_BUSY;
2722 
2723   /* Disable the TIM Peripheral Clock */
2724   __HAL_TIM_DISABLE(htim);
2725 
2726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2727   if (htim->OnePulse_MspDeInitCallback == NULL)
2728   {
2729     htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2730   }
2731   /* DeInit the low level hardware */
2732   htim->OnePulse_MspDeInitCallback(htim);
2733 #else
2734   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2735   HAL_TIM_OnePulse_MspDeInit(htim);
2736 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2737 
2738   /* Change the DMA burst operation state */
2739   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2740 
2741   /* Set the TIM channel state */
2742   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2743   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2744   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2745   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2746 
2747   /* Change TIM state */
2748   htim->State = HAL_TIM_STATE_RESET;
2749 
2750   /* Release Lock */
2751   __HAL_UNLOCK(htim);
2752 
2753   return HAL_OK;
2754 }
2755 
2756 /**
2757   * @brief  Initializes the TIM One Pulse MSP.
2758   * @param  htim TIM One Pulse handle
2759   * @retval None
2760   */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2761 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2762 {
2763   /* Prevent unused argument(s) compilation warning */
2764   UNUSED(htim);
2765 
2766   /* NOTE : This function should not be modified, when the callback is needed,
2767             the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2768    */
2769 }
2770 
2771 /**
2772   * @brief  DeInitializes TIM One Pulse MSP.
2773   * @param  htim TIM One Pulse handle
2774   * @retval None
2775   */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2776 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2777 {
2778   /* Prevent unused argument(s) compilation warning */
2779   UNUSED(htim);
2780 
2781   /* NOTE : This function should not be modified, when the callback is needed,
2782             the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2783    */
2784 }
2785 
2786 /**
2787   * @brief  Starts the TIM One Pulse signal generation.
2788   * @note Though OutputChannel parameter is deprecated and ignored by the function
2789   *        it has been kept to avoid HAL_TIM API compatibility break.
2790   * @note The pulse output channel is determined when calling
2791   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2792   * @param  htim TIM One Pulse handle
2793   * @param  OutputChannel See note above
2794   * @retval HAL status
2795   */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2796 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2797 {
2798   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2799   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2800   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2801   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2802 
2803   /* Prevent unused argument(s) compilation warning */
2804   UNUSED(OutputChannel);
2805 
2806   /* Check the TIM channels state */
2807   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2808       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2809       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2810       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2811   {
2812     return HAL_ERROR;
2813   }
2814 
2815   /* Set the TIM channels state */
2816   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2817   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2818   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2819   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2820 
2821   /* Enable the Capture compare and the Input Capture channels
2822     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2823     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2824     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2825     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2826 
2827     No need to enable the counter, it's enabled automatically by hardware
2828     (the counter starts in response to a stimulus and generate a pulse */
2829 
2830   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2831   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2832 
2833   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2834   {
2835     /* Enable the main output */
2836     __HAL_TIM_MOE_ENABLE(htim);
2837   }
2838 
2839   /* Return function status */
2840   return HAL_OK;
2841 }
2842 
2843 /**
2844   * @brief  Stops the TIM One Pulse signal generation.
2845   * @note Though OutputChannel parameter is deprecated and ignored by the function
2846   *        it has been kept to avoid HAL_TIM API compatibility break.
2847   * @note The pulse output channel is determined when calling
2848   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2849   * @param  htim TIM One Pulse handle
2850   * @param  OutputChannel See note above
2851   * @retval HAL status
2852   */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2853 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2854 {
2855   /* Prevent unused argument(s) compilation warning */
2856   UNUSED(OutputChannel);
2857 
2858   /* Disable the Capture compare and the Input Capture channels
2859   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2860   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2861   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2862   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2863 
2864   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2865   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2866 
2867   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2868   {
2869     /* Disable the Main Output */
2870     __HAL_TIM_MOE_DISABLE(htim);
2871   }
2872 
2873   /* Disable the Peripheral */
2874   __HAL_TIM_DISABLE(htim);
2875 
2876   /* Set the TIM channels state */
2877   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2878   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2879   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2880   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2881 
2882   /* Return function status */
2883   return HAL_OK;
2884 }
2885 
2886 /**
2887   * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
2888   * @note Though OutputChannel parameter is deprecated and ignored by the function
2889   *        it has been kept to avoid HAL_TIM API compatibility break.
2890   * @note The pulse output channel is determined when calling
2891   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2892   * @param  htim TIM One Pulse handle
2893   * @param  OutputChannel See note above
2894   * @retval HAL status
2895   */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2896 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2897 {
2898   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2899   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2900   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2901   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2902 
2903   /* Prevent unused argument(s) compilation warning */
2904   UNUSED(OutputChannel);
2905 
2906   /* Check the TIM channels state */
2907   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2908       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2909       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2910       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2911   {
2912     return HAL_ERROR;
2913   }
2914 
2915   /* Set the TIM channels state */
2916   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2917   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2918   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2919   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2920 
2921   /* Enable the Capture compare and the Input Capture channels
2922     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2923     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2924     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2925     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2926 
2927     No need to enable the counter, it's enabled automatically by hardware
2928     (the counter starts in response to a stimulus and generate a pulse */
2929 
2930   /* Enable the TIM Capture/Compare 1 interrupt */
2931   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2932 
2933   /* Enable the TIM Capture/Compare 2 interrupt */
2934   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2935 
2936   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2937   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2938 
2939   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2940   {
2941     /* Enable the main output */
2942     __HAL_TIM_MOE_ENABLE(htim);
2943   }
2944 
2945   /* Return function status */
2946   return HAL_OK;
2947 }
2948 
2949 /**
2950   * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
2951   * @note Though OutputChannel parameter is deprecated and ignored by the function
2952   *        it has been kept to avoid HAL_TIM API compatibility break.
2953   * @note The pulse output channel is determined when calling
2954   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2955   * @param  htim TIM One Pulse handle
2956   * @param  OutputChannel See note above
2957   * @retval HAL status
2958   */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2959 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2960 {
2961   /* Prevent unused argument(s) compilation warning */
2962   UNUSED(OutputChannel);
2963 
2964   /* Disable the TIM Capture/Compare 1 interrupt */
2965   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2966 
2967   /* Disable the TIM Capture/Compare 2 interrupt */
2968   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2969 
2970   /* Disable the Capture compare and the Input Capture channels
2971   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2972   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2973   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2974   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2975   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2976   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2977 
2978   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2979   {
2980     /* Disable the Main Output */
2981     __HAL_TIM_MOE_DISABLE(htim);
2982   }
2983 
2984   /* Disable the Peripheral */
2985   __HAL_TIM_DISABLE(htim);
2986 
2987   /* Set the TIM channels state */
2988   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2989   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2990   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2991   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2992 
2993   /* Return function status */
2994   return HAL_OK;
2995 }
2996 
2997 /**
2998   * @}
2999   */
3000 
3001 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
3002   *  @brief    TIM Encoder functions
3003   *
3004 @verbatim
3005   ==============================================================================
3006                           ##### TIM Encoder functions #####
3007   ==============================================================================
3008   [..]
3009     This section provides functions allowing to:
3010     (+) Initialize and configure the TIM Encoder.
3011     (+) De-initialize the TIM Encoder.
3012     (+) Start the TIM Encoder.
3013     (+) Stop the TIM Encoder.
3014     (+) Start the TIM Encoder and enable interrupt.
3015     (+) Stop the TIM Encoder and disable interrupt.
3016     (+) Start the TIM Encoder and enable DMA transfer.
3017     (+) Stop the TIM Encoder and disable DMA transfer.
3018 
3019 @endverbatim
3020   * @{
3021   */
3022 /**
3023   * @brief  Initializes the TIM Encoder Interface and initialize the associated handle.
3024   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3025   *         requires a timer reset to avoid unexpected direction
3026   *         due to DIR bit readonly in center aligned mode.
3027   *         Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3028   * @note   Encoder mode and External clock mode 2 are not compatible and must not be selected together
3029   *         Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3030   *         using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3031   * @note   When the timer instance is initialized in Encoder mode, timer
3032   *         channels 1 and channel 2 are reserved and cannot be used for other
3033   *         purpose.
3034   * @param  htim TIM Encoder Interface handle
3035   * @param  sConfig TIM Encoder Interface configuration structure
3036   * @retval HAL status
3037   */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,const TIM_Encoder_InitTypeDef * sConfig)3038 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, const TIM_Encoder_InitTypeDef *sConfig)
3039 {
3040   uint32_t tmpsmcr;
3041   uint32_t tmpccmr1;
3042   uint32_t tmpccer;
3043 
3044   /* Check the TIM handle allocation */
3045   if (htim == NULL)
3046   {
3047     return HAL_ERROR;
3048   }
3049 
3050   /* Check the parameters */
3051   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3053   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3054   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3055   assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3056   assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3057   assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3058   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3059   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3060   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3061   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3062   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3063   assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3064   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3065 
3066   if (htim->State == HAL_TIM_STATE_RESET)
3067   {
3068     /* Allocate lock resource and initialize it */
3069     htim->Lock = HAL_UNLOCKED;
3070 
3071 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3072     /* Reset interrupt callbacks to legacy weak callbacks */
3073     TIM_ResetCallback(htim);
3074 
3075     if (htim->Encoder_MspInitCallback == NULL)
3076     {
3077       htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3078     }
3079     /* Init the low level hardware : GPIO, CLOCK, NVIC */
3080     htim->Encoder_MspInitCallback(htim);
3081 #else
3082     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3083     HAL_TIM_Encoder_MspInit(htim);
3084 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3085   }
3086 
3087   /* Set the TIM state */
3088   htim->State = HAL_TIM_STATE_BUSY;
3089 
3090   /* Reset the SMS and ECE bits */
3091   htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3092 
3093   /* Configure the Time base in the Encoder Mode */
3094   TIM_Base_SetConfig(htim->Instance, &htim->Init);
3095 
3096   /* Get the TIMx SMCR register value */
3097   tmpsmcr = htim->Instance->SMCR;
3098 
3099   /* Get the TIMx CCMR1 register value */
3100   tmpccmr1 = htim->Instance->CCMR1;
3101 
3102   /* Get the TIMx CCER register value */
3103   tmpccer = htim->Instance->CCER;
3104 
3105   /* Set the encoder Mode */
3106   tmpsmcr |= sConfig->EncoderMode;
3107 
3108   /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3109   tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3110   tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3111 
3112   /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3113   tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3114   tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3115   tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3116   tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3117 
3118   /* Set the TI1 and the TI2 Polarities */
3119   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3120   tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3121   tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3122 
3123   /* Write to TIMx SMCR */
3124   htim->Instance->SMCR = tmpsmcr;
3125 
3126   /* Write to TIMx CCMR1 */
3127   htim->Instance->CCMR1 = tmpccmr1;
3128 
3129   /* Write to TIMx CCER */
3130   htim->Instance->CCER = tmpccer;
3131 
3132   /* Initialize the DMA burst operation state */
3133   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3134 
3135   /* Set the TIM channels state */
3136   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3137   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3138   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3139   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3140 
3141   /* Initialize the TIM state*/
3142   htim->State = HAL_TIM_STATE_READY;
3143 
3144   return HAL_OK;
3145 }
3146 
3147 
3148 /**
3149   * @brief  DeInitializes the TIM Encoder interface
3150   * @param  htim TIM Encoder Interface handle
3151   * @retval HAL status
3152   */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3153 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3154 {
3155   /* Check the parameters */
3156   assert_param(IS_TIM_INSTANCE(htim->Instance));
3157 
3158   htim->State = HAL_TIM_STATE_BUSY;
3159 
3160   /* Disable the TIM Peripheral Clock */
3161   __HAL_TIM_DISABLE(htim);
3162 
3163 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3164   if (htim->Encoder_MspDeInitCallback == NULL)
3165   {
3166     htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3167   }
3168   /* DeInit the low level hardware */
3169   htim->Encoder_MspDeInitCallback(htim);
3170 #else
3171   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3172   HAL_TIM_Encoder_MspDeInit(htim);
3173 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3174 
3175   /* Change the DMA burst operation state */
3176   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3177 
3178   /* Set the TIM channels state */
3179   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3180   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3181   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3182   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3183 
3184   /* Change TIM state */
3185   htim->State = HAL_TIM_STATE_RESET;
3186 
3187   /* Release Lock */
3188   __HAL_UNLOCK(htim);
3189 
3190   return HAL_OK;
3191 }
3192 
3193 /**
3194   * @brief  Initializes the TIM Encoder Interface MSP.
3195   * @param  htim TIM Encoder Interface handle
3196   * @retval None
3197   */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3198 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3199 {
3200   /* Prevent unused argument(s) compilation warning */
3201   UNUSED(htim);
3202 
3203   /* NOTE : This function should not be modified, when the callback is needed,
3204             the HAL_TIM_Encoder_MspInit could be implemented in the user file
3205    */
3206 }
3207 
3208 /**
3209   * @brief  DeInitializes TIM Encoder Interface MSP.
3210   * @param  htim TIM Encoder Interface handle
3211   * @retval None
3212   */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3213 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3214 {
3215   /* Prevent unused argument(s) compilation warning */
3216   UNUSED(htim);
3217 
3218   /* NOTE : This function should not be modified, when the callback is needed,
3219             the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3220    */
3221 }
3222 
3223 /**
3224   * @brief  Starts the TIM Encoder Interface.
3225   * @param  htim TIM Encoder Interface handle
3226   * @param  Channel TIM Channels to be enabled
3227   *          This parameter can be one of the following values:
3228   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3229   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3230   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3231   * @retval HAL status
3232   */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3233 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3234 {
3235   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3236   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3237   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3238   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3239 
3240   /* Check the parameters */
3241   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3242 
3243   /* Set the TIM channel(s) state */
3244   if (Channel == TIM_CHANNEL_1)
3245   {
3246     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3247         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3248     {
3249       return HAL_ERROR;
3250     }
3251     else
3252     {
3253       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3254       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3255     }
3256   }
3257   else if (Channel == TIM_CHANNEL_2)
3258   {
3259     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3260         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3261     {
3262       return HAL_ERROR;
3263     }
3264     else
3265     {
3266       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3267       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3268     }
3269   }
3270   else
3271   {
3272     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3273         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3274         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3275         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3276     {
3277       return HAL_ERROR;
3278     }
3279     else
3280     {
3281       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3282       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3283       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3284       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3285     }
3286   }
3287 
3288   /* Enable the encoder interface channels */
3289   switch (Channel)
3290   {
3291     case TIM_CHANNEL_1:
3292     {
3293       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3294       break;
3295     }
3296 
3297     case TIM_CHANNEL_2:
3298     {
3299       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3300       break;
3301     }
3302 
3303     default :
3304     {
3305       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3306       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3307       break;
3308     }
3309   }
3310   /* Enable the Peripheral */
3311   __HAL_TIM_ENABLE(htim);
3312 
3313   /* Return function status */
3314   return HAL_OK;
3315 }
3316 
3317 /**
3318   * @brief  Stops the TIM Encoder Interface.
3319   * @param  htim TIM Encoder Interface handle
3320   * @param  Channel TIM Channels to be disabled
3321   *          This parameter can be one of the following values:
3322   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3323   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3324   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3325   * @retval HAL status
3326   */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3327 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3328 {
3329   /* Check the parameters */
3330   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3331 
3332   /* Disable the Input Capture channels 1 and 2
3333     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3334   switch (Channel)
3335   {
3336     case TIM_CHANNEL_1:
3337     {
3338       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3339       break;
3340     }
3341 
3342     case TIM_CHANNEL_2:
3343     {
3344       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3345       break;
3346     }
3347 
3348     default :
3349     {
3350       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3351       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3352       break;
3353     }
3354   }
3355 
3356   /* Disable the Peripheral */
3357   __HAL_TIM_DISABLE(htim);
3358 
3359   /* Set the TIM channel(s) state */
3360   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3361   {
3362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3364   }
3365   else
3366   {
3367     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3368     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3369     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3370     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3371   }
3372 
3373   /* Return function status */
3374   return HAL_OK;
3375 }
3376 
3377 /**
3378   * @brief  Starts the TIM Encoder Interface in interrupt mode.
3379   * @param  htim TIM Encoder Interface handle
3380   * @param  Channel TIM Channels to be enabled
3381   *          This parameter can be one of the following values:
3382   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3383   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3384   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3385   * @retval HAL status
3386   */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3387 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3388 {
3389   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3390   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3391   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3392   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3393 
3394   /* Check the parameters */
3395   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3396 
3397   /* Set the TIM channel(s) state */
3398   if (Channel == TIM_CHANNEL_1)
3399   {
3400     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3401         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3402     {
3403       return HAL_ERROR;
3404     }
3405     else
3406     {
3407       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3408       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3409     }
3410   }
3411   else if (Channel == TIM_CHANNEL_2)
3412   {
3413     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3414         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3415     {
3416       return HAL_ERROR;
3417     }
3418     else
3419     {
3420       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3421       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3422     }
3423   }
3424   else
3425   {
3426     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3427         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3428         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3429         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3430     {
3431       return HAL_ERROR;
3432     }
3433     else
3434     {
3435       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3436       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3437       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3438       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3439     }
3440   }
3441 
3442   /* Enable the encoder interface channels */
3443   /* Enable the capture compare Interrupts 1 and/or 2 */
3444   switch (Channel)
3445   {
3446     case TIM_CHANNEL_1:
3447     {
3448       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3449       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3450       break;
3451     }
3452 
3453     case TIM_CHANNEL_2:
3454     {
3455       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3456       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3457       break;
3458     }
3459 
3460     default :
3461     {
3462       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3463       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3464       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3465       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3466       break;
3467     }
3468   }
3469 
3470   /* Enable the Peripheral */
3471   __HAL_TIM_ENABLE(htim);
3472 
3473   /* Return function status */
3474   return HAL_OK;
3475 }
3476 
3477 /**
3478   * @brief  Stops the TIM Encoder Interface in interrupt mode.
3479   * @param  htim TIM Encoder Interface handle
3480   * @param  Channel TIM Channels to be disabled
3481   *          This parameter can be one of the following values:
3482   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3483   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3484   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3485   * @retval HAL status
3486   */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3487 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3488 {
3489   /* Check the parameters */
3490   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3491 
3492   /* Disable the Input Capture channels 1 and 2
3493     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3494   if (Channel == TIM_CHANNEL_1)
3495   {
3496     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3497 
3498     /* Disable the capture compare Interrupts 1 */
3499     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3500   }
3501   else if (Channel == TIM_CHANNEL_2)
3502   {
3503     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3504 
3505     /* Disable the capture compare Interrupts 2 */
3506     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3507   }
3508   else
3509   {
3510     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3511     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3512 
3513     /* Disable the capture compare Interrupts 1 and 2 */
3514     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3515     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3516   }
3517 
3518   /* Disable the Peripheral */
3519   __HAL_TIM_DISABLE(htim);
3520 
3521   /* Set the TIM channel(s) state */
3522   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3523   {
3524     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3525     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3526   }
3527   else
3528   {
3529     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3530     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3531     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3532     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3533   }
3534 
3535   /* Return function status */
3536   return HAL_OK;
3537 }
3538 
3539 /**
3540   * @brief  Starts the TIM Encoder Interface in DMA mode.
3541   * @param  htim TIM Encoder Interface handle
3542   * @param  Channel TIM Channels to be enabled
3543   *          This parameter can be one of the following values:
3544   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3545   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3546   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3547   * @param  pData1 The destination Buffer address for IC1.
3548   * @param  pData2 The destination Buffer address for IC2.
3549   * @param  Length The length of data to be transferred from TIM peripheral to memory.
3550   * @retval HAL status
3551   */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3552 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3553                                             uint32_t *pData2, uint16_t Length)
3554 {
3555   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3556   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3557   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3558   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3559 
3560   /* Check the parameters */
3561   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3562 
3563   /* Set the TIM channel(s) state */
3564   if (Channel == TIM_CHANNEL_1)
3565   {
3566     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3567         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3568     {
3569       return HAL_BUSY;
3570     }
3571     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3572              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3573     {
3574       if ((pData1 == NULL) || (Length == 0U))
3575       {
3576         return HAL_ERROR;
3577       }
3578       else
3579       {
3580         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3581         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3582       }
3583     }
3584     else
3585     {
3586       return HAL_ERROR;
3587     }
3588   }
3589   else if (Channel == TIM_CHANNEL_2)
3590   {
3591     if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3592         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3593     {
3594       return HAL_BUSY;
3595     }
3596     else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3597              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3598     {
3599       if ((pData2 == NULL) || (Length == 0U))
3600       {
3601         return HAL_ERROR;
3602       }
3603       else
3604       {
3605         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3606         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3607       }
3608     }
3609     else
3610     {
3611       return HAL_ERROR;
3612     }
3613   }
3614   else
3615   {
3616     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3617         || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3618         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3619         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3620     {
3621       return HAL_BUSY;
3622     }
3623     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3624              && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3625              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3626              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3627     {
3628       if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3629       {
3630         return HAL_ERROR;
3631       }
3632       else
3633       {
3634         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3635         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3636         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3637         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3638       }
3639     }
3640     else
3641     {
3642       return HAL_ERROR;
3643     }
3644   }
3645 
3646   switch (Channel)
3647   {
3648     case TIM_CHANNEL_1:
3649     {
3650       /* Set the DMA capture callbacks */
3651       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3652       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3653 
3654       /* Set the DMA error callback */
3655       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3656 
3657       /* Enable the DMA channel */
3658       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3659                            Length) != HAL_OK)
3660       {
3661         /* Return error status */
3662         return HAL_ERROR;
3663       }
3664       /* Enable the TIM Input Capture DMA request */
3665       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3666 
3667       /* Enable the Capture compare channel */
3668       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3669 
3670       /* Enable the Peripheral */
3671       __HAL_TIM_ENABLE(htim);
3672 
3673       break;
3674     }
3675 
3676     case TIM_CHANNEL_2:
3677     {
3678       /* Set the DMA capture callbacks */
3679       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3680       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3681 
3682       /* Set the DMA error callback */
3683       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3684       /* Enable the DMA channel */
3685       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3686                            Length) != HAL_OK)
3687       {
3688         /* Return error status */
3689         return HAL_ERROR;
3690       }
3691       /* Enable the TIM Input Capture  DMA request */
3692       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3693 
3694       /* Enable the Capture compare channel */
3695       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3696 
3697       /* Enable the Peripheral */
3698       __HAL_TIM_ENABLE(htim);
3699 
3700       break;
3701     }
3702 
3703     default:
3704     {
3705       /* Set the DMA capture callbacks */
3706       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3707       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3708 
3709       /* Set the DMA error callback */
3710       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3711 
3712       /* Enable the DMA channel */
3713       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3714                            Length) != HAL_OK)
3715       {
3716         /* Return error status */
3717         return HAL_ERROR;
3718       }
3719 
3720       /* Set the DMA capture callbacks */
3721       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3722       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3723 
3724       /* Set the DMA error callback */
3725       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3726 
3727       /* Enable the DMA channel */
3728       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3729                            Length) != HAL_OK)
3730       {
3731         /* Return error status */
3732         return HAL_ERROR;
3733       }
3734 
3735       /* Enable the TIM Input Capture  DMA request */
3736       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3737       /* Enable the TIM Input Capture  DMA request */
3738       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3739 
3740       /* Enable the Capture compare channel */
3741       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3742       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3743 
3744       /* Enable the Peripheral */
3745       __HAL_TIM_ENABLE(htim);
3746 
3747       break;
3748     }
3749   }
3750 
3751   /* Return function status */
3752   return HAL_OK;
3753 }
3754 
3755 /**
3756   * @brief  Stops the TIM Encoder Interface in DMA mode.
3757   * @param  htim TIM Encoder Interface handle
3758   * @param  Channel TIM Channels to be enabled
3759   *          This parameter can be one of the following values:
3760   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3761   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3762   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3763   * @retval HAL status
3764   */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3765 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3766 {
3767   /* Check the parameters */
3768   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3769 
3770   /* Disable the Input Capture channels 1 and 2
3771     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3772   if (Channel == TIM_CHANNEL_1)
3773   {
3774     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3775 
3776     /* Disable the capture compare DMA Request 1 */
3777     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3778     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3779   }
3780   else if (Channel == TIM_CHANNEL_2)
3781   {
3782     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3783 
3784     /* Disable the capture compare DMA Request 2 */
3785     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3786     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3787   }
3788   else
3789   {
3790     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3791     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3792 
3793     /* Disable the capture compare DMA Request 1 and 2 */
3794     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3795     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3796     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3797     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3798   }
3799 
3800   /* Disable the Peripheral */
3801   __HAL_TIM_DISABLE(htim);
3802 
3803   /* Set the TIM channel(s) state */
3804   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3805   {
3806     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3807     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3808   }
3809   else
3810   {
3811     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3812     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3813     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3814     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3815   }
3816 
3817   /* Return function status */
3818   return HAL_OK;
3819 }
3820 
3821 /**
3822   * @}
3823   */
3824 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3825   *  @brief    TIM IRQ handler management
3826   *
3827 @verbatim
3828   ==============================================================================
3829                         ##### IRQ handler management #####
3830   ==============================================================================
3831   [..]
3832     This section provides Timer IRQ handler function.
3833 
3834 @endverbatim
3835   * @{
3836   */
3837 /**
3838   * @brief  This function handles TIM interrupts requests.
3839   * @param  htim TIM  handle
3840   * @retval None
3841   */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3842 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3843 {
3844   uint32_t itsource = htim->Instance->DIER;
3845   uint32_t itflag   = htim->Instance->SR;
3846 
3847   /* Capture compare 1 event */
3848   if ((itflag & (TIM_FLAG_CC1)) == (TIM_FLAG_CC1))
3849   {
3850     if ((itsource & (TIM_IT_CC1)) == (TIM_IT_CC1))
3851     {
3852       {
3853         __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC1);
3854         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3855 
3856         /* Input capture event */
3857         if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3858         {
3859 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3860           htim->IC_CaptureCallback(htim);
3861 #else
3862           HAL_TIM_IC_CaptureCallback(htim);
3863 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3864         }
3865         /* Output compare event */
3866         else
3867         {
3868 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3869           htim->OC_DelayElapsedCallback(htim);
3870           htim->PWM_PulseFinishedCallback(htim);
3871 #else
3872           HAL_TIM_OC_DelayElapsedCallback(htim);
3873           HAL_TIM_PWM_PulseFinishedCallback(htim);
3874 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3875         }
3876         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3877       }
3878     }
3879   }
3880   /* Capture compare 2 event */
3881   if ((itflag & (TIM_FLAG_CC2)) == (TIM_FLAG_CC2))
3882   {
3883     if ((itsource & (TIM_IT_CC2)) == (TIM_IT_CC2))
3884     {
3885       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC2);
3886       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3887       /* Input capture event */
3888       if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3889       {
3890 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3891         htim->IC_CaptureCallback(htim);
3892 #else
3893         HAL_TIM_IC_CaptureCallback(htim);
3894 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3895       }
3896       /* Output compare event */
3897       else
3898       {
3899 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3900         htim->OC_DelayElapsedCallback(htim);
3901         htim->PWM_PulseFinishedCallback(htim);
3902 #else
3903         HAL_TIM_OC_DelayElapsedCallback(htim);
3904         HAL_TIM_PWM_PulseFinishedCallback(htim);
3905 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3906       }
3907       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3908     }
3909   }
3910   /* Capture compare 3 event */
3911   if ((itflag & (TIM_FLAG_CC3)) == (TIM_FLAG_CC3))
3912   {
3913     if ((itsource & (TIM_IT_CC3)) == (TIM_IT_CC3))
3914     {
3915       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC3);
3916       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3917       /* Input capture event */
3918       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3919       {
3920 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3921         htim->IC_CaptureCallback(htim);
3922 #else
3923         HAL_TIM_IC_CaptureCallback(htim);
3924 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3925       }
3926       /* Output compare event */
3927       else
3928       {
3929 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3930         htim->OC_DelayElapsedCallback(htim);
3931         htim->PWM_PulseFinishedCallback(htim);
3932 #else
3933         HAL_TIM_OC_DelayElapsedCallback(htim);
3934         HAL_TIM_PWM_PulseFinishedCallback(htim);
3935 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3936       }
3937       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3938     }
3939   }
3940   /* Capture compare 4 event */
3941   if ((itflag & (TIM_FLAG_CC4)) == (TIM_FLAG_CC4))
3942   {
3943     if ((itsource & (TIM_IT_CC4)) == (TIM_IT_CC4))
3944     {
3945       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_CC4);
3946       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3947       /* Input capture event */
3948       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3949       {
3950 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3951         htim->IC_CaptureCallback(htim);
3952 #else
3953         HAL_TIM_IC_CaptureCallback(htim);
3954 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3955       }
3956       /* Output compare event */
3957       else
3958       {
3959 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3960         htim->OC_DelayElapsedCallback(htim);
3961         htim->PWM_PulseFinishedCallback(htim);
3962 #else
3963         HAL_TIM_OC_DelayElapsedCallback(htim);
3964         HAL_TIM_PWM_PulseFinishedCallback(htim);
3965 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3966       }
3967       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3968     }
3969   }
3970   /* TIM Update event */
3971   if ((itflag & (TIM_FLAG_UPDATE)) == (TIM_FLAG_UPDATE))
3972   {
3973     if ((itsource & (TIM_IT_UPDATE)) == (TIM_IT_UPDATE))
3974     {
3975       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_UPDATE);
3976 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3977       htim->PeriodElapsedCallback(htim);
3978 #else
3979       HAL_TIM_PeriodElapsedCallback(htim);
3980 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3981     }
3982   }
3983   /* TIM Break input event */
3984   if (((itflag & (TIM_FLAG_BREAK)) == (TIM_FLAG_BREAK)) || \
3985       ((itflag & (TIM_FLAG_SYSTEM_BREAK)) == (TIM_FLAG_SYSTEM_BREAK)))
3986   {
3987     if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
3988     {
3989       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK | TIM_FLAG_SYSTEM_BREAK);
3990 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3991       htim->BreakCallback(htim);
3992 #else
3993       HAL_TIMEx_BreakCallback(htim);
3994 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3995     }
3996   }
3997   /* TIM Break2 input event */
3998   if ((itflag & (TIM_FLAG_BREAK2)) == (TIM_FLAG_BREAK2))
3999   {
4000     if ((itsource & (TIM_IT_BREAK)) == (TIM_IT_BREAK))
4001     {
4002       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
4003 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4004       htim->Break2Callback(htim);
4005 #else
4006       HAL_TIMEx_Break2Callback(htim);
4007 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4008     }
4009   }
4010   /* TIM Trigger detection event */
4011   if ((itflag & (TIM_FLAG_TRIGGER)) == (TIM_FLAG_TRIGGER))
4012   {
4013     if ((itsource & (TIM_IT_TRIGGER)) == (TIM_IT_TRIGGER))
4014     {
4015       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_TRIGGER);
4016 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4017       htim->TriggerCallback(htim);
4018 #else
4019       HAL_TIM_TriggerCallback(htim);
4020 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4021     }
4022   }
4023   /* TIM commutation event */
4024   if ((itflag & (TIM_FLAG_COM)) == (TIM_FLAG_COM))
4025   {
4026     if ((itsource & (TIM_IT_COM)) == (TIM_IT_COM))
4027     {
4028       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_COM);
4029 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4030       htim->CommutationCallback(htim);
4031 #else
4032       HAL_TIMEx_CommutCallback(htim);
4033 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4034     }
4035   }
4036 }
4037 
4038 /**
4039   * @}
4040   */
4041 
4042 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4043   *  @brief    TIM Peripheral Control functions
4044   *
4045 @verbatim
4046   ==============================================================================
4047                    ##### Peripheral Control functions #####
4048   ==============================================================================
4049  [..]
4050    This section provides functions allowing to:
4051       (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4052       (+) Configure External Clock source.
4053       (+) Configure Complementary channels, break features and dead time.
4054       (+) Configure Master and the Slave synchronization.
4055       (+) Configure the DMA Burst Mode.
4056 
4057 @endverbatim
4058   * @{
4059   */
4060 
4061 /**
4062   * @brief  Initializes the TIM Output Compare Channels according to the specified
4063   *         parameters in the TIM_OC_InitTypeDef.
4064   * @param  htim TIM Output Compare handle
4065   * @param  sConfig TIM Output Compare configuration structure
4066   * @param  Channel TIM Channels to configure
4067   *          This parameter can be one of the following values:
4068   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4069   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4070   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4071   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4072   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
4073   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
4074   * @retval HAL status
4075   */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4076 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4077                                            const TIM_OC_InitTypeDef *sConfig,
4078                                            uint32_t Channel)
4079 {
4080   HAL_StatusTypeDef status = HAL_OK;
4081 
4082   /* Check the parameters */
4083   assert_param(IS_TIM_CHANNELS(Channel));
4084   assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4085   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4086 
4087   /* Process Locked */
4088   __HAL_LOCK(htim);
4089 
4090   switch (Channel)
4091   {
4092     case TIM_CHANNEL_1:
4093     {
4094       /* Check the parameters */
4095       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4096 
4097       /* Configure the TIM Channel 1 in Output Compare */
4098       TIM_OC1_SetConfig(htim->Instance, sConfig);
4099       break;
4100     }
4101 
4102     case TIM_CHANNEL_2:
4103     {
4104       /* Check the parameters */
4105       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4106 
4107       /* Configure the TIM Channel 2 in Output Compare */
4108       TIM_OC2_SetConfig(htim->Instance, sConfig);
4109       break;
4110     }
4111 
4112     case TIM_CHANNEL_3:
4113     {
4114       /* Check the parameters */
4115       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4116 
4117       /* Configure the TIM Channel 3 in Output Compare */
4118       TIM_OC3_SetConfig(htim->Instance, sConfig);
4119       break;
4120     }
4121 
4122     case TIM_CHANNEL_4:
4123     {
4124       /* Check the parameters */
4125       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4126 
4127       /* Configure the TIM Channel 4 in Output Compare */
4128       TIM_OC4_SetConfig(htim->Instance, sConfig);
4129       break;
4130     }
4131 
4132     case TIM_CHANNEL_5:
4133     {
4134       /* Check the parameters */
4135       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4136 
4137       /* Configure the TIM Channel 5 in Output Compare */
4138       TIM_OC5_SetConfig(htim->Instance, sConfig);
4139       break;
4140     }
4141 
4142     case TIM_CHANNEL_6:
4143     {
4144       /* Check the parameters */
4145       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4146 
4147       /* Configure the TIM Channel 6 in Output Compare */
4148       TIM_OC6_SetConfig(htim->Instance, sConfig);
4149       break;
4150     }
4151 
4152     default:
4153       status = HAL_ERROR;
4154       break;
4155   }
4156 
4157   __HAL_UNLOCK(htim);
4158 
4159   return status;
4160 }
4161 
4162 /**
4163   * @brief  Initializes the TIM Input Capture Channels according to the specified
4164   *         parameters in the TIM_IC_InitTypeDef.
4165   * @param  htim TIM IC handle
4166   * @param  sConfig TIM Input Capture configuration structure
4167   * @param  Channel TIM Channel to configure
4168   *          This parameter can be one of the following values:
4169   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4170   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4171   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4172   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4173   * @retval HAL status
4174   */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4175 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4176 {
4177   HAL_StatusTypeDef status = HAL_OK;
4178 
4179   /* Check the parameters */
4180   assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4181   assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4182   assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4183   assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4184   assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4185 
4186   /* Process Locked */
4187   __HAL_LOCK(htim);
4188 
4189   if (Channel == TIM_CHANNEL_1)
4190   {
4191     /* TI1 Configuration */
4192     TIM_TI1_SetConfig(htim->Instance,
4193                       sConfig->ICPolarity,
4194                       sConfig->ICSelection,
4195                       sConfig->ICFilter);
4196 
4197     /* Reset the IC1PSC Bits */
4198     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4199 
4200     /* Set the IC1PSC value */
4201     htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4202   }
4203   else if (Channel == TIM_CHANNEL_2)
4204   {
4205     /* TI2 Configuration */
4206     assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4207 
4208     TIM_TI2_SetConfig(htim->Instance,
4209                       sConfig->ICPolarity,
4210                       sConfig->ICSelection,
4211                       sConfig->ICFilter);
4212 
4213     /* Reset the IC2PSC Bits */
4214     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4215 
4216     /* Set the IC2PSC value */
4217     htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4218   }
4219   else if (Channel == TIM_CHANNEL_3)
4220   {
4221     /* TI3 Configuration */
4222     assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4223 
4224     TIM_TI3_SetConfig(htim->Instance,
4225                       sConfig->ICPolarity,
4226                       sConfig->ICSelection,
4227                       sConfig->ICFilter);
4228 
4229     /* Reset the IC3PSC Bits */
4230     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4231 
4232     /* Set the IC3PSC value */
4233     htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4234   }
4235   else if (Channel == TIM_CHANNEL_4)
4236   {
4237     /* TI4 Configuration */
4238     assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4239 
4240     TIM_TI4_SetConfig(htim->Instance,
4241                       sConfig->ICPolarity,
4242                       sConfig->ICSelection,
4243                       sConfig->ICFilter);
4244 
4245     /* Reset the IC4PSC Bits */
4246     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4247 
4248     /* Set the IC4PSC value */
4249     htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4250   }
4251   else
4252   {
4253     status = HAL_ERROR;
4254   }
4255 
4256   __HAL_UNLOCK(htim);
4257 
4258   return status;
4259 }
4260 
4261 /**
4262   * @brief  Initializes the TIM PWM  channels according to the specified
4263   *         parameters in the TIM_OC_InitTypeDef.
4264   * @param  htim TIM PWM handle
4265   * @param  sConfig TIM PWM configuration structure
4266   * @param  Channel TIM Channels to be configured
4267   *          This parameter can be one of the following values:
4268   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4269   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4270   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4271   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4272   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
4273   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
4274   * @retval HAL status
4275   */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4276 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4277                                             const TIM_OC_InitTypeDef *sConfig,
4278                                             uint32_t Channel)
4279 {
4280   HAL_StatusTypeDef status = HAL_OK;
4281 
4282   /* Check the parameters */
4283   assert_param(IS_TIM_CHANNELS(Channel));
4284   assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4285   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4286   assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4287 
4288   /* Process Locked */
4289   __HAL_LOCK(htim);
4290 
4291   switch (Channel)
4292   {
4293     case TIM_CHANNEL_1:
4294     {
4295       /* Check the parameters */
4296       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4297 
4298       /* Configure the Channel 1 in PWM mode */
4299       TIM_OC1_SetConfig(htim->Instance, sConfig);
4300 
4301       /* Set the Preload enable bit for channel1 */
4302       htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4303 
4304       /* Configure the Output Fast mode */
4305       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4306       htim->Instance->CCMR1 |= sConfig->OCFastMode;
4307       break;
4308     }
4309 
4310     case TIM_CHANNEL_2:
4311     {
4312       /* Check the parameters */
4313       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4314 
4315       /* Configure the Channel 2 in PWM mode */
4316       TIM_OC2_SetConfig(htim->Instance, sConfig);
4317 
4318       /* Set the Preload enable bit for channel2 */
4319       htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4320 
4321       /* Configure the Output Fast mode */
4322       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4323       htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4324       break;
4325     }
4326 
4327     case TIM_CHANNEL_3:
4328     {
4329       /* Check the parameters */
4330       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4331 
4332       /* Configure the Channel 3 in PWM mode */
4333       TIM_OC3_SetConfig(htim->Instance, sConfig);
4334 
4335       /* Set the Preload enable bit for channel3 */
4336       htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4337 
4338       /* Configure the Output Fast mode */
4339       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4340       htim->Instance->CCMR2 |= sConfig->OCFastMode;
4341       break;
4342     }
4343 
4344     case TIM_CHANNEL_4:
4345     {
4346       /* Check the parameters */
4347       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4348 
4349       /* Configure the Channel 4 in PWM mode */
4350       TIM_OC4_SetConfig(htim->Instance, sConfig);
4351 
4352       /* Set the Preload enable bit for channel4 */
4353       htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4354 
4355       /* Configure the Output Fast mode */
4356       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4357       htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4358       break;
4359     }
4360 
4361     case TIM_CHANNEL_5:
4362     {
4363       /* Check the parameters */
4364       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4365 
4366       /* Configure the Channel 5 in PWM mode */
4367       TIM_OC5_SetConfig(htim->Instance, sConfig);
4368 
4369       /* Set the Preload enable bit for channel5*/
4370       htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
4371 
4372       /* Configure the Output Fast mode */
4373       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
4374       htim->Instance->CCMR3 |= sConfig->OCFastMode;
4375       break;
4376     }
4377 
4378     case TIM_CHANNEL_6:
4379     {
4380       /* Check the parameters */
4381       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4382 
4383       /* Configure the Channel 6 in PWM mode */
4384       TIM_OC6_SetConfig(htim->Instance, sConfig);
4385 
4386       /* Set the Preload enable bit for channel6 */
4387       htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
4388 
4389       /* Configure the Output Fast mode */
4390       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
4391       htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
4392       break;
4393     }
4394 
4395     default:
4396       status = HAL_ERROR;
4397       break;
4398   }
4399 
4400   __HAL_UNLOCK(htim);
4401 
4402   return status;
4403 }
4404 
4405 /**
4406   * @brief  Initializes the TIM One Pulse Channels according to the specified
4407   *         parameters in the TIM_OnePulse_InitTypeDef.
4408   * @param  htim TIM One Pulse handle
4409   * @param  sConfig TIM One Pulse configuration structure
4410   * @param  OutputChannel TIM output channel to configure
4411   *          This parameter can be one of the following values:
4412   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4413   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4414   * @param  InputChannel TIM input Channel to configure
4415   *          This parameter can be one of the following values:
4416   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4417   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4418   * @note  To output a waveform with a minimum delay user can enable the fast
4419   *        mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4420   *        output is forced in response to the edge detection on TIx input,
4421   *        without taking in account the comparison.
4422   * @retval HAL status
4423   */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4424 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef *sConfig,
4425                                                  uint32_t OutputChannel,  uint32_t InputChannel)
4426 {
4427   HAL_StatusTypeDef status = HAL_OK;
4428   TIM_OC_InitTypeDef temp1;
4429 
4430   /* Check the parameters */
4431   assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4432   assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4433 
4434   if (OutputChannel != InputChannel)
4435   {
4436     /* Process Locked */
4437     __HAL_LOCK(htim);
4438 
4439     htim->State = HAL_TIM_STATE_BUSY;
4440 
4441     /* Extract the Output compare configuration from sConfig structure */
4442     temp1.OCMode = sConfig->OCMode;
4443     temp1.Pulse = sConfig->Pulse;
4444     temp1.OCPolarity = sConfig->OCPolarity;
4445     temp1.OCNPolarity = sConfig->OCNPolarity;
4446     temp1.OCIdleState = sConfig->OCIdleState;
4447     temp1.OCNIdleState = sConfig->OCNIdleState;
4448 
4449     switch (OutputChannel)
4450     {
4451       case TIM_CHANNEL_1:
4452       {
4453         assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4454 
4455         TIM_OC1_SetConfig(htim->Instance, &temp1);
4456         break;
4457       }
4458 
4459       case TIM_CHANNEL_2:
4460       {
4461         assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4462 
4463         TIM_OC2_SetConfig(htim->Instance, &temp1);
4464         break;
4465       }
4466 
4467       default:
4468         status = HAL_ERROR;
4469         break;
4470     }
4471 
4472     if (status == HAL_OK)
4473     {
4474       switch (InputChannel)
4475       {
4476         case TIM_CHANNEL_1:
4477         {
4478           assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4479 
4480           TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4481                             sConfig->ICSelection, sConfig->ICFilter);
4482 
4483           /* Reset the IC1PSC Bits */
4484           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4485 
4486           /* Select the Trigger source */
4487           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4488           htim->Instance->SMCR |= TIM_TS_TI1FP1;
4489 
4490           /* Select the Slave Mode */
4491           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4492           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4493           break;
4494         }
4495 
4496         case TIM_CHANNEL_2:
4497         {
4498           assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4499 
4500           TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4501                             sConfig->ICSelection, sConfig->ICFilter);
4502 
4503           /* Reset the IC2PSC Bits */
4504           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4505 
4506           /* Select the Trigger source */
4507           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4508           htim->Instance->SMCR |= TIM_TS_TI2FP2;
4509 
4510           /* Select the Slave Mode */
4511           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4512           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4513           break;
4514         }
4515 
4516         default:
4517           status = HAL_ERROR;
4518           break;
4519       }
4520     }
4521 
4522     htim->State = HAL_TIM_STATE_READY;
4523 
4524     __HAL_UNLOCK(htim);
4525 
4526     return status;
4527   }
4528   else
4529   {
4530     return HAL_ERROR;
4531   }
4532 }
4533 
4534 /**
4535   * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4536   * @param  htim TIM handle
4537   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data write
4538   *         This parameter can be one of the following values:
4539   *            @arg TIM_DMABASE_CR1
4540   *            @arg TIM_DMABASE_CR2
4541   *            @arg TIM_DMABASE_SMCR
4542   *            @arg TIM_DMABASE_DIER
4543   *            @arg TIM_DMABASE_SR
4544   *            @arg TIM_DMABASE_EGR
4545   *            @arg TIM_DMABASE_CCMR1
4546   *            @arg TIM_DMABASE_CCMR2
4547   *            @arg TIM_DMABASE_CCER
4548   *            @arg TIM_DMABASE_CNT
4549   *            @arg TIM_DMABASE_PSC
4550   *            @arg TIM_DMABASE_ARR
4551   *            @arg TIM_DMABASE_RCR
4552   *            @arg TIM_DMABASE_CCR1
4553   *            @arg TIM_DMABASE_CCR2
4554   *            @arg TIM_DMABASE_CCR3
4555   *            @arg TIM_DMABASE_CCR4
4556   *            @arg TIM_DMABASE_BDTR
4557   *            @arg TIM_DMABASE_OR1
4558   *            @arg TIM_DMABASE_CCMR3
4559   *            @arg TIM_DMABASE_CCR5
4560   *            @arg TIM_DMABASE_CCR6
4561   *            @arg TIM_DMABASE_AF1
4562   *            @arg TIM_DMABASE_AF2
4563   *            @arg TIM_DMABASE_TISEL
4564   * @param  BurstRequestSrc TIM DMA Request sources
4565   *         This parameter can be one of the following values:
4566   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4567   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4568   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4569   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4570   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4571   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4572   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4573   * @param  BurstBuffer The Buffer address.
4574   * @param  BurstLength DMA Burst length. This parameter can be one value
4575   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4576   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4577   * @retval HAL status
4578   */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4579 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4580                                               uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4581                                               uint32_t  BurstLength)
4582 {
4583   HAL_StatusTypeDef status;
4584 
4585   status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4586                                             ((BurstLength) >> 8U) + 1U);
4587 
4588 
4589   return status;
4590 }
4591 
4592 /**
4593   * @brief  Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4594   * @param  htim TIM handle
4595   * @param  BurstBaseAddress TIM Base address from where the DMA will start the Data write
4596   *         This parameter can be one of the following values:
4597   *            @arg TIM_DMABASE_CR1
4598   *            @arg TIM_DMABASE_CR2
4599   *            @arg TIM_DMABASE_SMCR
4600   *            @arg TIM_DMABASE_DIER
4601   *            @arg TIM_DMABASE_SR
4602   *            @arg TIM_DMABASE_EGR
4603   *            @arg TIM_DMABASE_CCMR1
4604   *            @arg TIM_DMABASE_CCMR2
4605   *            @arg TIM_DMABASE_CCER
4606   *            @arg TIM_DMABASE_CNT
4607   *            @arg TIM_DMABASE_PSC
4608   *            @arg TIM_DMABASE_ARR
4609   *            @arg TIM_DMABASE_RCR
4610   *            @arg TIM_DMABASE_CCR1
4611   *            @arg TIM_DMABASE_CCR2
4612   *            @arg TIM_DMABASE_CCR3
4613   *            @arg TIM_DMABASE_CCR4
4614   *            @arg TIM_DMABASE_BDTR
4615   *            @arg TIM_DMABASE_OR1
4616   *            @arg TIM_DMABASE_CCMR3
4617   *            @arg TIM_DMABASE_CCR5
4618   *            @arg TIM_DMABASE_CCR6
4619   *            @arg TIM_DMABASE_AF1
4620   *            @arg TIM_DMABASE_AF2
4621   *            @arg TIM_DMABASE_TISEL
4622   * @param  BurstRequestSrc TIM DMA Request sources
4623   *         This parameter can be one of the following values:
4624   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4625   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4626   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4627   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4628   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4629   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4630   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4631   * @param  BurstBuffer The Buffer address.
4632   * @param  BurstLength DMA Burst length. This parameter can be one value
4633   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4634   * @param  DataLength Data length. This parameter can be one value
4635   *         between 1 and 0xFFFF.
4636   * @retval HAL status
4637   */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4638 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4639                                                    uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4640                                                    uint32_t  BurstLength,  uint32_t  DataLength)
4641 {
4642   HAL_StatusTypeDef status = HAL_OK;
4643 
4644   /* Check the parameters */
4645   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4646   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4647   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4648   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4649   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4650 
4651   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4652   {
4653     return HAL_BUSY;
4654   }
4655   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4656   {
4657     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4658     {
4659       return HAL_ERROR;
4660     }
4661     else
4662     {
4663       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4664     }
4665   }
4666   else
4667   {
4668     /* nothing to do */
4669   }
4670 
4671   switch (BurstRequestSrc)
4672   {
4673     case TIM_DMA_UPDATE:
4674     {
4675       /* Set the DMA Period elapsed callbacks */
4676       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4677       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4678 
4679       /* Set the DMA error callback */
4680       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4681 
4682       /* Enable the DMA channel */
4683       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4684                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4685       {
4686         /* Return error status */
4687         return HAL_ERROR;
4688       }
4689       break;
4690     }
4691     case TIM_DMA_CC1:
4692     {
4693       /* Set the DMA compare callbacks */
4694       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4695       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4696 
4697       /* Set the DMA error callback */
4698       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4699 
4700       /* Enable the DMA channel */
4701       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4702                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4703       {
4704         /* Return error status */
4705         return HAL_ERROR;
4706       }
4707       break;
4708     }
4709     case TIM_DMA_CC2:
4710     {
4711       /* Set the DMA compare callbacks */
4712       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4713       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4714 
4715       /* Set the DMA error callback */
4716       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4717 
4718       /* Enable the DMA channel */
4719       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4720                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4721       {
4722         /* Return error status */
4723         return HAL_ERROR;
4724       }
4725       break;
4726     }
4727     case TIM_DMA_CC3:
4728     {
4729       /* Set the DMA compare callbacks */
4730       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4731       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4732 
4733       /* Set the DMA error callback */
4734       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4735 
4736       /* Enable the DMA channel */
4737       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4738                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4739       {
4740         /* Return error status */
4741         return HAL_ERROR;
4742       }
4743       break;
4744     }
4745     case TIM_DMA_CC4:
4746     {
4747       /* Set the DMA compare callbacks */
4748       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4749       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4750 
4751       /* Set the DMA error callback */
4752       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4753 
4754       /* Enable the DMA channel */
4755       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4756                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4757       {
4758         /* Return error status */
4759         return HAL_ERROR;
4760       }
4761       break;
4762     }
4763     case TIM_DMA_COM:
4764     {
4765       /* Set the DMA commutation callbacks */
4766       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4767       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4768 
4769       /* Set the DMA error callback */
4770       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4771 
4772       /* Enable the DMA channel */
4773       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4774                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4775       {
4776         /* Return error status */
4777         return HAL_ERROR;
4778       }
4779       break;
4780     }
4781     case TIM_DMA_TRIGGER:
4782     {
4783       /* Set the DMA trigger callbacks */
4784       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4785       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4786 
4787       /* Set the DMA error callback */
4788       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4789 
4790       /* Enable the DMA channel */
4791       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4792                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4793       {
4794         /* Return error status */
4795         return HAL_ERROR;
4796       }
4797       break;
4798     }
4799     default:
4800       status = HAL_ERROR;
4801       break;
4802   }
4803 
4804   if (status == HAL_OK)
4805   {
4806     /* Configure the DMA Burst Mode */
4807     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4808     /* Enable the TIM DMA Request */
4809     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4810   }
4811 
4812   /* Return function status */
4813   return status;
4814 }
4815 
4816 /**
4817   * @brief  Stops the TIM DMA Burst mode
4818   * @param  htim TIM handle
4819   * @param  BurstRequestSrc TIM DMA Request sources to disable
4820   * @retval HAL status
4821   */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4822 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4823 {
4824   HAL_StatusTypeDef status = HAL_OK;
4825 
4826   /* Check the parameters */
4827   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4828 
4829   /* Abort the DMA transfer (at least disable the DMA channel) */
4830   switch (BurstRequestSrc)
4831   {
4832     case TIM_DMA_UPDATE:
4833     {
4834       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4835       break;
4836     }
4837     case TIM_DMA_CC1:
4838     {
4839       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4840       break;
4841     }
4842     case TIM_DMA_CC2:
4843     {
4844       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4845       break;
4846     }
4847     case TIM_DMA_CC3:
4848     {
4849       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4850       break;
4851     }
4852     case TIM_DMA_CC4:
4853     {
4854       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4855       break;
4856     }
4857     case TIM_DMA_COM:
4858     {
4859       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4860       break;
4861     }
4862     case TIM_DMA_TRIGGER:
4863     {
4864       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4865       break;
4866     }
4867     default:
4868       status = HAL_ERROR;
4869       break;
4870   }
4871 
4872   if (status == HAL_OK)
4873   {
4874     /* Disable the TIM Update DMA request */
4875     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4876 
4877     /* Change the DMA burst operation state */
4878     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4879   }
4880 
4881   /* Return function status */
4882   return status;
4883 }
4884 
4885 /**
4886   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4887   * @param  htim TIM handle
4888   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4889   *         This parameter can be one of the following values:
4890   *            @arg TIM_DMABASE_CR1
4891   *            @arg TIM_DMABASE_CR2
4892   *            @arg TIM_DMABASE_SMCR
4893   *            @arg TIM_DMABASE_DIER
4894   *            @arg TIM_DMABASE_SR
4895   *            @arg TIM_DMABASE_EGR
4896   *            @arg TIM_DMABASE_CCMR1
4897   *            @arg TIM_DMABASE_CCMR2
4898   *            @arg TIM_DMABASE_CCER
4899   *            @arg TIM_DMABASE_CNT
4900   *            @arg TIM_DMABASE_PSC
4901   *            @arg TIM_DMABASE_ARR
4902   *            @arg TIM_DMABASE_RCR
4903   *            @arg TIM_DMABASE_CCR1
4904   *            @arg TIM_DMABASE_CCR2
4905   *            @arg TIM_DMABASE_CCR3
4906   *            @arg TIM_DMABASE_CCR4
4907   *            @arg TIM_DMABASE_BDTR
4908   *            @arg TIM_DMABASE_OR1
4909   *            @arg TIM_DMABASE_CCMR3
4910   *            @arg TIM_DMABASE_CCR5
4911   *            @arg TIM_DMABASE_CCR6
4912   *            @arg TIM_DMABASE_AF1
4913   *            @arg TIM_DMABASE_AF2
4914   *            @arg TIM_DMABASE_TISEL
4915   * @param  BurstRequestSrc TIM DMA Request sources
4916   *         This parameter can be one of the following values:
4917   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4918   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4919   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4920   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4921   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4922   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4923   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4924   * @param  BurstBuffer The Buffer address.
4925   * @param  BurstLength DMA Burst length. This parameter can be one value
4926   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4927   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4928   * @retval HAL status
4929   */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4930 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4931                                              uint32_t BurstRequestSrc, uint32_t  *BurstBuffer, uint32_t  BurstLength)
4932 {
4933   HAL_StatusTypeDef status;
4934 
4935   status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4936                                            ((BurstLength) >> 8U) + 1U);
4937 
4938 
4939   return status;
4940 }
4941 
4942 /**
4943   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4944   * @param  htim TIM handle
4945   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4946   *         This parameter can be one of the following values:
4947   *            @arg TIM_DMABASE_CR1
4948   *            @arg TIM_DMABASE_CR2
4949   *            @arg TIM_DMABASE_SMCR
4950   *            @arg TIM_DMABASE_DIER
4951   *            @arg TIM_DMABASE_SR
4952   *            @arg TIM_DMABASE_EGR
4953   *            @arg TIM_DMABASE_CCMR1
4954   *            @arg TIM_DMABASE_CCMR2
4955   *            @arg TIM_DMABASE_CCER
4956   *            @arg TIM_DMABASE_CNT
4957   *            @arg TIM_DMABASE_PSC
4958   *            @arg TIM_DMABASE_ARR
4959   *            @arg TIM_DMABASE_RCR
4960   *            @arg TIM_DMABASE_CCR1
4961   *            @arg TIM_DMABASE_CCR2
4962   *            @arg TIM_DMABASE_CCR3
4963   *            @arg TIM_DMABASE_CCR4
4964   *            @arg TIM_DMABASE_BDTR
4965   *            @arg TIM_DMABASE_OR1
4966   *            @arg TIM_DMABASE_CCMR3
4967   *            @arg TIM_DMABASE_CCR5
4968   *            @arg TIM_DMABASE_CCR6
4969   *            @arg TIM_DMABASE_AF1
4970   *            @arg TIM_DMABASE_AF2
4971   *            @arg TIM_DMABASE_TISEL
4972   * @param  BurstRequestSrc TIM DMA Request sources
4973   *         This parameter can be one of the following values:
4974   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4975   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4976   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4977   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4978   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4979   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4980   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4981   * @param  BurstBuffer The Buffer address.
4982   * @param  BurstLength DMA Burst length. This parameter can be one value
4983   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4984   * @param  DataLength Data length. This parameter can be one value
4985   *         between 1 and 0xFFFF.
4986   * @retval HAL status
4987   */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4988 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4989                                                   uint32_t BurstRequestSrc, uint32_t  *BurstBuffer,
4990                                                   uint32_t  BurstLength, uint32_t  DataLength)
4991 {
4992   HAL_StatusTypeDef status = HAL_OK;
4993 
4994   /* Check the parameters */
4995   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4996   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4997   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4998   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4999   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
5000 
5001   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
5002   {
5003     return HAL_BUSY;
5004   }
5005   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
5006   {
5007     if ((BurstBuffer == NULL) && (BurstLength > 0U))
5008     {
5009       return HAL_ERROR;
5010     }
5011     else
5012     {
5013       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
5014     }
5015   }
5016   else
5017   {
5018     /* nothing to do */
5019   }
5020   switch (BurstRequestSrc)
5021   {
5022     case TIM_DMA_UPDATE:
5023     {
5024       /* Set the DMA Period elapsed callbacks */
5025       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
5026       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
5027 
5028       /* Set the DMA error callback */
5029       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
5030 
5031       /* Enable the DMA channel */
5032       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5033                            DataLength) != HAL_OK)
5034       {
5035         /* Return error status */
5036         return HAL_ERROR;
5037       }
5038       break;
5039     }
5040     case TIM_DMA_CC1:
5041     {
5042       /* Set the DMA capture callbacks */
5043       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
5044       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5045 
5046       /* Set the DMA error callback */
5047       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
5048 
5049       /* Enable the DMA channel */
5050       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5051                            DataLength) != HAL_OK)
5052       {
5053         /* Return error status */
5054         return HAL_ERROR;
5055       }
5056       break;
5057     }
5058     case TIM_DMA_CC2:
5059     {
5060       /* Set the DMA capture callbacks */
5061       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
5062       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5063 
5064       /* Set the DMA error callback */
5065       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
5066 
5067       /* Enable the DMA channel */
5068       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5069                            DataLength) != HAL_OK)
5070       {
5071         /* Return error status */
5072         return HAL_ERROR;
5073       }
5074       break;
5075     }
5076     case TIM_DMA_CC3:
5077     {
5078       /* Set the DMA capture callbacks */
5079       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
5080       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5081 
5082       /* Set the DMA error callback */
5083       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
5084 
5085       /* Enable the DMA channel */
5086       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5087                            DataLength) != HAL_OK)
5088       {
5089         /* Return error status */
5090         return HAL_ERROR;
5091       }
5092       break;
5093     }
5094     case TIM_DMA_CC4:
5095     {
5096       /* Set the DMA capture callbacks */
5097       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
5098       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5099 
5100       /* Set the DMA error callback */
5101       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
5102 
5103       /* Enable the DMA channel */
5104       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5105                            DataLength) != HAL_OK)
5106       {
5107         /* Return error status */
5108         return HAL_ERROR;
5109       }
5110       break;
5111     }
5112     case TIM_DMA_COM:
5113     {
5114       /* Set the DMA commutation callbacks */
5115       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
5116       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
5117 
5118       /* Set the DMA error callback */
5119       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5120 
5121       /* Enable the DMA channel */
5122       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5123                            DataLength) != HAL_OK)
5124       {
5125         /* Return error status */
5126         return HAL_ERROR;
5127       }
5128       break;
5129     }
5130     case TIM_DMA_TRIGGER:
5131     {
5132       /* Set the DMA trigger callbacks */
5133       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5134       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5135 
5136       /* Set the DMA error callback */
5137       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5138 
5139       /* Enable the DMA channel */
5140       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5141                            DataLength) != HAL_OK)
5142       {
5143         /* Return error status */
5144         return HAL_ERROR;
5145       }
5146       break;
5147     }
5148     default:
5149       status = HAL_ERROR;
5150       break;
5151   }
5152 
5153   if (status == HAL_OK)
5154   {
5155     /* Configure the DMA Burst Mode */
5156     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5157 
5158     /* Enable the TIM DMA Request */
5159     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5160   }
5161 
5162   /* Return function status */
5163   return status;
5164 }
5165 
5166 /**
5167   * @brief  Stop the DMA burst reading
5168   * @param  htim TIM handle
5169   * @param  BurstRequestSrc TIM DMA Request sources to disable.
5170   * @retval HAL status
5171   */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5172 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5173 {
5174   HAL_StatusTypeDef status = HAL_OK;
5175 
5176   /* Check the parameters */
5177   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5178 
5179   /* Abort the DMA transfer (at least disable the DMA channel) */
5180   switch (BurstRequestSrc)
5181   {
5182     case TIM_DMA_UPDATE:
5183     {
5184       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5185       break;
5186     }
5187     case TIM_DMA_CC1:
5188     {
5189       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5190       break;
5191     }
5192     case TIM_DMA_CC2:
5193     {
5194       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5195       break;
5196     }
5197     case TIM_DMA_CC3:
5198     {
5199       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5200       break;
5201     }
5202     case TIM_DMA_CC4:
5203     {
5204       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5205       break;
5206     }
5207     case TIM_DMA_COM:
5208     {
5209       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5210       break;
5211     }
5212     case TIM_DMA_TRIGGER:
5213     {
5214       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5215       break;
5216     }
5217     default:
5218       status = HAL_ERROR;
5219       break;
5220   }
5221 
5222   if (status == HAL_OK)
5223   {
5224     /* Disable the TIM Update DMA request */
5225     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5226 
5227     /* Change the DMA burst operation state */
5228     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5229   }
5230 
5231   /* Return function status */
5232   return status;
5233 }
5234 
5235 /**
5236   * @brief  Generate a software event
5237   * @param  htim TIM handle
5238   * @param  EventSource specifies the event source.
5239   *          This parameter can be one of the following values:
5240   *            @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5241   *            @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5242   *            @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5243   *            @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5244   *            @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5245   *            @arg TIM_EVENTSOURCE_COM: Timer COM event source
5246   *            @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5247   *            @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5248   *            @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
5249   * @note   Basic timers can only generate an update event.
5250   * @note   TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5251   * @note   TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
5252   *         only for timer instances supporting break input(s).
5253   * @retval HAL status
5254   */
5255 
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5256 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5257 {
5258   /* Check the parameters */
5259   assert_param(IS_TIM_INSTANCE(htim->Instance));
5260   assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5261 
5262   /* Process Locked */
5263   __HAL_LOCK(htim);
5264 
5265   /* Change the TIM state */
5266   htim->State = HAL_TIM_STATE_BUSY;
5267 
5268   /* Set the event sources */
5269   htim->Instance->EGR = EventSource;
5270 
5271   /* Change the TIM state */
5272   htim->State = HAL_TIM_STATE_READY;
5273 
5274   __HAL_UNLOCK(htim);
5275 
5276   /* Return function status */
5277   return HAL_OK;
5278 }
5279 
5280 /**
5281   * @brief  Configures the OCRef clear feature
5282   * @param  htim TIM handle
5283   * @param  sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5284   *         contains the OCREF clear feature and parameters for the TIM peripheral.
5285   * @param  Channel specifies the TIM Channel
5286   *          This parameter can be one of the following values:
5287   *            @arg TIM_CHANNEL_1: TIM Channel 1
5288   *            @arg TIM_CHANNEL_2: TIM Channel 2
5289   *            @arg TIM_CHANNEL_3: TIM Channel 3
5290   *            @arg TIM_CHANNEL_4: TIM Channel 4
5291   *            @arg TIM_CHANNEL_5: TIM Channel 5
5292   *            @arg TIM_CHANNEL_6: TIM Channel 6
5293   * @retval HAL status
5294   */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5295 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5296                                            const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5297                                            uint32_t Channel)
5298 {
5299   HAL_StatusTypeDef status = HAL_OK;
5300 
5301   /* Check the parameters */
5302   assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5303   assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5304 
5305   /* Process Locked */
5306   __HAL_LOCK(htim);
5307 
5308   htim->State = HAL_TIM_STATE_BUSY;
5309 
5310   switch (sClearInputConfig->ClearInputSource)
5311   {
5312     case TIM_CLEARINPUTSOURCE_NONE:
5313     {
5314       /* Clear the OCREF clear selection bit and the the ETR Bits */
5315       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5316 
5317       /* Clear TIMx_OR1_OCREF_CLR (reset value) */
5318       CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR);
5319       break;
5320     }
5321     case TIM_CLEARINPUTSOURCE_COMP1:
5322 #if defined(COMP2)
5323     case TIM_CLEARINPUTSOURCE_COMP2:
5324 #endif /* COMP2 */
5325     {
5326       /* Clear the OCREF clear selection bit */
5327       CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5328 
5329       /* OCREF_CLR_INT is connected to COMPx output */
5330       MODIFY_REG(htim->Instance->OR1, TIMx_OR1_OCREF_CLR, sClearInputConfig->ClearInputSource);
5331       break;
5332     }
5333 
5334     case TIM_CLEARINPUTSOURCE_ETR:
5335     {
5336       /* Check the parameters */
5337       assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5338       assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5339       assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5340 
5341       /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5342       if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5343       {
5344         htim->State = HAL_TIM_STATE_READY;
5345         __HAL_UNLOCK(htim);
5346         return HAL_ERROR;
5347       }
5348 
5349       TIM_ETR_SetConfig(htim->Instance,
5350                         sClearInputConfig->ClearInputPrescaler,
5351                         sClearInputConfig->ClearInputPolarity,
5352                         sClearInputConfig->ClearInputFilter);
5353 
5354       /* Set the OCREF clear selection bit */
5355       SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5356 
5357       /* Clear TIMx_OR1_OCREF_CLR (reset value) */
5358       CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR);
5359       break;
5360     }
5361 
5362     default:
5363       status = HAL_ERROR;
5364       break;
5365   }
5366 
5367   if (status == HAL_OK)
5368   {
5369     switch (Channel)
5370     {
5371       case TIM_CHANNEL_1:
5372       {
5373         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5374         {
5375           /* Enable the OCREF clear feature for Channel 1 */
5376           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5377         }
5378         else
5379         {
5380           /* Disable the OCREF clear feature for Channel 1 */
5381           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5382         }
5383         break;
5384       }
5385       case TIM_CHANNEL_2:
5386       {
5387         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5388         {
5389           /* Enable the OCREF clear feature for Channel 2 */
5390           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5391         }
5392         else
5393         {
5394           /* Disable the OCREF clear feature for Channel 2 */
5395           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5396         }
5397         break;
5398       }
5399       case TIM_CHANNEL_3:
5400       {
5401         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5402         {
5403           /* Enable the OCREF clear feature for Channel 3 */
5404           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5405         }
5406         else
5407         {
5408           /* Disable the OCREF clear feature for Channel 3 */
5409           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5410         }
5411         break;
5412       }
5413       case TIM_CHANNEL_4:
5414       {
5415         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5416         {
5417           /* Enable the OCREF clear feature for Channel 4 */
5418           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5419         }
5420         else
5421         {
5422           /* Disable the OCREF clear feature for Channel 4 */
5423           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5424         }
5425         break;
5426       }
5427       case TIM_CHANNEL_5:
5428       {
5429         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5430         {
5431           /* Enable the OCREF clear feature for Channel 5 */
5432           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5433         }
5434         else
5435         {
5436           /* Disable the OCREF clear feature for Channel 5 */
5437           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5438         }
5439         break;
5440       }
5441       case TIM_CHANNEL_6:
5442       {
5443         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5444         {
5445           /* Enable the OCREF clear feature for Channel 6 */
5446           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5447         }
5448         else
5449         {
5450           /* Disable the OCREF clear feature for Channel 6 */
5451           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5452         }
5453         break;
5454       }
5455       default:
5456         break;
5457     }
5458   }
5459 
5460   htim->State = HAL_TIM_STATE_READY;
5461 
5462   __HAL_UNLOCK(htim);
5463 
5464   return status;
5465 }
5466 
5467 /**
5468   * @brief   Configures the clock source to be used
5469   * @param  htim TIM handle
5470   * @param  sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5471   *         contains the clock source information for the TIM peripheral.
5472   * @retval HAL status
5473   */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5474 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5475 {
5476   HAL_StatusTypeDef status = HAL_OK;
5477   uint32_t tmpsmcr;
5478 
5479   /* Process Locked */
5480   __HAL_LOCK(htim);
5481 
5482   htim->State = HAL_TIM_STATE_BUSY;
5483 
5484   /* Check the parameters */
5485   assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5486 
5487   /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5488   tmpsmcr = htim->Instance->SMCR;
5489   tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5490   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5491   htim->Instance->SMCR = tmpsmcr;
5492 
5493   switch (sClockSourceConfig->ClockSource)
5494   {
5495     case TIM_CLOCKSOURCE_INTERNAL:
5496     {
5497       assert_param(IS_TIM_INSTANCE(htim->Instance));
5498       break;
5499     }
5500 
5501     case TIM_CLOCKSOURCE_ETRMODE1:
5502     {
5503       /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5504       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5505 
5506       /* Check ETR input conditioning related parameters */
5507       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5508       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5509       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5510 
5511       /* Configure the ETR Clock source */
5512       TIM_ETR_SetConfig(htim->Instance,
5513                         sClockSourceConfig->ClockPrescaler,
5514                         sClockSourceConfig->ClockPolarity,
5515                         sClockSourceConfig->ClockFilter);
5516 
5517       /* Select the External clock mode1 and the ETRF trigger */
5518       tmpsmcr = htim->Instance->SMCR;
5519       tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5520       /* Write to TIMx SMCR */
5521       htim->Instance->SMCR = tmpsmcr;
5522       break;
5523     }
5524 
5525     case TIM_CLOCKSOURCE_ETRMODE2:
5526     {
5527       /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5528       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5529 
5530       /* Check ETR input conditioning related parameters */
5531       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5532       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5533       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5534 
5535       /* Configure the ETR Clock source */
5536       TIM_ETR_SetConfig(htim->Instance,
5537                         sClockSourceConfig->ClockPrescaler,
5538                         sClockSourceConfig->ClockPolarity,
5539                         sClockSourceConfig->ClockFilter);
5540       /* Enable the External clock mode2 */
5541       htim->Instance->SMCR |= TIM_SMCR_ECE;
5542       break;
5543     }
5544 
5545     case TIM_CLOCKSOURCE_TI1:
5546     {
5547       /* Check whether or not the timer instance supports external clock mode 1 */
5548       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5549 
5550       /* Check TI1 input conditioning related parameters */
5551       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5552       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5553 
5554       TIM_TI1_ConfigInputStage(htim->Instance,
5555                                sClockSourceConfig->ClockPolarity,
5556                                sClockSourceConfig->ClockFilter);
5557       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5558       break;
5559     }
5560 
5561     case TIM_CLOCKSOURCE_TI2:
5562     {
5563       /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5564       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5565 
5566       /* Check TI2 input conditioning related parameters */
5567       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5568       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5569 
5570       TIM_TI2_ConfigInputStage(htim->Instance,
5571                                sClockSourceConfig->ClockPolarity,
5572                                sClockSourceConfig->ClockFilter);
5573       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5574       break;
5575     }
5576 
5577     case TIM_CLOCKSOURCE_TI1ED:
5578     {
5579       /* Check whether or not the timer instance supports external clock mode 1 */
5580       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5581 
5582       /* Check TI1 input conditioning related parameters */
5583       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5584       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5585 
5586       TIM_TI1_ConfigInputStage(htim->Instance,
5587                                sClockSourceConfig->ClockPolarity,
5588                                sClockSourceConfig->ClockFilter);
5589       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5590       break;
5591     }
5592 
5593     case TIM_CLOCKSOURCE_ITR0:
5594     case TIM_CLOCKSOURCE_ITR1:
5595     case TIM_CLOCKSOURCE_ITR2:
5596     case TIM_CLOCKSOURCE_ITR7:
5597     {
5598       /* Check whether or not the timer instance supports internal trigger input */
5599       assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5600 
5601       TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5602       break;
5603     }
5604 
5605     default:
5606       status = HAL_ERROR;
5607       break;
5608   }
5609   htim->State = HAL_TIM_STATE_READY;
5610 
5611   __HAL_UNLOCK(htim);
5612 
5613   return status;
5614 }
5615 
5616 /**
5617   * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
5618   *         or a XOR combination between CH1_input, CH2_input & CH3_input
5619   * @param  htim TIM handle.
5620   * @param  TI1_Selection Indicate whether or not channel 1 is connected to the
5621   *         output of a XOR gate.
5622   *          This parameter can be one of the following values:
5623   *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5624   *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5625   *            pins are connected to the TI1 input (XOR combination)
5626   * @retval HAL status
5627   */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5628 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5629 {
5630   uint32_t tmpcr2;
5631 
5632   /* Check the parameters */
5633   assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5634   assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5635 
5636   /* Get the TIMx CR2 register value */
5637   tmpcr2 = htim->Instance->CR2;
5638 
5639   /* Reset the TI1 selection */
5640   tmpcr2 &= ~TIM_CR2_TI1S;
5641 
5642   /* Set the TI1 selection */
5643   tmpcr2 |= TI1_Selection;
5644 
5645   /* Write to TIMxCR2 */
5646   htim->Instance->CR2 = tmpcr2;
5647 
5648   return HAL_OK;
5649 }
5650 
5651 /**
5652   * @brief  Configures the TIM in Slave mode
5653   * @param  htim TIM handle.
5654   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5655   *         contains the selected trigger (internal trigger input, filtered
5656   *         timer input or external trigger input) and the Slave mode
5657   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5658   * @retval HAL status
5659   */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5660 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5661 {
5662   /* Check the parameters */
5663   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5664   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5665   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5666 
5667   __HAL_LOCK(htim);
5668 
5669   htim->State = HAL_TIM_STATE_BUSY;
5670 
5671   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5672   {
5673     htim->State = HAL_TIM_STATE_READY;
5674     __HAL_UNLOCK(htim);
5675     return HAL_ERROR;
5676   }
5677 
5678   /* Disable Trigger Interrupt */
5679   __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5680 
5681   /* Disable Trigger DMA request */
5682   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5683 
5684   htim->State = HAL_TIM_STATE_READY;
5685 
5686   __HAL_UNLOCK(htim);
5687 
5688   return HAL_OK;
5689 }
5690 
5691 /**
5692   * @brief  Configures the TIM in Slave mode in interrupt mode
5693   * @param  htim TIM handle.
5694   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5695   *         contains the selected trigger (internal trigger input, filtered
5696   *         timer input or external trigger input) and the Slave mode
5697   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5698   * @retval HAL status
5699   */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5700 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5701                                                 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5702 {
5703   /* Check the parameters */
5704   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5705   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5706   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5707 
5708   __HAL_LOCK(htim);
5709 
5710   htim->State = HAL_TIM_STATE_BUSY;
5711 
5712   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5713   {
5714     htim->State = HAL_TIM_STATE_READY;
5715     __HAL_UNLOCK(htim);
5716     return HAL_ERROR;
5717   }
5718 
5719   /* Enable Trigger Interrupt */
5720   __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5721 
5722   /* Disable Trigger DMA request */
5723   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5724 
5725   htim->State = HAL_TIM_STATE_READY;
5726 
5727   __HAL_UNLOCK(htim);
5728 
5729   return HAL_OK;
5730 }
5731 
5732 /**
5733   * @brief  Read the captured value from Capture Compare unit
5734   * @param  htim TIM handle.
5735   * @param  Channel TIM Channels to be enabled
5736   *          This parameter can be one of the following values:
5737   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
5738   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
5739   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
5740   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
5741   * @retval Captured value
5742   */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5743 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5744 {
5745   uint32_t tmpreg = 0U;
5746 
5747   switch (Channel)
5748   {
5749     case TIM_CHANNEL_1:
5750     {
5751       /* Check the parameters */
5752       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5753 
5754       /* Return the capture 1 value */
5755       tmpreg =  htim->Instance->CCR1;
5756 
5757       break;
5758     }
5759     case TIM_CHANNEL_2:
5760     {
5761       /* Check the parameters */
5762       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5763 
5764       /* Return the capture 2 value */
5765       tmpreg =   htim->Instance->CCR2;
5766 
5767       break;
5768     }
5769 
5770     case TIM_CHANNEL_3:
5771     {
5772       /* Check the parameters */
5773       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5774 
5775       /* Return the capture 3 value */
5776       tmpreg =   htim->Instance->CCR3;
5777 
5778       break;
5779     }
5780 
5781     case TIM_CHANNEL_4:
5782     {
5783       /* Check the parameters */
5784       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5785 
5786       /* Return the capture 4 value */
5787       tmpreg =   htim->Instance->CCR4;
5788 
5789       break;
5790     }
5791 
5792     default:
5793       break;
5794   }
5795 
5796   return tmpreg;
5797 }
5798 
5799 /**
5800   * @}
5801   */
5802 
5803 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5804   *  @brief    TIM Callbacks functions
5805   *
5806 @verbatim
5807   ==============================================================================
5808                         ##### TIM Callbacks functions #####
5809   ==============================================================================
5810  [..]
5811    This section provides TIM callback functions:
5812    (+) TIM Period elapsed callback
5813    (+) TIM Output Compare callback
5814    (+) TIM Input capture callback
5815    (+) TIM Trigger callback
5816    (+) TIM Error callback
5817 
5818 @endverbatim
5819   * @{
5820   */
5821 
5822 /**
5823   * @brief  Period elapsed callback in non-blocking mode
5824   * @param  htim TIM handle
5825   * @retval None
5826   */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5827 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5828 {
5829   /* Prevent unused argument(s) compilation warning */
5830   UNUSED(htim);
5831 
5832   /* NOTE : This function should not be modified, when the callback is needed,
5833             the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5834    */
5835 }
5836 
5837 /**
5838   * @brief  Period elapsed half complete callback in non-blocking mode
5839   * @param  htim TIM handle
5840   * @retval None
5841   */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5842 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5843 {
5844   /* Prevent unused argument(s) compilation warning */
5845   UNUSED(htim);
5846 
5847   /* NOTE : This function should not be modified, when the callback is needed,
5848             the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5849    */
5850 }
5851 
5852 /**
5853   * @brief  Output Compare callback in non-blocking mode
5854   * @param  htim TIM OC handle
5855   * @retval None
5856   */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5857 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5858 {
5859   /* Prevent unused argument(s) compilation warning */
5860   UNUSED(htim);
5861 
5862   /* NOTE : This function should not be modified, when the callback is needed,
5863             the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5864    */
5865 }
5866 
5867 /**
5868   * @brief  Input Capture callback in non-blocking mode
5869   * @param  htim TIM IC handle
5870   * @retval None
5871   */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5872 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5873 {
5874   /* Prevent unused argument(s) compilation warning */
5875   UNUSED(htim);
5876 
5877   /* NOTE : This function should not be modified, when the callback is needed,
5878             the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5879    */
5880 }
5881 
5882 /**
5883   * @brief  Input Capture half complete callback in non-blocking mode
5884   * @param  htim TIM IC handle
5885   * @retval None
5886   */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5887 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5888 {
5889   /* Prevent unused argument(s) compilation warning */
5890   UNUSED(htim);
5891 
5892   /* NOTE : This function should not be modified, when the callback is needed,
5893             the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5894    */
5895 }
5896 
5897 /**
5898   * @brief  PWM Pulse finished callback in non-blocking mode
5899   * @param  htim TIM handle
5900   * @retval None
5901   */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5902 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5903 {
5904   /* Prevent unused argument(s) compilation warning */
5905   UNUSED(htim);
5906 
5907   /* NOTE : This function should not be modified, when the callback is needed,
5908             the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5909    */
5910 }
5911 
5912 /**
5913   * @brief  PWM Pulse finished half complete callback in non-blocking mode
5914   * @param  htim TIM handle
5915   * @retval None
5916   */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5917 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5918 {
5919   /* Prevent unused argument(s) compilation warning */
5920   UNUSED(htim);
5921 
5922   /* NOTE : This function should not be modified, when the callback is needed,
5923             the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5924    */
5925 }
5926 
5927 /**
5928   * @brief  Hall Trigger detection callback in non-blocking mode
5929   * @param  htim TIM handle
5930   * @retval None
5931   */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5932 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5933 {
5934   /* Prevent unused argument(s) compilation warning */
5935   UNUSED(htim);
5936 
5937   /* NOTE : This function should not be modified, when the callback is needed,
5938             the HAL_TIM_TriggerCallback could be implemented in the user file
5939    */
5940 }
5941 
5942 /**
5943   * @brief  Hall Trigger detection half complete callback in non-blocking mode
5944   * @param  htim TIM handle
5945   * @retval None
5946   */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5947 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5948 {
5949   /* Prevent unused argument(s) compilation warning */
5950   UNUSED(htim);
5951 
5952   /* NOTE : This function should not be modified, when the callback is needed,
5953             the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5954    */
5955 }
5956 
5957 /**
5958   * @brief  Timer error callback in non-blocking mode
5959   * @param  htim TIM handle
5960   * @retval None
5961   */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5962 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5963 {
5964   /* Prevent unused argument(s) compilation warning */
5965   UNUSED(htim);
5966 
5967   /* NOTE : This function should not be modified, when the callback is needed,
5968             the HAL_TIM_ErrorCallback could be implemented in the user file
5969    */
5970 }
5971 
5972 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5973 /**
5974   * @brief  Register a User TIM callback to be used instead of the weak predefined callback
5975   * @param htim tim handle
5976   * @param CallbackID ID of the callback to be registered
5977   *        This parameter can be one of the following values:
5978   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5979   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5980   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5981   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5982   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5983   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5984   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5985   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5986   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5987   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5988   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5989   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5990   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5991   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5992   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5993   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5994   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5995   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5996   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5997   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5998   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
5999   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6000   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6001   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6002   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6003   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6004   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6005   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6006   *          @param pCallback pointer to the callback function
6007   *          @retval status
6008   */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)6009 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
6010                                            pTIM_CallbackTypeDef pCallback)
6011 {
6012   HAL_StatusTypeDef status = HAL_OK;
6013 
6014   if (pCallback == NULL)
6015   {
6016     return HAL_ERROR;
6017   }
6018 
6019   if (htim->State == HAL_TIM_STATE_READY)
6020   {
6021     switch (CallbackID)
6022     {
6023       case HAL_TIM_BASE_MSPINIT_CB_ID :
6024         htim->Base_MspInitCallback                 = pCallback;
6025         break;
6026 
6027       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6028         htim->Base_MspDeInitCallback               = pCallback;
6029         break;
6030 
6031       case HAL_TIM_IC_MSPINIT_CB_ID :
6032         htim->IC_MspInitCallback                   = pCallback;
6033         break;
6034 
6035       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6036         htim->IC_MspDeInitCallback                 = pCallback;
6037         break;
6038 
6039       case HAL_TIM_OC_MSPINIT_CB_ID :
6040         htim->OC_MspInitCallback                   = pCallback;
6041         break;
6042 
6043       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6044         htim->OC_MspDeInitCallback                 = pCallback;
6045         break;
6046 
6047       case HAL_TIM_PWM_MSPINIT_CB_ID :
6048         htim->PWM_MspInitCallback                  = pCallback;
6049         break;
6050 
6051       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6052         htim->PWM_MspDeInitCallback                = pCallback;
6053         break;
6054 
6055       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6056         htim->OnePulse_MspInitCallback             = pCallback;
6057         break;
6058 
6059       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6060         htim->OnePulse_MspDeInitCallback           = pCallback;
6061         break;
6062 
6063       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6064         htim->Encoder_MspInitCallback              = pCallback;
6065         break;
6066 
6067       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6068         htim->Encoder_MspDeInitCallback            = pCallback;
6069         break;
6070 
6071       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6072         htim->HallSensor_MspInitCallback           = pCallback;
6073         break;
6074 
6075       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6076         htim->HallSensor_MspDeInitCallback         = pCallback;
6077         break;
6078 
6079       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6080         htim->PeriodElapsedCallback                = pCallback;
6081         break;
6082 
6083       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6084         htim->PeriodElapsedHalfCpltCallback        = pCallback;
6085         break;
6086 
6087       case HAL_TIM_TRIGGER_CB_ID :
6088         htim->TriggerCallback                      = pCallback;
6089         break;
6090 
6091       case HAL_TIM_TRIGGER_HALF_CB_ID :
6092         htim->TriggerHalfCpltCallback              = pCallback;
6093         break;
6094 
6095       case HAL_TIM_IC_CAPTURE_CB_ID :
6096         htim->IC_CaptureCallback                   = pCallback;
6097         break;
6098 
6099       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6100         htim->IC_CaptureHalfCpltCallback           = pCallback;
6101         break;
6102 
6103       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6104         htim->OC_DelayElapsedCallback              = pCallback;
6105         break;
6106 
6107       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6108         htim->PWM_PulseFinishedCallback            = pCallback;
6109         break;
6110 
6111       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6112         htim->PWM_PulseFinishedHalfCpltCallback    = pCallback;
6113         break;
6114 
6115       case HAL_TIM_ERROR_CB_ID :
6116         htim->ErrorCallback                        = pCallback;
6117         break;
6118 
6119       case HAL_TIM_COMMUTATION_CB_ID :
6120         htim->CommutationCallback                  = pCallback;
6121         break;
6122 
6123       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6124         htim->CommutationHalfCpltCallback          = pCallback;
6125         break;
6126 
6127       case HAL_TIM_BREAK_CB_ID :
6128         htim->BreakCallback                        = pCallback;
6129         break;
6130 
6131       case HAL_TIM_BREAK2_CB_ID :
6132         htim->Break2Callback                       = pCallback;
6133         break;
6134 
6135       default :
6136         /* Return error status */
6137         status = HAL_ERROR;
6138         break;
6139     }
6140   }
6141   else if (htim->State == HAL_TIM_STATE_RESET)
6142   {
6143     switch (CallbackID)
6144     {
6145       case HAL_TIM_BASE_MSPINIT_CB_ID :
6146         htim->Base_MspInitCallback         = pCallback;
6147         break;
6148 
6149       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6150         htim->Base_MspDeInitCallback       = pCallback;
6151         break;
6152 
6153       case HAL_TIM_IC_MSPINIT_CB_ID :
6154         htim->IC_MspInitCallback           = pCallback;
6155         break;
6156 
6157       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6158         htim->IC_MspDeInitCallback         = pCallback;
6159         break;
6160 
6161       case HAL_TIM_OC_MSPINIT_CB_ID :
6162         htim->OC_MspInitCallback           = pCallback;
6163         break;
6164 
6165       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6166         htim->OC_MspDeInitCallback         = pCallback;
6167         break;
6168 
6169       case HAL_TIM_PWM_MSPINIT_CB_ID :
6170         htim->PWM_MspInitCallback          = pCallback;
6171         break;
6172 
6173       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6174         htim->PWM_MspDeInitCallback        = pCallback;
6175         break;
6176 
6177       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6178         htim->OnePulse_MspInitCallback     = pCallback;
6179         break;
6180 
6181       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6182         htim->OnePulse_MspDeInitCallback   = pCallback;
6183         break;
6184 
6185       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6186         htim->Encoder_MspInitCallback      = pCallback;
6187         break;
6188 
6189       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6190         htim->Encoder_MspDeInitCallback    = pCallback;
6191         break;
6192 
6193       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6194         htim->HallSensor_MspInitCallback   = pCallback;
6195         break;
6196 
6197       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6198         htim->HallSensor_MspDeInitCallback = pCallback;
6199         break;
6200 
6201       default :
6202         /* Return error status */
6203         status = HAL_ERROR;
6204         break;
6205     }
6206   }
6207   else
6208   {
6209     /* Return error status */
6210     status = HAL_ERROR;
6211   }
6212 
6213   return status;
6214 }
6215 
6216 /**
6217   * @brief  Unregister a TIM callback
6218   *         TIM callback is redirected to the weak predefined callback
6219   * @param htim tim handle
6220   * @param CallbackID ID of the callback to be unregistered
6221   *        This parameter can be one of the following values:
6222   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6223   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6224   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6225   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6226   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6227   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6228   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6229   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6230   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6231   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6232   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6233   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6234   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6235   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6236   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6237   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6238   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6239   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6240   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6241   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6242   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6243   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6244   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6245   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6246   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6247   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6248   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6249   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6250   *          @retval status
6251   */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6252 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6253 {
6254   HAL_StatusTypeDef status = HAL_OK;
6255 
6256   if (htim->State == HAL_TIM_STATE_READY)
6257   {
6258     switch (CallbackID)
6259     {
6260       case HAL_TIM_BASE_MSPINIT_CB_ID :
6261         /* Legacy weak Base MspInit Callback */
6262         htim->Base_MspInitCallback              = HAL_TIM_Base_MspInit;
6263         break;
6264 
6265       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6266         /* Legacy weak Base Msp DeInit Callback */
6267         htim->Base_MspDeInitCallback            = HAL_TIM_Base_MspDeInit;
6268         break;
6269 
6270       case HAL_TIM_IC_MSPINIT_CB_ID :
6271         /* Legacy weak IC Msp Init Callback */
6272         htim->IC_MspInitCallback                = HAL_TIM_IC_MspInit;
6273         break;
6274 
6275       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6276         /* Legacy weak IC Msp DeInit Callback */
6277         htim->IC_MspDeInitCallback              = HAL_TIM_IC_MspDeInit;
6278         break;
6279 
6280       case HAL_TIM_OC_MSPINIT_CB_ID :
6281         /* Legacy weak OC Msp Init Callback */
6282         htim->OC_MspInitCallback                = HAL_TIM_OC_MspInit;
6283         break;
6284 
6285       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6286         /* Legacy weak OC Msp DeInit Callback */
6287         htim->OC_MspDeInitCallback              = HAL_TIM_OC_MspDeInit;
6288         break;
6289 
6290       case HAL_TIM_PWM_MSPINIT_CB_ID :
6291         /* Legacy weak PWM Msp Init Callback */
6292         htim->PWM_MspInitCallback               = HAL_TIM_PWM_MspInit;
6293         break;
6294 
6295       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6296         /* Legacy weak PWM Msp DeInit Callback */
6297         htim->PWM_MspDeInitCallback             = HAL_TIM_PWM_MspDeInit;
6298         break;
6299 
6300       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6301         /* Legacy weak One Pulse Msp Init Callback */
6302         htim->OnePulse_MspInitCallback          = HAL_TIM_OnePulse_MspInit;
6303         break;
6304 
6305       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6306         /* Legacy weak One Pulse Msp DeInit Callback */
6307         htim->OnePulse_MspDeInitCallback        = HAL_TIM_OnePulse_MspDeInit;
6308         break;
6309 
6310       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6311         /* Legacy weak Encoder Msp Init Callback */
6312         htim->Encoder_MspInitCallback           = HAL_TIM_Encoder_MspInit;
6313         break;
6314 
6315       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6316         /* Legacy weak Encoder Msp DeInit Callback */
6317         htim->Encoder_MspDeInitCallback         = HAL_TIM_Encoder_MspDeInit;
6318         break;
6319 
6320       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6321         /* Legacy weak Hall Sensor Msp Init Callback */
6322         htim->HallSensor_MspInitCallback        = HAL_TIMEx_HallSensor_MspInit;
6323         break;
6324 
6325       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6326         /* Legacy weak Hall Sensor Msp DeInit Callback */
6327         htim->HallSensor_MspDeInitCallback      = HAL_TIMEx_HallSensor_MspDeInit;
6328         break;
6329 
6330       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6331         /* Legacy weak Period Elapsed Callback */
6332         htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
6333         break;
6334 
6335       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6336         /* Legacy weak Period Elapsed half complete Callback */
6337         htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
6338         break;
6339 
6340       case HAL_TIM_TRIGGER_CB_ID :
6341         /* Legacy weak Trigger Callback */
6342         htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
6343         break;
6344 
6345       case HAL_TIM_TRIGGER_HALF_CB_ID :
6346         /* Legacy weak Trigger half complete Callback */
6347         htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
6348         break;
6349 
6350       case HAL_TIM_IC_CAPTURE_CB_ID :
6351         /* Legacy weak IC Capture Callback */
6352         htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
6353         break;
6354 
6355       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6356         /* Legacy weak IC Capture half complete Callback */
6357         htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
6358         break;
6359 
6360       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6361         /* Legacy weak OC Delay Elapsed Callback */
6362         htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
6363         break;
6364 
6365       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6366         /* Legacy weak PWM Pulse Finished Callback */
6367         htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
6368         break;
6369 
6370       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6371         /* Legacy weak PWM Pulse Finished half complete Callback */
6372         htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6373         break;
6374 
6375       case HAL_TIM_ERROR_CB_ID :
6376         /* Legacy weak Error Callback */
6377         htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
6378         break;
6379 
6380       case HAL_TIM_COMMUTATION_CB_ID :
6381         /* Legacy weak Commutation Callback */
6382         htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
6383         break;
6384 
6385       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6386         /* Legacy weak Commutation half complete Callback */
6387         htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
6388         break;
6389 
6390       case HAL_TIM_BREAK_CB_ID :
6391         /* Legacy weak Break Callback */
6392         htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
6393         break;
6394 
6395       case HAL_TIM_BREAK2_CB_ID :
6396         /* Legacy weak Break2 Callback */
6397         htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
6398         break;
6399 
6400       default :
6401         /* Return error status */
6402         status = HAL_ERROR;
6403         break;
6404     }
6405   }
6406   else if (htim->State == HAL_TIM_STATE_RESET)
6407   {
6408     switch (CallbackID)
6409     {
6410       case HAL_TIM_BASE_MSPINIT_CB_ID :
6411         /* Legacy weak Base MspInit Callback */
6412         htim->Base_MspInitCallback         = HAL_TIM_Base_MspInit;
6413         break;
6414 
6415       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6416         /* Legacy weak Base Msp DeInit Callback */
6417         htim->Base_MspDeInitCallback       = HAL_TIM_Base_MspDeInit;
6418         break;
6419 
6420       case HAL_TIM_IC_MSPINIT_CB_ID :
6421         /* Legacy weak IC Msp Init Callback */
6422         htim->IC_MspInitCallback           = HAL_TIM_IC_MspInit;
6423         break;
6424 
6425       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6426         /* Legacy weak IC Msp DeInit Callback */
6427         htim->IC_MspDeInitCallback         = HAL_TIM_IC_MspDeInit;
6428         break;
6429 
6430       case HAL_TIM_OC_MSPINIT_CB_ID :
6431         /* Legacy weak OC Msp Init Callback */
6432         htim->OC_MspInitCallback           = HAL_TIM_OC_MspInit;
6433         break;
6434 
6435       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6436         /* Legacy weak OC Msp DeInit Callback */
6437         htim->OC_MspDeInitCallback         = HAL_TIM_OC_MspDeInit;
6438         break;
6439 
6440       case HAL_TIM_PWM_MSPINIT_CB_ID :
6441         /* Legacy weak PWM Msp Init Callback */
6442         htim->PWM_MspInitCallback          = HAL_TIM_PWM_MspInit;
6443         break;
6444 
6445       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6446         /* Legacy weak PWM Msp DeInit Callback */
6447         htim->PWM_MspDeInitCallback        = HAL_TIM_PWM_MspDeInit;
6448         break;
6449 
6450       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6451         /* Legacy weak One Pulse Msp Init Callback */
6452         htim->OnePulse_MspInitCallback     = HAL_TIM_OnePulse_MspInit;
6453         break;
6454 
6455       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6456         /* Legacy weak One Pulse Msp DeInit Callback */
6457         htim->OnePulse_MspDeInitCallback   = HAL_TIM_OnePulse_MspDeInit;
6458         break;
6459 
6460       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6461         /* Legacy weak Encoder Msp Init Callback */
6462         htim->Encoder_MspInitCallback      = HAL_TIM_Encoder_MspInit;
6463         break;
6464 
6465       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6466         /* Legacy weak Encoder Msp DeInit Callback */
6467         htim->Encoder_MspDeInitCallback    = HAL_TIM_Encoder_MspDeInit;
6468         break;
6469 
6470       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6471         /* Legacy weak Hall Sensor Msp Init Callback */
6472         htim->HallSensor_MspInitCallback   = HAL_TIMEx_HallSensor_MspInit;
6473         break;
6474 
6475       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6476         /* Legacy weak Hall Sensor Msp DeInit Callback */
6477         htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6478         break;
6479 
6480       default :
6481         /* Return error status */
6482         status = HAL_ERROR;
6483         break;
6484     }
6485   }
6486   else
6487   {
6488     /* Return error status */
6489     status = HAL_ERROR;
6490   }
6491 
6492   return status;
6493 }
6494 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6495 
6496 /**
6497   * @}
6498   */
6499 
6500 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6501   *  @brief   TIM Peripheral State functions
6502   *
6503 @verbatim
6504   ==============================================================================
6505                         ##### Peripheral State functions #####
6506   ==============================================================================
6507     [..]
6508     This subsection permits to get in run-time the status of the peripheral
6509     and the data flow.
6510 
6511 @endverbatim
6512   * @{
6513   */
6514 
6515 /**
6516   * @brief  Return the TIM Base handle state.
6517   * @param  htim TIM Base handle
6518   * @retval HAL state
6519   */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6520 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6521 {
6522   return htim->State;
6523 }
6524 
6525 /**
6526   * @brief  Return the TIM OC handle state.
6527   * @param  htim TIM Output Compare handle
6528   * @retval HAL state
6529   */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6530 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6531 {
6532   return htim->State;
6533 }
6534 
6535 /**
6536   * @brief  Return the TIM PWM handle state.
6537   * @param  htim TIM handle
6538   * @retval HAL state
6539   */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6540 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6541 {
6542   return htim->State;
6543 }
6544 
6545 /**
6546   * @brief  Return the TIM Input Capture handle state.
6547   * @param  htim TIM IC handle
6548   * @retval HAL state
6549   */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6550 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6551 {
6552   return htim->State;
6553 }
6554 
6555 /**
6556   * @brief  Return the TIM One Pulse Mode handle state.
6557   * @param  htim TIM OPM handle
6558   * @retval HAL state
6559   */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6560 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6561 {
6562   return htim->State;
6563 }
6564 
6565 /**
6566   * @brief  Return the TIM Encoder Mode handle state.
6567   * @param  htim TIM Encoder Interface handle
6568   * @retval HAL state
6569   */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6570 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6571 {
6572   return htim->State;
6573 }
6574 
6575 /**
6576   * @brief  Return the TIM Encoder Mode handle state.
6577   * @param  htim TIM handle
6578   * @retval Active channel
6579   */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6580 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6581 {
6582   return htim->Channel;
6583 }
6584 
6585 /**
6586   * @brief  Return actual state of the TIM channel.
6587   * @param  htim TIM handle
6588   * @param  Channel TIM Channel
6589   *          This parameter can be one of the following values:
6590   *            @arg TIM_CHANNEL_1: TIM Channel 1
6591   *            @arg TIM_CHANNEL_2: TIM Channel 2
6592   *            @arg TIM_CHANNEL_3: TIM Channel 3
6593   *            @arg TIM_CHANNEL_4: TIM Channel 4
6594   *            @arg TIM_CHANNEL_5: TIM Channel 5
6595   *            @arg TIM_CHANNEL_6: TIM Channel 6
6596   * @retval TIM Channel state
6597   */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6598 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim,  uint32_t Channel)
6599 {
6600   HAL_TIM_ChannelStateTypeDef channel_state;
6601 
6602   /* Check the parameters */
6603   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6604 
6605   channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6606 
6607   return channel_state;
6608 }
6609 
6610 /**
6611   * @brief  Return actual state of a DMA burst operation.
6612   * @param  htim TIM handle
6613   * @retval DMA burst state
6614   */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6615 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6616 {
6617   /* Check the parameters */
6618   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6619 
6620   return htim->DMABurstState;
6621 }
6622 
6623 /**
6624   * @}
6625   */
6626 
6627 /**
6628   * @}
6629   */
6630 
6631 /** @defgroup TIM_Private_Functions TIM Private Functions
6632   * @{
6633   */
6634 
6635 /**
6636   * @brief  TIM DMA error callback
6637   * @param  hdma pointer to DMA handle.
6638   * @retval None
6639   */
TIM_DMAError(DMA_HandleTypeDef * hdma)6640 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6641 {
6642   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6643 
6644   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6645   {
6646     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6647     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6648   }
6649   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6650   {
6651     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6652     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6653   }
6654   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6655   {
6656     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6657     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6658   }
6659   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6660   {
6661     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6662     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6663   }
6664   else
6665   {
6666     htim->State = HAL_TIM_STATE_READY;
6667   }
6668 
6669 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6670   htim->ErrorCallback(htim);
6671 #else
6672   HAL_TIM_ErrorCallback(htim);
6673 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6674 
6675   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6676 }
6677 
6678 /**
6679   * @brief  TIM DMA Delay Pulse complete callback.
6680   * @param  hdma pointer to DMA handle.
6681   * @retval None
6682   */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6683 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6684 {
6685   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6686 
6687   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6688   {
6689     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6690 
6691     if (hdma->Init.Mode == DMA_NORMAL)
6692     {
6693       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6694     }
6695   }
6696   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6697   {
6698     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6699 
6700     if (hdma->Init.Mode == DMA_NORMAL)
6701     {
6702       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6703     }
6704   }
6705   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6706   {
6707     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6708 
6709     if (hdma->Init.Mode == DMA_NORMAL)
6710     {
6711       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6712     }
6713   }
6714   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6715   {
6716     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6717 
6718     if (hdma->Init.Mode == DMA_NORMAL)
6719     {
6720       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6721     }
6722   }
6723   else
6724   {
6725     /* nothing to do */
6726   }
6727 
6728 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6729   htim->PWM_PulseFinishedCallback(htim);
6730 #else
6731   HAL_TIM_PWM_PulseFinishedCallback(htim);
6732 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6733 
6734   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6735 }
6736 
6737 /**
6738   * @brief  TIM DMA Delay Pulse half complete callback.
6739   * @param  hdma pointer to DMA handle.
6740   * @retval None
6741   */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6742 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6743 {
6744   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6745 
6746   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6747   {
6748     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6749   }
6750   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6751   {
6752     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6753   }
6754   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6755   {
6756     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6757   }
6758   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6759   {
6760     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6761   }
6762   else
6763   {
6764     /* nothing to do */
6765   }
6766 
6767 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6768   htim->PWM_PulseFinishedHalfCpltCallback(htim);
6769 #else
6770   HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6771 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6772 
6773   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6774 }
6775 
6776 /**
6777   * @brief  TIM DMA Capture complete callback.
6778   * @param  hdma pointer to DMA handle.
6779   * @retval None
6780   */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6781 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6782 {
6783   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6784 
6785   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6786   {
6787     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6788 
6789     if (hdma->Init.Mode == DMA_NORMAL)
6790     {
6791       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6792       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6793     }
6794   }
6795   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6796   {
6797     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6798 
6799     if (hdma->Init.Mode == DMA_NORMAL)
6800     {
6801       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6802       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6803     }
6804   }
6805   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6806   {
6807     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6808 
6809     if (hdma->Init.Mode == DMA_NORMAL)
6810     {
6811       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6812       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6813     }
6814   }
6815   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6816   {
6817     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6818 
6819     if (hdma->Init.Mode == DMA_NORMAL)
6820     {
6821       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6822       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6823     }
6824   }
6825   else
6826   {
6827     /* nothing to do */
6828   }
6829 
6830 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6831   htim->IC_CaptureCallback(htim);
6832 #else
6833   HAL_TIM_IC_CaptureCallback(htim);
6834 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6835 
6836   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6837 }
6838 
6839 /**
6840   * @brief  TIM DMA Capture half complete callback.
6841   * @param  hdma pointer to DMA handle.
6842   * @retval None
6843   */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6844 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6845 {
6846   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6847 
6848   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6849   {
6850     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6851   }
6852   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6853   {
6854     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6855   }
6856   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6857   {
6858     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6859   }
6860   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6861   {
6862     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6863   }
6864   else
6865   {
6866     /* nothing to do */
6867   }
6868 
6869 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6870   htim->IC_CaptureHalfCpltCallback(htim);
6871 #else
6872   HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6873 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6874 
6875   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6876 }
6877 
6878 /**
6879   * @brief  TIM DMA Period Elapse complete callback.
6880   * @param  hdma pointer to DMA handle.
6881   * @retval None
6882   */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6883 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6884 {
6885   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6886 
6887   if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6888   {
6889     htim->State = HAL_TIM_STATE_READY;
6890   }
6891 
6892 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6893   htim->PeriodElapsedCallback(htim);
6894 #else
6895   HAL_TIM_PeriodElapsedCallback(htim);
6896 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6897 }
6898 
6899 /**
6900   * @brief  TIM DMA Period Elapse half complete callback.
6901   * @param  hdma pointer to DMA handle.
6902   * @retval None
6903   */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6904 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6905 {
6906   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6907 
6908 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6909   htim->PeriodElapsedHalfCpltCallback(htim);
6910 #else
6911   HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6912 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6913 }
6914 
6915 /**
6916   * @brief  TIM DMA Trigger callback.
6917   * @param  hdma pointer to DMA handle.
6918   * @retval None
6919   */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6920 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6921 {
6922   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6923 
6924   if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6925   {
6926     htim->State = HAL_TIM_STATE_READY;
6927   }
6928 
6929 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6930   htim->TriggerCallback(htim);
6931 #else
6932   HAL_TIM_TriggerCallback(htim);
6933 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6934 }
6935 
6936 /**
6937   * @brief  TIM DMA Trigger half complete callback.
6938   * @param  hdma pointer to DMA handle.
6939   * @retval None
6940   */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6941 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6942 {
6943   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6944 
6945 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6946   htim->TriggerHalfCpltCallback(htim);
6947 #else
6948   HAL_TIM_TriggerHalfCpltCallback(htim);
6949 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6950 }
6951 
6952 /**
6953   * @brief  Time Base configuration
6954   * @param  TIMx TIM peripheral
6955   * @param  Structure TIM Base configuration structure
6956   * @retval None
6957   */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6958 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6959 {
6960   uint32_t tmpcr1;
6961   tmpcr1 = TIMx->CR1;
6962 
6963   /* Set TIM Time Base Unit parameters ---------------------------------------*/
6964   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6965   {
6966     /* Select the Counter Mode */
6967     tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6968     tmpcr1 |= Structure->CounterMode;
6969   }
6970 
6971   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6972   {
6973     /* Set the clock division */
6974     tmpcr1 &= ~TIM_CR1_CKD;
6975     tmpcr1 |= (uint32_t)Structure->ClockDivision;
6976   }
6977 
6978   /* Set the auto-reload preload */
6979   MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6980 
6981   TIMx->CR1 = tmpcr1;
6982 
6983   /* Set the Autoreload value */
6984   TIMx->ARR = (uint32_t)Structure->Period ;
6985 
6986   /* Set the Prescaler value */
6987   TIMx->PSC = Structure->Prescaler;
6988 
6989   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
6990   {
6991     /* Set the Repetition Counter value */
6992     TIMx->RCR = Structure->RepetitionCounter;
6993   }
6994 
6995   /* Generate an update event to reload the Prescaler
6996      and the repetition counter (only for advanced timer) value immediately */
6997   TIMx->EGR = TIM_EGR_UG;
6998 
6999   /* Check if the update flag is set after the Update Generation, if so clear the UIF flag */
7000   if (HAL_IS_BIT_SET(TIMx->SR, TIM_FLAG_UPDATE))
7001   {
7002     /* Clear the update flag */
7003     CLEAR_BIT(TIMx->SR, TIM_FLAG_UPDATE);
7004   }
7005 }
7006 
7007 /**
7008   * @brief  Timer Output Compare 1 configuration
7009   * @param  TIMx to select the TIM peripheral
7010   * @param  OC_Config The output configuration structure
7011   * @retval None
7012   */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7013 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7014 {
7015   uint32_t tmpccmrx;
7016   uint32_t tmpccer;
7017   uint32_t tmpcr2;
7018 
7019   /* Get the TIMx CCER register value */
7020   tmpccer = TIMx->CCER;
7021 
7022   /* Disable the Channel 1: Reset the CC1E Bit */
7023   TIMx->CCER &= ~TIM_CCER_CC1E;
7024 
7025   /* Get the TIMx CR2 register value */
7026   tmpcr2 =  TIMx->CR2;
7027 
7028   /* Get the TIMx CCMR1 register value */
7029   tmpccmrx = TIMx->CCMR1;
7030 
7031   /* Reset the Output Compare Mode Bits */
7032   tmpccmrx &= ~TIM_CCMR1_OC1M;
7033   tmpccmrx &= ~TIM_CCMR1_CC1S;
7034   /* Select the Output Compare Mode */
7035   tmpccmrx |= OC_Config->OCMode;
7036 
7037   /* Reset the Output Polarity level */
7038   tmpccer &= ~TIM_CCER_CC1P;
7039   /* Set the Output Compare Polarity */
7040   tmpccer |= OC_Config->OCPolarity;
7041 
7042   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
7043   {
7044     /* Check parameters */
7045     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7046 
7047     /* Reset the Output N Polarity level */
7048     tmpccer &= ~TIM_CCER_CC1NP;
7049     /* Set the Output N Polarity */
7050     tmpccer |= OC_Config->OCNPolarity;
7051     /* Reset the Output N State */
7052     tmpccer &= ~TIM_CCER_CC1NE;
7053   }
7054 
7055   if (IS_TIM_BREAK_INSTANCE(TIMx))
7056   {
7057     /* Check parameters */
7058     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7059     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7060 
7061     /* Reset the Output Compare and Output Compare N IDLE State */
7062     tmpcr2 &= ~TIM_CR2_OIS1;
7063     tmpcr2 &= ~TIM_CR2_OIS1N;
7064     /* Set the Output Idle state */
7065     tmpcr2 |= OC_Config->OCIdleState;
7066     /* Set the Output N Idle state */
7067     tmpcr2 |= OC_Config->OCNIdleState;
7068   }
7069 
7070   /* Write to TIMx CR2 */
7071   TIMx->CR2 = tmpcr2;
7072 
7073   /* Write to TIMx CCMR1 */
7074   TIMx->CCMR1 = tmpccmrx;
7075 
7076   /* Set the Capture Compare Register value */
7077   TIMx->CCR1 = OC_Config->Pulse;
7078 
7079   /* Write to TIMx CCER */
7080   TIMx->CCER = tmpccer;
7081 }
7082 
7083 /**
7084   * @brief  Timer Output Compare 2 configuration
7085   * @param  TIMx to select the TIM peripheral
7086   * @param  OC_Config The output configuration structure
7087   * @retval None
7088   */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7089 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7090 {
7091   uint32_t tmpccmrx;
7092   uint32_t tmpccer;
7093   uint32_t tmpcr2;
7094 
7095   /* Get the TIMx CCER register value */
7096   tmpccer = TIMx->CCER;
7097 
7098   /* Disable the Channel 2: Reset the CC2E Bit */
7099   TIMx->CCER &= ~TIM_CCER_CC2E;
7100 
7101   /* Get the TIMx CR2 register value */
7102   tmpcr2 =  TIMx->CR2;
7103 
7104   /* Get the TIMx CCMR1 register value */
7105   tmpccmrx = TIMx->CCMR1;
7106 
7107   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7108   tmpccmrx &= ~TIM_CCMR1_OC2M;
7109   tmpccmrx &= ~TIM_CCMR1_CC2S;
7110 
7111   /* Select the Output Compare Mode */
7112   tmpccmrx |= (OC_Config->OCMode << 8U);
7113 
7114   /* Reset the Output Polarity level */
7115   tmpccer &= ~TIM_CCER_CC2P;
7116   /* Set the Output Compare Polarity */
7117   tmpccer |= (OC_Config->OCPolarity << 4U);
7118 
7119   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
7120   {
7121     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7122 
7123     /* Reset the Output N Polarity level */
7124     tmpccer &= ~TIM_CCER_CC2NP;
7125     /* Set the Output N Polarity */
7126     tmpccer |= (OC_Config->OCNPolarity << 4U);
7127     /* Reset the Output N State */
7128     tmpccer &= ~TIM_CCER_CC2NE;
7129   }
7130 
7131   if (IS_TIM_BREAK_INSTANCE(TIMx))
7132   {
7133     /* Check parameters */
7134     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7135     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7136 
7137     /* Reset the Output Compare and Output Compare N IDLE State */
7138     tmpcr2 &= ~TIM_CR2_OIS2;
7139     tmpcr2 &= ~TIM_CR2_OIS2N;
7140     /* Set the Output Idle state */
7141     tmpcr2 |= (OC_Config->OCIdleState << 2U);
7142     /* Set the Output N Idle state */
7143     tmpcr2 |= (OC_Config->OCNIdleState << 2U);
7144   }
7145 
7146   /* Write to TIMx CR2 */
7147   TIMx->CR2 = tmpcr2;
7148 
7149   /* Write to TIMx CCMR1 */
7150   TIMx->CCMR1 = tmpccmrx;
7151 
7152   /* Set the Capture Compare Register value */
7153   TIMx->CCR2 = OC_Config->Pulse;
7154 
7155   /* Write to TIMx CCER */
7156   TIMx->CCER = tmpccer;
7157 }
7158 
7159 /**
7160   * @brief  Timer Output Compare 3 configuration
7161   * @param  TIMx to select the TIM peripheral
7162   * @param  OC_Config The output configuration structure
7163   * @retval None
7164   */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7165 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7166 {
7167   uint32_t tmpccmrx;
7168   uint32_t tmpccer;
7169   uint32_t tmpcr2;
7170 
7171   /* Get the TIMx CCER register value */
7172   tmpccer = TIMx->CCER;
7173 
7174   /* Disable the Channel 3: Reset the CC2E Bit */
7175   TIMx->CCER &= ~TIM_CCER_CC3E;
7176 
7177   /* Get the TIMx CR2 register value */
7178   tmpcr2 =  TIMx->CR2;
7179 
7180   /* Get the TIMx CCMR2 register value */
7181   tmpccmrx = TIMx->CCMR2;
7182 
7183   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7184   tmpccmrx &= ~TIM_CCMR2_OC3M;
7185   tmpccmrx &= ~TIM_CCMR2_CC3S;
7186   /* Select the Output Compare Mode */
7187   tmpccmrx |= OC_Config->OCMode;
7188 
7189   /* Reset the Output Polarity level */
7190   tmpccer &= ~TIM_CCER_CC3P;
7191   /* Set the Output Compare Polarity */
7192   tmpccer |= (OC_Config->OCPolarity << 8U);
7193 
7194   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7195   {
7196     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7197 
7198     /* Reset the Output N Polarity level */
7199     tmpccer &= ~TIM_CCER_CC3NP;
7200     /* Set the Output N Polarity */
7201     tmpccer |= (OC_Config->OCNPolarity << 8U);
7202     /* Reset the Output N State */
7203     tmpccer &= ~TIM_CCER_CC3NE;
7204   }
7205 
7206   if (IS_TIM_BREAK_INSTANCE(TIMx))
7207   {
7208     /* Check parameters */
7209     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7210     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7211 
7212     /* Reset the Output Compare and Output Compare N IDLE State */
7213     tmpcr2 &= ~TIM_CR2_OIS3;
7214     tmpcr2 &= ~TIM_CR2_OIS3N;
7215     /* Set the Output Idle state */
7216     tmpcr2 |= (OC_Config->OCIdleState << 4U);
7217     /* Set the Output N Idle state */
7218     tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7219   }
7220 
7221   /* Write to TIMx CR2 */
7222   TIMx->CR2 = tmpcr2;
7223 
7224   /* Write to TIMx CCMR2 */
7225   TIMx->CCMR2 = tmpccmrx;
7226 
7227   /* Set the Capture Compare Register value */
7228   TIMx->CCR3 = OC_Config->Pulse;
7229 
7230   /* Write to TIMx CCER */
7231   TIMx->CCER = tmpccer;
7232 }
7233 
7234 /**
7235   * @brief  Timer Output Compare 4 configuration
7236   * @param  TIMx to select the TIM peripheral
7237   * @param  OC_Config The output configuration structure
7238   * @retval None
7239   */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7240 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7241 {
7242   uint32_t tmpccmrx;
7243   uint32_t tmpccer;
7244   uint32_t tmpcr2;
7245 
7246   /* Get the TIMx CCER register value */
7247   tmpccer = TIMx->CCER;
7248 
7249   /* Disable the Channel 4: Reset the CC4E Bit */
7250   TIMx->CCER &= ~TIM_CCER_CC4E;
7251 
7252   /* Get the TIMx CR2 register value */
7253   tmpcr2 =  TIMx->CR2;
7254 
7255   /* Get the TIMx CCMR2 register value */
7256   tmpccmrx = TIMx->CCMR2;
7257 
7258   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7259   tmpccmrx &= ~TIM_CCMR2_OC4M;
7260   tmpccmrx &= ~TIM_CCMR2_CC4S;
7261 
7262   /* Select the Output Compare Mode */
7263   tmpccmrx |= (OC_Config->OCMode << 8U);
7264 
7265   /* Reset the Output Polarity level */
7266   tmpccer &= ~TIM_CCER_CC4P;
7267   /* Set the Output Compare Polarity */
7268   tmpccer |= (OC_Config->OCPolarity << 12U);
7269 
7270   if (IS_TIM_BREAK_INSTANCE(TIMx))
7271   {
7272     /* Check parameters */
7273     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7274 
7275     /* Reset the Output Compare IDLE State */
7276     tmpcr2 &= ~TIM_CR2_OIS4;
7277 
7278     /* Set the Output Idle state */
7279     tmpcr2 |= (OC_Config->OCIdleState << 6U);
7280   }
7281 
7282   /* Write to TIMx CR2 */
7283   TIMx->CR2 = tmpcr2;
7284 
7285   /* Write to TIMx CCMR2 */
7286   TIMx->CCMR2 = tmpccmrx;
7287 
7288   /* Set the Capture Compare Register value */
7289   TIMx->CCR4 = OC_Config->Pulse;
7290 
7291   /* Write to TIMx CCER */
7292   TIMx->CCER = tmpccer;
7293 }
7294 
7295 /**
7296   * @brief  Timer Output Compare 5 configuration
7297   * @param  TIMx to select the TIM peripheral
7298   * @param  OC_Config The output configuration structure
7299   * @retval None
7300   */
TIM_OC5_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7301 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
7302                               const TIM_OC_InitTypeDef *OC_Config)
7303 {
7304   uint32_t tmpccmrx;
7305   uint32_t tmpccer;
7306   uint32_t tmpcr2;
7307 
7308   /* Get the TIMx CCER register value */
7309   tmpccer = TIMx->CCER;
7310 
7311   /* Disable the output: Reset the CCxE Bit */
7312   TIMx->CCER &= ~TIM_CCER_CC5E;
7313 
7314   /* Get the TIMx CR2 register value */
7315   tmpcr2 =  TIMx->CR2;
7316   /* Get the TIMx CCMR1 register value */
7317   tmpccmrx = TIMx->CCMR3;
7318 
7319   /* Reset the Output Compare Mode Bits */
7320   tmpccmrx &= ~(TIM_CCMR3_OC5M);
7321   /* Select the Output Compare Mode */
7322   tmpccmrx |= OC_Config->OCMode;
7323 
7324   /* Reset the Output Polarity level */
7325   tmpccer &= ~TIM_CCER_CC5P;
7326   /* Set the Output Compare Polarity */
7327   tmpccer |= (OC_Config->OCPolarity << 16U);
7328 
7329   if (IS_TIM_BREAK_INSTANCE(TIMx))
7330   {
7331     /* Reset the Output Compare IDLE State */
7332     tmpcr2 &= ~TIM_CR2_OIS5;
7333     /* Set the Output Idle state */
7334     tmpcr2 |= (OC_Config->OCIdleState << 8U);
7335   }
7336   /* Write to TIMx CR2 */
7337   TIMx->CR2 = tmpcr2;
7338 
7339   /* Write to TIMx CCMR3 */
7340   TIMx->CCMR3 = tmpccmrx;
7341 
7342   /* Set the Capture Compare Register value */
7343   TIMx->CCR5 = OC_Config->Pulse;
7344 
7345   /* Write to TIMx CCER */
7346   TIMx->CCER = tmpccer;
7347 }
7348 
7349 /**
7350   * @brief  Timer Output Compare 6 configuration
7351   * @param  TIMx to select the TIM peripheral
7352   * @param  OC_Config The output configuration structure
7353   * @retval None
7354   */
TIM_OC6_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7355 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
7356                               const TIM_OC_InitTypeDef *OC_Config)
7357 {
7358   uint32_t tmpccmrx;
7359   uint32_t tmpccer;
7360   uint32_t tmpcr2;
7361 
7362   /* Get the TIMx CCER register value */
7363   tmpccer = TIMx->CCER;
7364 
7365   /* Disable the output: Reset the CCxE Bit */
7366   TIMx->CCER &= ~TIM_CCER_CC6E;
7367 
7368   /* Get the TIMx CR2 register value */
7369   tmpcr2 =  TIMx->CR2;
7370   /* Get the TIMx CCMR1 register value */
7371   tmpccmrx = TIMx->CCMR3;
7372 
7373   /* Reset the Output Compare Mode Bits */
7374   tmpccmrx &= ~(TIM_CCMR3_OC6M);
7375   /* Select the Output Compare Mode */
7376   tmpccmrx |= (OC_Config->OCMode << 8U);
7377 
7378   /* Reset the Output Polarity level */
7379   tmpccer &= (uint32_t)~TIM_CCER_CC6P;
7380   /* Set the Output Compare Polarity */
7381   tmpccer |= (OC_Config->OCPolarity << 20U);
7382 
7383   if (IS_TIM_BREAK_INSTANCE(TIMx))
7384   {
7385     /* Reset the Output Compare IDLE State */
7386     tmpcr2 &= ~TIM_CR2_OIS6;
7387     /* Set the Output Idle state */
7388     tmpcr2 |= (OC_Config->OCIdleState << 10U);
7389   }
7390 
7391   /* Write to TIMx CR2 */
7392   TIMx->CR2 = tmpcr2;
7393 
7394   /* Write to TIMx CCMR3 */
7395   TIMx->CCMR3 = tmpccmrx;
7396 
7397   /* Set the Capture Compare Register value */
7398   TIMx->CCR6 = OC_Config->Pulse;
7399 
7400   /* Write to TIMx CCER */
7401   TIMx->CCER = tmpccer;
7402 }
7403 
7404 /**
7405   * @brief  Slave Timer configuration function
7406   * @param  htim TIM handle
7407   * @param  sSlaveConfig Slave timer configuration
7408   * @retval None
7409   */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7410 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7411                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig)
7412 {
7413   HAL_StatusTypeDef status = HAL_OK;
7414   uint32_t tmpsmcr;
7415   uint32_t tmpccmr1;
7416   uint32_t tmpccer;
7417 
7418   /* Get the TIMx SMCR register value */
7419   tmpsmcr = htim->Instance->SMCR;
7420 
7421   /* Reset the Trigger Selection Bits */
7422   tmpsmcr &= ~TIM_SMCR_TS;
7423   /* Set the Input Trigger source */
7424   tmpsmcr |= sSlaveConfig->InputTrigger;
7425 
7426   /* Reset the slave mode Bits */
7427   tmpsmcr &= ~TIM_SMCR_SMS;
7428   /* Set the slave mode */
7429   tmpsmcr |= sSlaveConfig->SlaveMode;
7430 
7431   /* Write to TIMx SMCR */
7432   htim->Instance->SMCR = tmpsmcr;
7433 
7434   /* Configure the trigger prescaler, filter, and polarity */
7435   switch (sSlaveConfig->InputTrigger)
7436   {
7437     case TIM_TS_ETRF:
7438     {
7439       /* Check the parameters */
7440       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7441       assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7442       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7443       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7444       /* Configure the ETR Trigger source */
7445       TIM_ETR_SetConfig(htim->Instance,
7446                         sSlaveConfig->TriggerPrescaler,
7447                         sSlaveConfig->TriggerPolarity,
7448                         sSlaveConfig->TriggerFilter);
7449       break;
7450     }
7451 
7452     case TIM_TS_TI1F_ED:
7453     {
7454       /* Check the parameters */
7455       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7456       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7457 
7458       if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7459       {
7460         return HAL_ERROR;
7461       }
7462 
7463       /* Disable the Channel 1: Reset the CC1E Bit */
7464       tmpccer = htim->Instance->CCER;
7465       htim->Instance->CCER &= ~TIM_CCER_CC1E;
7466       tmpccmr1 = htim->Instance->CCMR1;
7467 
7468       /* Set the filter */
7469       tmpccmr1 &= ~TIM_CCMR1_IC1F;
7470       tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7471 
7472       /* Write to TIMx CCMR1 and CCER registers */
7473       htim->Instance->CCMR1 = tmpccmr1;
7474       htim->Instance->CCER = tmpccer;
7475       break;
7476     }
7477 
7478     case TIM_TS_TI1FP1:
7479     {
7480       /* Check the parameters */
7481       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7482       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7483       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7484 
7485       /* Configure TI1 Filter and Polarity */
7486       TIM_TI1_ConfigInputStage(htim->Instance,
7487                                sSlaveConfig->TriggerPolarity,
7488                                sSlaveConfig->TriggerFilter);
7489       break;
7490     }
7491 
7492     case TIM_TS_TI2FP2:
7493     {
7494       /* Check the parameters */
7495       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7496       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7497       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7498 
7499       /* Configure TI2 Filter and Polarity */
7500       TIM_TI2_ConfigInputStage(htim->Instance,
7501                                sSlaveConfig->TriggerPolarity,
7502                                sSlaveConfig->TriggerFilter);
7503       break;
7504     }
7505 
7506     case TIM_TS_ITR0:
7507     case TIM_TS_ITR1:
7508     case TIM_TS_ITR2:
7509     case TIM_TS_ITR7:
7510     {
7511       /* Check the parameter */
7512       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7513       break;
7514     }
7515 
7516     default:
7517       status = HAL_ERROR;
7518       break;
7519   }
7520 
7521   return status;
7522 }
7523 
7524 /**
7525   * @brief  Configure the TI1 as Input.
7526   * @param  TIMx to select the TIM peripheral.
7527   * @param  TIM_ICPolarity The Input Polarity.
7528   *          This parameter can be one of the following values:
7529   *            @arg TIM_ICPOLARITY_RISING
7530   *            @arg TIM_ICPOLARITY_FALLING
7531   *            @arg TIM_ICPOLARITY_BOTHEDGE
7532   * @param  TIM_ICSelection specifies the input to be used.
7533   *          This parameter can be one of the following values:
7534   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7535   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7536   *            @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7537   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7538   *          This parameter must be a value between 0x00 and 0x0F.
7539   * @retval None
7540   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7541   *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7542   *        protected against un-initialized filter and polarity values.
7543   */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7544 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7545                        uint32_t TIM_ICFilter)
7546 {
7547   uint32_t tmpccmr1;
7548   uint32_t tmpccer;
7549 
7550   /* Disable the Channel 1: Reset the CC1E Bit */
7551   tmpccer = TIMx->CCER;
7552   TIMx->CCER &= ~TIM_CCER_CC1E;
7553   tmpccmr1 = TIMx->CCMR1;
7554 
7555   /* Select the Input */
7556   if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7557   {
7558     tmpccmr1 &= ~TIM_CCMR1_CC1S;
7559     tmpccmr1 |= TIM_ICSelection;
7560   }
7561   else
7562   {
7563     tmpccmr1 |= TIM_CCMR1_CC1S_0;
7564   }
7565 
7566   /* Set the filter */
7567   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7568   tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7569 
7570   /* Select the Polarity and set the CC1E Bit */
7571   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7572   tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7573 
7574   /* Write to TIMx CCMR1 and CCER registers */
7575   TIMx->CCMR1 = tmpccmr1;
7576   TIMx->CCER = tmpccer;
7577 }
7578 
7579 /**
7580   * @brief  Configure the Polarity and Filter for TI1.
7581   * @param  TIMx to select the TIM peripheral.
7582   * @param  TIM_ICPolarity The Input Polarity.
7583   *          This parameter can be one of the following values:
7584   *            @arg TIM_ICPOLARITY_RISING
7585   *            @arg TIM_ICPOLARITY_FALLING
7586   *            @arg TIM_ICPOLARITY_BOTHEDGE
7587   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7588   *          This parameter must be a value between 0x00 and 0x0F.
7589   * @retval None
7590   */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7591 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7592 {
7593   uint32_t tmpccmr1;
7594   uint32_t tmpccer;
7595 
7596   /* Disable the Channel 1: Reset the CC1E Bit */
7597   tmpccer = TIMx->CCER;
7598   TIMx->CCER &= ~TIM_CCER_CC1E;
7599   tmpccmr1 = TIMx->CCMR1;
7600 
7601   /* Set the filter */
7602   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7603   tmpccmr1 |= (TIM_ICFilter << 4U);
7604 
7605   /* Select the Polarity and set the CC1E Bit */
7606   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7607   tmpccer |= TIM_ICPolarity;
7608 
7609   /* Write to TIMx CCMR1 and CCER registers */
7610   TIMx->CCMR1 = tmpccmr1;
7611   TIMx->CCER = tmpccer;
7612 }
7613 
7614 /**
7615   * @brief  Configure the TI2 as Input.
7616   * @param  TIMx to select the TIM peripheral
7617   * @param  TIM_ICPolarity The Input Polarity.
7618   *          This parameter can be one of the following values:
7619   *            @arg TIM_ICPOLARITY_RISING
7620   *            @arg TIM_ICPOLARITY_FALLING
7621   *            @arg TIM_ICPOLARITY_BOTHEDGE
7622   * @param  TIM_ICSelection specifies the input to be used.
7623   *          This parameter can be one of the following values:
7624   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7625   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7626   *            @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7627   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7628   *          This parameter must be a value between 0x00 and 0x0F.
7629   * @retval None
7630   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7631   *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7632   *        protected against un-initialized filter and polarity values.
7633   */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7634 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7635                               uint32_t TIM_ICFilter)
7636 {
7637   uint32_t tmpccmr1;
7638   uint32_t tmpccer;
7639 
7640   /* Disable the Channel 2: Reset the CC2E Bit */
7641   tmpccer = TIMx->CCER;
7642   TIMx->CCER &= ~TIM_CCER_CC2E;
7643   tmpccmr1 = TIMx->CCMR1;
7644 
7645   /* Select the Input */
7646   tmpccmr1 &= ~TIM_CCMR1_CC2S;
7647   tmpccmr1 |= (TIM_ICSelection << 8U);
7648 
7649   /* Set the filter */
7650   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7651   tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7652 
7653   /* Select the Polarity and set the CC2E Bit */
7654   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7655   tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7656 
7657   /* Write to TIMx CCMR1 and CCER registers */
7658   TIMx->CCMR1 = tmpccmr1 ;
7659   TIMx->CCER = tmpccer;
7660 }
7661 
7662 /**
7663   * @brief  Configure the Polarity and Filter for TI2.
7664   * @param  TIMx to select the TIM peripheral.
7665   * @param  TIM_ICPolarity The Input Polarity.
7666   *          This parameter can be one of the following values:
7667   *            @arg TIM_ICPOLARITY_RISING
7668   *            @arg TIM_ICPOLARITY_FALLING
7669   *            @arg TIM_ICPOLARITY_BOTHEDGE
7670   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7671   *          This parameter must be a value between 0x00 and 0x0F.
7672   * @retval None
7673   */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7674 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7675 {
7676   uint32_t tmpccmr1;
7677   uint32_t tmpccer;
7678 
7679   /* Disable the Channel 2: Reset the CC2E Bit */
7680   tmpccer = TIMx->CCER;
7681   TIMx->CCER &= ~TIM_CCER_CC2E;
7682   tmpccmr1 = TIMx->CCMR1;
7683 
7684   /* Set the filter */
7685   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7686   tmpccmr1 |= (TIM_ICFilter << 12U);
7687 
7688   /* Select the Polarity and set the CC2E Bit */
7689   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7690   tmpccer |= (TIM_ICPolarity << 4U);
7691 
7692   /* Write to TIMx CCMR1 and CCER registers */
7693   TIMx->CCMR1 = tmpccmr1 ;
7694   TIMx->CCER = tmpccer;
7695 }
7696 
7697 /**
7698   * @brief  Configure the TI3 as Input.
7699   * @param  TIMx to select the TIM peripheral
7700   * @param  TIM_ICPolarity The Input Polarity.
7701   *          This parameter can be one of the following values:
7702   *            @arg TIM_ICPOLARITY_RISING
7703   *            @arg TIM_ICPOLARITY_FALLING
7704   *            @arg TIM_ICPOLARITY_BOTHEDGE
7705   * @param  TIM_ICSelection specifies the input to be used.
7706   *          This parameter can be one of the following values:
7707   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7708   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7709   *            @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7710   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7711   *          This parameter must be a value between 0x00 and 0x0F.
7712   * @retval None
7713   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7714   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7715   *        protected against un-initialized filter and polarity values.
7716   */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7717 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7718                               uint32_t TIM_ICFilter)
7719 {
7720   uint32_t tmpccmr2;
7721   uint32_t tmpccer;
7722 
7723   /* Disable the Channel 3: Reset the CC3E Bit */
7724   tmpccer = TIMx->CCER;
7725   TIMx->CCER &= ~TIM_CCER_CC3E;
7726   tmpccmr2 = TIMx->CCMR2;
7727 
7728   /* Select the Input */
7729   tmpccmr2 &= ~TIM_CCMR2_CC3S;
7730   tmpccmr2 |= TIM_ICSelection;
7731 
7732   /* Set the filter */
7733   tmpccmr2 &= ~TIM_CCMR2_IC3F;
7734   tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7735 
7736   /* Select the Polarity and set the CC3E Bit */
7737   tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7738   tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7739 
7740   /* Write to TIMx CCMR2 and CCER registers */
7741   TIMx->CCMR2 = tmpccmr2;
7742   TIMx->CCER = tmpccer;
7743 }
7744 
7745 /**
7746   * @brief  Configure the TI4 as Input.
7747   * @param  TIMx to select the TIM peripheral
7748   * @param  TIM_ICPolarity The Input Polarity.
7749   *          This parameter can be one of the following values:
7750   *            @arg TIM_ICPOLARITY_RISING
7751   *            @arg TIM_ICPOLARITY_FALLING
7752   *            @arg TIM_ICPOLARITY_BOTHEDGE
7753   * @param  TIM_ICSelection specifies the input to be used.
7754   *          This parameter can be one of the following values:
7755   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7756   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7757   *            @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7758   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7759   *          This parameter must be a value between 0x00 and 0x0F.
7760   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7761   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7762   *        protected against un-initialized filter and polarity values.
7763   * @retval None
7764   */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7765 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7766                               uint32_t TIM_ICFilter)
7767 {
7768   uint32_t tmpccmr2;
7769   uint32_t tmpccer;
7770 
7771   /* Disable the Channel 4: Reset the CC4E Bit */
7772   tmpccer = TIMx->CCER;
7773   TIMx->CCER &= ~TIM_CCER_CC4E;
7774   tmpccmr2 = TIMx->CCMR2;
7775 
7776   /* Select the Input */
7777   tmpccmr2 &= ~TIM_CCMR2_CC4S;
7778   tmpccmr2 |= (TIM_ICSelection << 8U);
7779 
7780   /* Set the filter */
7781   tmpccmr2 &= ~TIM_CCMR2_IC4F;
7782   tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7783 
7784   /* Select the Polarity and set the CC4E Bit */
7785   tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7786   tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7787 
7788   /* Write to TIMx CCMR2 and CCER registers */
7789   TIMx->CCMR2 = tmpccmr2;
7790   TIMx->CCER = tmpccer ;
7791 }
7792 
7793 /**
7794   * @brief  Selects the Input Trigger source
7795   * @param  TIMx to select the TIM peripheral
7796   * @param  InputTriggerSource The Input Trigger source.
7797   *          This parameter can be one of the following values:
7798   *            @arg TIM_TS_ITR0: Internal Trigger 0
7799   *            @arg TIM_TS_ITR1: Internal Trigger 1
7800   *            @arg TIM_TS_ITR2: Internal Trigger 2
7801   *            @arg TIM_TS_ITR7: Internal Trigger 7
7802   *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7803   *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7804   *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7805   *            @arg TIM_TS_ETRF: External Trigger input
7806   * @retval None
7807   */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7808 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7809 {
7810   uint32_t tmpsmcr;
7811 
7812   /* Get the TIMx SMCR register value */
7813   tmpsmcr = TIMx->SMCR;
7814   /* Reset the TS Bits */
7815   tmpsmcr &= ~TIM_SMCR_TS;
7816   /* Set the Input Trigger source and the slave mode*/
7817   tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7818   /* Write to TIMx SMCR */
7819   TIMx->SMCR = tmpsmcr;
7820 }
7821 /**
7822   * @brief  Configures the TIMx External Trigger (ETR).
7823   * @param  TIMx to select the TIM peripheral
7824   * @param  TIM_ExtTRGPrescaler The external Trigger Prescaler.
7825   *          This parameter can be one of the following values:
7826   *            @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7827   *            @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7828   *            @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7829   *            @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7830   * @param  TIM_ExtTRGPolarity The external Trigger Polarity.
7831   *          This parameter can be one of the following values:
7832   *            @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7833   *            @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7834   * @param  ExtTRGFilter External Trigger Filter.
7835   *          This parameter must be a value between 0x00 and 0x0F
7836   * @retval None
7837   */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7838 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7839                        uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7840 {
7841   uint32_t tmpsmcr;
7842 
7843   tmpsmcr = TIMx->SMCR;
7844 
7845   /* Reset the ETR Bits */
7846   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7847 
7848   /* Set the Prescaler, the Filter value and the Polarity */
7849   tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7850 
7851   /* Write to TIMx SMCR */
7852   TIMx->SMCR = tmpsmcr;
7853 }
7854 
7855 /**
7856   * @brief  Enables or disables the TIM Capture Compare Channel x.
7857   * @param  TIMx to select the TIM peripheral
7858   * @param  Channel specifies the TIM Channel
7859   *          This parameter can be one of the following values:
7860   *            @arg TIM_CHANNEL_1: TIM Channel 1
7861   *            @arg TIM_CHANNEL_2: TIM Channel 2
7862   *            @arg TIM_CHANNEL_3: TIM Channel 3
7863   *            @arg TIM_CHANNEL_4: TIM Channel 4
7864   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
7865   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
7866   * @param  ChannelState specifies the TIM Channel CCxE bit new state.
7867   *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7868   * @retval None
7869   */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7870 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7871 {
7872   uint32_t tmp;
7873 
7874   /* Check the parameters */
7875   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7876   assert_param(IS_TIM_CHANNELS(Channel));
7877 
7878   tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7879 
7880   /* Reset the CCxE Bit */
7881   TIMx->CCER &= ~tmp;
7882 
7883   /* Set or reset the CCxE Bit */
7884   TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7885 }
7886 
7887 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7888 /**
7889   * @brief  Reset interrupt callbacks to the legacy weak callbacks.
7890   * @param  htim pointer to a TIM_HandleTypeDef structure that contains
7891   *                the configuration information for TIM module.
7892   * @retval None
7893   */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7894 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7895 {
7896   /* Reset the TIM callback to the legacy weak callbacks */
7897   htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
7898   htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
7899   htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
7900   htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
7901   htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
7902   htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
7903   htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
7904   htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
7905   htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7906   htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
7907   htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
7908   htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
7909   htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
7910   htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
7911 }
7912 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7913 
7914 /**
7915   * @}
7916   */
7917 
7918 #endif /* HAL_TIM_MODULE_ENABLED */
7919 /**
7920   * @}
7921   */
7922 
7923 /**
7924   * @}
7925   */
7926