1 /**
2   ******************************************************************************
3   * @file    stm32l5xx_hal_hash.c
4   * @author  MCD Application Team
5   * @brief   HASH HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the HASH peripheral:
8   *           + Initialization and de-initialization methods
9   *           + HASH or HMAC processing in polling mode
10   *           + HASH or HMAC processing in interrupt mode
11   *           + HASH or HMAC processing in DMA mode
12   *           + Peripheral State methods
13   *           + HASH or HMAC processing suspension/resumption
14   *
15   ******************************************************************************
16   * @attention
17   *
18   * Copyright (c) 2019 STMicroelectronics.
19   * All rights reserved.
20   *
21   * This software is licensed under terms that can be found in the LICENSE file
22   * in the root directory of this software component.
23   * If no LICENSE file comes with this software, it is provided AS-IS.
24   *
25   ******************************************************************************
26   @verbatim
27  ===============================================================================
28                      ##### How to use this driver #####
29  ===============================================================================
30     [..]
31     The HASH HAL driver can be used as follows:
32 
33     (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
34         (##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
35         (##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
36             (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
37             (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
38             (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
39         (##) When resorting to DMA-based APIs  (e.g. HAL_HASH_xxx_Start_DMA())
40             (+++) Enable the DMAx interface clock using
41                    __DMAx_CLK_ENABLE()
42             (+++) Configure and enable one DMA channel to manage data transfer from
43                 memory to peripheral (input channel). Managing data transfer from
44                 peripheral to memory can be performed only using CPU.
45             (+++) Associate the initialized DMA handle to the HASH DMA handle
46                 using  __HAL_LINKDMA()
47             (+++) Configure the priority and enable the NVIC for the transfer complete
48                 interrupt on the DMA channel: use
49                  HAL_NVIC_SetPriority() and
50                  HAL_NVIC_EnableIRQ()
51 
52     (#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
53         (##) resorts to HAL_HASH_MspInit() for low-level initialization,
54         (##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
55 
56     (#)Three processing schemes are available:
57         (##) Polling mode: processing APIs are blocking functions
58              i.e. they process the data and wait till the digest computation is finished,
59              e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
60         (##) Interrupt mode: processing APIs are not blocking functions
61                 i.e. they process the data under interrupt,
62                 e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
63         (##) DMA mode: processing APIs are not blocking functions and the CPU is
64              not used for data transfer i.e. the data transfer is ensured by DMA,
65                 e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
66                 for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
67                 is then required to retrieve the digest.
68 
69     (#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
70        initialized and processes the buffer fed in input. When the input data have all been
71        fed to the Peripheral, the digest computation can start.
72 
73     (#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
74         (##) In polling mode, only multi-buffer HASH processing is possible.
75              API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
76              User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
77              well the computed digest.
78 
79         (##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
80              except for the last one.
81              User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
82              well the computed digest.
83 
84         (##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
85               (+++) HASH processing: once initialization is done, MDMAT bit must be set
86                through __HAL_HASH_SET_MDMAT() macro.
87              From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
88              Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
89              macro then wrap-up the HASH processing in feeding the last input buffer through the
90              same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
91              API HAL_HASH_xxx_Finish().
92              (+++) HMAC processing (requires to resort to extended functions):
93              after initialization, the key and the first input buffer are entered
94              in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
95              starts step 2.
96              The following buffers are next entered with the API  HAL_HMACEx_xxx_Step2_DMA(). At this
97              point, the HMAC processing is still carrying out step 2.
98              Then, step 2 for the last input buffer and step 3 are carried out by a single call
99              to HAL_HMACEx_xxx_Step2_3_DMA().
100 
101              The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
102 
103 
104     (#)Context swapping.
105         (##) Two APIs are available to suspend HASH or HMAC processing:
106              (+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
107              (+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
108 
109         (##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
110             to save in memory the Peripheral context. This context can be restored afterwards
111             to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
112 
113         (##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
114              time, processing can be restarted with the same API call (same API, same handle,
115              same parameters) as done before the suspension. Relevant parameters to restart at
116              the proper location are internally saved in the HASH handle.
117 
118     (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
119 
120      *** Remarks on message length ***
121      ===================================
122      [..]
123       (#) HAL in interruption mode (interruptions driven)
124 
125         (##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
126         This is why, for driver implementation simplicity s sake, user is requested to enter a message the
127         length of which is a multiple of 4 bytes.
128 
129         (##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
130         to specify which bits to discard at the end of the complete message to process only the message bits
131         and not extra bits.
132 
133         (##) If user needs to perform a hash computation of a large input buffer that is spread around various places
134         in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
135         necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
136         It is advised to the user to
137        (+++) achieve the first formatting operation by software then enter the data
138        (+++) while the Peripheral is processing the first input set, carry out the second formatting
139         operation by software, to be ready when DINIS occurs.
140        (+++) repeat step 2 until the whole message is processed.
141 
142      [..]
143       (#) HAL in DMA mode
144 
145         (##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
146         The same field described above in HASH_STR is used to specify which bits to discard at the end of the
147         DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
148         this is possible only at the end of the complete message. When several DMA transfers are needed to
149         enter the message, this is not applicable at the end of the intermediary transfers.
150 
151         (##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
152         chunks of data by software while the DMA transfer and processing is on-going for the first parts of
153         the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
154         software formatting operation is more complex than in the IT mode.
155 
156      *** Callback registration ***
157      ===================================
158      [..]
159       (#) The compilation define  USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
160           allows the user to configure dynamically the driver callbacks.
161           Use function HAL_HASH_RegisterCallback() to register a user callback.
162 
163       (#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
164             (+) InCpltCallback    : callback for input completion.
165             (+) DgstCpltCallback  : callback for digest computation completion.
166             (+) ErrorCallback     : callback for error.
167             (+) MspInitCallback   : HASH MspInit.
168             (+) MspDeInitCallback : HASH MspDeInit.
169           This function takes as parameters the HAL peripheral handle, the Callback ID
170           and a pointer to the user callback function.
171 
172       (#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
173           weak (surcharged) function.
174           HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
175           and the Callback ID.
176           This function allows to reset following callbacks:
177             (+) InCpltCallback    : callback for input completion.
178             (+) DgstCpltCallback  : callback for digest computation completion.
179             (+) ErrorCallback     : callback for error.
180             (+) MspInitCallback   : HASH MspInit.
181             (+) MspDeInitCallback : HASH MspDeInit.
182 
183       (#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
184           all callbacks are reset to the corresponding legacy weak (surcharged) functions:
185           examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
186           Exception done for MspInit and MspDeInit callbacks that are respectively
187           reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
188           and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
189           If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
190           keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
191 
192           Callbacks can be registered/unregistered in READY state only.
193           Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
194           in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
195           during the Init/DeInit.
196           In that case first register the MspInit/MspDeInit user callbacks
197           using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
198           or HAL_HASH_Init function.
199 
200           When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
201           not defined, the callback registering feature is not available
202           and weak (surcharged) callbacks are used.
203 
204   @endverbatim
205   ******************************************************************************
206   */
207 
208 /* Includes ------------------------------------------------------------------*/
209 #include "stm32l5xx_hal.h"
210 
211 
212 /** @addtogroup STM32L5xx_HAL_Driver
213   * @{
214   */
215 
216 
217 /** @defgroup HASH  HASH
218   * @brief HASH HAL module driver.
219   * @{
220   */
221 
222 #ifdef HAL_HASH_MODULE_ENABLED
223 
224 /* Private typedef -----------------------------------------------------------*/
225 /* Private define ------------------------------------------------------------*/
226 /** @defgroup HASH_Private_Constants HASH Private Constants
227   * @{
228   */
229 
230 /** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
231   * @{
232   */
233 #define HASH_DIGEST_CALCULATION_NOT_STARTED       ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
234 #define HASH_DIGEST_CALCULATION_STARTED           ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register     */
235 /**
236   * @}
237   */
238 
239 /** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
240   * @{
241   */
242 #define HASH_NUMBER_OF_CSR_REGISTERS              54U     /*!< Number of Context Swap Registers */
243 /**
244   * @}
245   */
246 
247 /** @defgroup HASH_TimeOut_Value HASH TimeOut Value
248   * @{
249   */
250 #define HASH_TIMEOUTVALUE                         1000U   /*!< Time-out value  */
251 /**
252   * @}
253   */
254 
255 /** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
256   * @{
257   */
258 #define HASH_DMA_SUSPENSION_WORDS_LIMIT             20U   /*!< Number of words below which DMA suspension is aborted */
259 /**
260   * @}
261   */
262 
263 /**
264   * @}
265   */
266 
267 /* Private macro -------------------------------------------------------------*/
268 /* Private variables ---------------------------------------------------------*/
269 /* Private function prototypes -----------------------------------------------*/
270 /** @defgroup HASH_Private_Functions HASH Private Functions
271   * @{
272   */
273 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
274 static void HASH_DMAError(DMA_HandleTypeDef *hdma);
275 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
276 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
277                                                      uint32_t Timeout);
278 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
279 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
280 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
281 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
282 /**
283   * @}
284   */
285 
286 /** @defgroup HASH_Exported_Functions HASH Exported Functions
287   * @{
288   */
289 
290 /** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
291   *  @brief    Initialization, configuration and call-back functions.
292   *
293 @verbatim
294  ===============================================================================
295               ##### Initialization and de-initialization functions #####
296  ===============================================================================
297     [..]  This section provides functions allowing to:
298       (+) Initialize the HASH according to the specified parameters
299           in the HASH_InitTypeDef and create the associated handle
300       (+) DeInitialize the HASH peripheral
301       (+) Initialize the HASH MCU Specific Package (MSP)
302       (+) DeInitialize the HASH MSP
303 
304     [..]  This section provides as well call back functions definitions for user
305           code to manage:
306       (+) Input data transfer to Peripheral completion
307       (+) Calculated digest retrieval completion
308       (+) Error management
309 
310 
311 
312 @endverbatim
313   * @{
314   */
315 
316 /**
317   * @brief  Initialize the HASH according to the specified parameters in the
318             HASH_HandleTypeDef and create the associated handle.
319   * @note   Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
320   *         other configuration bits are set by HASH or HMAC processing APIs.
321   * @note   MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
322   *         multi-buffer HASH processing, user needs to resort to
323   *         __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
324   *         relevant APIs manage themselves the MDMAT bit.
325   * @param  hhash HASH handle
326   * @retval HAL status
327   */
HAL_HASH_Init(HASH_HandleTypeDef * hhash)328 HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
329 {
330   /* Check the hash handle allocation */
331   if (hhash == NULL)
332   {
333     return HAL_ERROR;
334   }
335 
336   /* Check the parameters */
337   assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
338 
339 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
340   if (hhash->State == HAL_HASH_STATE_RESET)
341   {
342     /* Allocate lock resource and initialize it */
343     hhash->Lock = HAL_UNLOCKED;
344 
345     /* Reset Callback pointers in HAL_HASH_STATE_RESET only */
346     hhash->InCpltCallback =  HAL_HASH_InCpltCallback;     /* Legacy weak (surcharged) input completion callback */
347     hhash->DgstCpltCallback =  HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
348                                                              completion callback */
349     hhash->ErrorCallback =  HAL_HASH_ErrorCallback;       /* Legacy weak (surcharged) error callback */
350     if (hhash->MspInitCallback == NULL)
351     {
352       hhash->MspInitCallback = HAL_HASH_MspInit;
353     }
354 
355     /* Init the low level hardware */
356     hhash->MspInitCallback(hhash);
357   }
358 #else
359   if (hhash->State == HAL_HASH_STATE_RESET)
360   {
361     /* Allocate lock resource and initialize it */
362     hhash->Lock = HAL_UNLOCKED;
363 
364     /* Init the low level hardware */
365     HAL_HASH_MspInit(hhash);
366   }
367 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
368 
369   /* Change the HASH state */
370   hhash->State = HAL_HASH_STATE_BUSY;
371 
372   /* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
373   hhash->HashInCount = 0;
374   hhash->HashBuffSize = 0;
375   hhash->HashITCounter = 0;
376   hhash->NbWordsAlreadyPushed = 0;
377   /* Reset digest calculation bridle (MDMAT bit control) */
378   hhash->DigestCalculationDisable = RESET;
379   /* Set phase to READY */
380   hhash->Phase = HAL_HASH_PHASE_READY;
381   /* Reset suspension request flag */
382   hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
383 
384   /* Set the data type bit */
385   MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
386   /* Reset MDMAT bit */
387   __HAL_HASH_RESET_MDMAT();
388   /* Reset HASH handle status */
389   hhash->Status = HAL_OK;
390 
391   /* Set the HASH state to Ready */
392   hhash->State = HAL_HASH_STATE_READY;
393 
394   /* Initialise the error code */
395   hhash->ErrorCode = HAL_HASH_ERROR_NONE;
396 
397   /* Return function status */
398   return HAL_OK;
399 }
400 
401 /**
402   * @brief  DeInitialize the HASH peripheral.
403   * @param  hhash HASH handle.
404   * @retval HAL status
405   */
HAL_HASH_DeInit(HASH_HandleTypeDef * hhash)406 HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
407 {
408   /* Check the HASH handle allocation */
409   if (hhash == NULL)
410   {
411     return HAL_ERROR;
412   }
413 
414   /* Change the HASH state */
415   hhash->State = HAL_HASH_STATE_BUSY;
416 
417   /* Set the default HASH phase */
418   hhash->Phase = HAL_HASH_PHASE_READY;
419 
420   /* Reset HashInCount, HashITCounter and HashBuffSize */
421   hhash->HashInCount = 0;
422   hhash->HashBuffSize = 0;
423   hhash->HashITCounter = 0;
424   /* Reset digest calculation bridle (MDMAT bit control) */
425   hhash->DigestCalculationDisable = RESET;
426 
427 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
428   if (hhash->MspDeInitCallback == NULL)
429   {
430     hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
431   }
432 
433   /* DeInit the low level hardware */
434   hhash->MspDeInitCallback(hhash);
435 #else
436   /* DeInit the low level hardware: CLOCK, NVIC */
437   HAL_HASH_MspDeInit(hhash);
438 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
439 
440 
441   /* Reset HASH handle status */
442   hhash->Status = HAL_OK;
443 
444   /* Set the HASH state to Ready */
445   hhash->State = HAL_HASH_STATE_RESET;
446 
447   /* Initialise the error code */
448   hhash->ErrorCode = HAL_HASH_ERROR_NONE;
449 
450   /* Reset multi buffers accumulation flag */
451   hhash->Accumulation = 0U;
452 
453   /* Return function status */
454   return HAL_OK;
455 }
456 
457 /**
458   * @brief  Initialize the HASH MSP.
459   * @param  hhash HASH handle.
460   * @retval None
461   */
HAL_HASH_MspInit(HASH_HandleTypeDef * hhash)462 __weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
463 {
464   /* Prevent unused argument(s) compilation warning */
465   UNUSED(hhash);
466 
467   /* NOTE : This function should not be modified; when the callback is needed,
468             HAL_HASH_MspInit() can be implemented in the user file.
469    */
470 }
471 
472 /**
473   * @brief  DeInitialize the HASH MSP.
474   * @param  hhash HASH handle.
475   * @retval None
476   */
HAL_HASH_MspDeInit(HASH_HandleTypeDef * hhash)477 __weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
478 {
479   /* Prevent unused argument(s) compilation warning */
480   UNUSED(hhash);
481 
482   /* NOTE : This function should not be modified; when the callback is needed,
483             HAL_HASH_MspDeInit() can be implemented in the user file.
484    */
485 }
486 
487 /**
488   * @brief  Input data transfer complete call back.
489   * @note   HAL_HASH_InCpltCallback() is called when the complete input message
490   *         has been fed to the Peripheral. This API is invoked only when input data are
491   *         entered under interruption or through DMA.
492   * @note   In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
493   *         HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
494   *         to the Peripheral.
495   * @param  hhash HASH handle.
496   * @retval None
497   */
HAL_HASH_InCpltCallback(HASH_HandleTypeDef * hhash)498 __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
499 {
500   /* Prevent unused argument(s) compilation warning */
501   UNUSED(hhash);
502 
503   /* NOTE : This function should not be modified; when the callback is needed,
504             HAL_HASH_InCpltCallback() can be implemented in the user file.
505    */
506 }
507 
508 /**
509   * @brief  Digest computation complete call back.
510   * @note   HAL_HASH_DgstCpltCallback() is used under interruption, is not
511   *         relevant with DMA.
512   * @param  hhash HASH handle.
513   * @retval None
514   */
HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef * hhash)515 __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
516 {
517   /* Prevent unused argument(s) compilation warning */
518   UNUSED(hhash);
519 
520   /* NOTE : This function should not be modified; when the callback is needed,
521             HAL_HASH_DgstCpltCallback() can be implemented in the user file.
522    */
523 }
524 
525 /**
526   * @brief  Error callback.
527   * @note   Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
528   *         to retrieve the error type.
529   * @param  hhash HASH handle.
530   * @retval None
531   */
HAL_HASH_ErrorCallback(HASH_HandleTypeDef * hhash)532 __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
533 {
534   /* Prevent unused argument(s) compilation warning */
535   UNUSED(hhash);
536 
537   /* NOTE : This function should not be modified; when the callback is needed,
538             HAL_HASH_ErrorCallback() can be implemented in the user file.
539    */
540 }
541 
542 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
543 /**
544   * @brief  Register a User HASH Callback
545   *         To be used instead of the weak (surcharged) predefined callback
546   * @param hhash HASH handle
547   * @param CallbackID ID of the callback to be registered
548   *        This parameter can be one of the following values:
549   *          @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
550   *          @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
551   *          @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
552   *          @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
553   *          @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
554   * @param pCallback pointer to the Callback function
555   * @retval status
556   */
HAL_HASH_RegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID,pHASH_CallbackTypeDef pCallback)557 HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
558                                             pHASH_CallbackTypeDef pCallback)
559 {
560   HAL_StatusTypeDef status = HAL_OK;
561 
562   if (pCallback == NULL)
563   {
564     /* Update the error code */
565     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
566     return HAL_ERROR;
567   }
568   /* Process locked */
569   __HAL_LOCK(hhash);
570 
571   if (HAL_HASH_STATE_READY == hhash->State)
572   {
573     switch (CallbackID)
574     {
575       case HAL_HASH_INPUTCPLT_CB_ID :
576         hhash->InCpltCallback = pCallback;
577         break;
578 
579       case HAL_HASH_DGSTCPLT_CB_ID :
580         hhash->DgstCpltCallback = pCallback;
581         break;
582 
583       case HAL_HASH_ERROR_CB_ID :
584         hhash->ErrorCallback = pCallback;
585         break;
586 
587       case HAL_HASH_MSPINIT_CB_ID :
588         hhash->MspInitCallback = pCallback;
589         break;
590 
591       case HAL_HASH_MSPDEINIT_CB_ID :
592         hhash->MspDeInitCallback = pCallback;
593         break;
594 
595       default :
596         /* Update the error code */
597         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
598         /* update return status */
599         status =  HAL_ERROR;
600         break;
601     }
602   }
603   else if (HAL_HASH_STATE_RESET == hhash->State)
604   {
605     switch (CallbackID)
606     {
607       case HAL_HASH_MSPINIT_CB_ID :
608         hhash->MspInitCallback = pCallback;
609         break;
610 
611       case HAL_HASH_MSPDEINIT_CB_ID :
612         hhash->MspDeInitCallback = pCallback;
613         break;
614 
615       default :
616         /* Update the error code */
617         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
618         /* update return status */
619         status =  HAL_ERROR;
620         break;
621     }
622   }
623   else
624   {
625     /* Update the error code */
626     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
627     /* update return status */
628     status =  HAL_ERROR;
629   }
630 
631   /* Release Lock */
632   __HAL_UNLOCK(hhash);
633   return status;
634 }
635 
636 /**
637   * @brief  Unregister a HASH Callback
638   *         HASH Callback is redirected to the weak (surcharged) predefined callback
639   * @param hhash HASH handle
640   * @param CallbackID ID of the callback to be unregistered
641   *        This parameter can be one of the following values:
642   *          @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
643   *          @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
644   *          @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
645   *          @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
646   *          @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
647   * @retval status
648   */
HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID)649 HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
650 {
651   HAL_StatusTypeDef status = HAL_OK;
652 
653   /* Process locked */
654   __HAL_LOCK(hhash);
655 
656   if (HAL_HASH_STATE_READY == hhash->State)
657   {
658     switch (CallbackID)
659     {
660       case HAL_HASH_INPUTCPLT_CB_ID :
661         hhash->InCpltCallback = HAL_HASH_InCpltCallback;     /* Legacy weak (surcharged) input completion callback */
662         break;
663 
664       case HAL_HASH_DGSTCPLT_CB_ID :
665         hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
666                                                                 completion callback */
667         break;
668 
669       case HAL_HASH_ERROR_CB_ID :
670         hhash->ErrorCallback = HAL_HASH_ErrorCallback;       /* Legacy weak (surcharged) error callback */
671         break;
672 
673       case HAL_HASH_MSPINIT_CB_ID :
674         hhash->MspInitCallback = HAL_HASH_MspInit;           /* Legacy weak (surcharged) Msp Init */
675         break;
676 
677       case HAL_HASH_MSPDEINIT_CB_ID :
678         hhash->MspDeInitCallback = HAL_HASH_MspDeInit;       /* Legacy weak (surcharged) Msp DeInit */
679         break;
680 
681       default :
682         /* Update the error code */
683         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
684         /* update return status */
685         status =  HAL_ERROR;
686         break;
687     }
688   }
689   else if (HAL_HASH_STATE_RESET == hhash->State)
690   {
691     switch (CallbackID)
692     {
693       case HAL_HASH_MSPINIT_CB_ID :
694         hhash->MspInitCallback = HAL_HASH_MspInit;           /* Legacy weak (surcharged) Msp Init */
695         break;
696 
697       case HAL_HASH_MSPDEINIT_CB_ID :
698         hhash->MspDeInitCallback = HAL_HASH_MspDeInit;       /* Legacy weak (surcharged) Msp DeInit */
699         break;
700 
701       default :
702         /* Update the error code */
703         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
704         /* update return status */
705         status =  HAL_ERROR;
706         break;
707     }
708   }
709   else
710   {
711     /* Update the error code */
712     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
713     /* update return status */
714     status =  HAL_ERROR;
715   }
716 
717   /* Release Lock */
718   __HAL_UNLOCK(hhash);
719   return status;
720 }
721 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
722 
723 /**
724   * @}
725   */
726 
727 /** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
728   *  @brief   HASH processing functions using polling mode.
729   *
730 @verbatim
731  ===============================================================================
732                  ##### Polling mode HASH processing functions #####
733  ===============================================================================
734     [..]  This section provides functions allowing to calculate in polling mode
735           the hash value using one of the following algorithms:
736       (+) MD5
737          (++) HAL_HASH_MD5_Start()
738          (++) HAL_HASH_MD5_Accmlt()
739          (++) HAL_HASH_MD5_Accmlt_End()
740       (+) SHA1
741          (++) HAL_HASH_SHA1_Start()
742          (++) HAL_HASH_SHA1_Accmlt()
743          (++) HAL_HASH_SHA1_Accmlt_End()
744 
745     [..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
746 
747     [..]  In case of multi-buffer HASH processing (a single digest is computed while
748           several buffers are fed to the Peripheral), the user can resort to successive calls
749           to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
750           to HAL_HASH_xxx_Accumulate_End().
751 
752 @endverbatim
753   * @{
754   */
755 
756 /**
757   * @brief  Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
758   *         read the computed digest.
759   * @note   Digest is available in pOutBuffer.
760   * @param  hhash HASH handle.
761   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
762   * @param  Size length of the input buffer in bytes.
763   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
764   * @param  Timeout Timeout value
765   * @retval HAL status
766   */
HAL_HASH_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)767 HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
768                                      uint32_t Timeout)
769 {
770   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
771 }
772 
773 /**
774   * @brief  If not already done, initialize the HASH peripheral in MD5 mode then
775   *         processes pInBuffer.
776   * @note   Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
777   *         several input buffers back-to-back to the Peripheral that will yield a single
778   *         HASH signature once all buffers have been entered. Wrap-up of input
779   *         buffers feeding and retrieval of digest is done by a call to
780   *         HAL_HASH_MD5_Accmlt_End().
781   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
782   *         the Peripheral has already been initialized.
783   * @note   Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
784   *         to read it, feeding at the same time the last input buffer to the Peripheral.
785   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
786   *         HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
787   *         to manage the ending buffer with a length in bytes not a multiple of 4.
788   * @param  hhash HASH handle.
789   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
790   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
791   * @retval HAL status
792   */
HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)793 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
794 {
795   return  HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
796 }
797 
798 /**
799   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
800   * @note   Digest is available in pOutBuffer.
801   * @param  hhash HASH handle.
802   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
803   * @param  Size length of the input buffer in bytes.
804   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
805   * @param  Timeout Timeout value
806   * @retval HAL status
807   */
HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)808 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
809                                           uint8_t *pOutBuffer, uint32_t Timeout)
810 {
811   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
812 }
813 
814 /**
815   * @brief  Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
816   *         read the computed digest.
817   * @note   Digest is available in pOutBuffer.
818   * @param  hhash HASH handle.
819   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
820   * @param  Size length of the input buffer in bytes.
821   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
822   * @param  Timeout Timeout value
823   * @retval HAL status
824   */
HAL_HASH_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)825 HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
826                                       uint32_t Timeout)
827 {
828   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
829 }
830 
831 /**
832   * @brief  If not already done, initialize the HASH peripheral in SHA1 mode then
833   *         processes pInBuffer.
834   * @note   Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
835   *         several input buffers back-to-back to the Peripheral that will yield a single
836   *         HASH signature once all buffers have been entered. Wrap-up of input
837   *         buffers feeding and retrieval of digest is done by a call to
838   *         HAL_HASH_SHA1_Accmlt_End().
839   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
840   *         the Peripheral has already been initialized.
841   * @note   Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
842   *         to read it, feeding at the same time the last input buffer to the Peripheral.
843   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
844   *         HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
845   *         to manage the ending buffer with a length in bytes not a multiple of 4.
846   * @param  hhash HASH handle.
847   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
848   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
849   * @retval HAL status
850   */
HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)851 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
852 {
853   return  HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
854 }
855 
856 /**
857   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
858   * @note   Digest is available in pOutBuffer.
859   * @param  hhash HASH handle.
860   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
861   * @param  Size length of the input buffer in bytes.
862   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
863   * @param  Timeout Timeout value
864   * @retval HAL status
865   */
HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)866 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
867                                            uint8_t *pOutBuffer, uint32_t Timeout)
868 {
869   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
870 }
871 
872 /**
873   * @}
874   */
875 
876 /** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
877   *  @brief   HASH processing functions using interrupt mode.
878   *
879 @verbatim
880  ===============================================================================
881                  ##### Interruption mode HASH processing functions #####
882  ===============================================================================
883     [..]  This section provides functions allowing to calculate in interrupt mode
884           the hash value using one of the following algorithms:
885       (+) MD5
886          (++) HAL_HASH_MD5_Start_IT()
887          (++) HAL_HASH_MD5_Accmlt_IT()
888          (++) HAL_HASH_MD5_Accmlt_End_IT()
889       (+) SHA1
890          (++) HAL_HASH_SHA1_Start_IT()
891          (++) HAL_HASH_SHA1_Accmlt_IT()
892          (++) HAL_HASH_SHA1_Accmlt_End_IT()
893 
894     [..]  API HAL_HASH_IRQHandler() manages each HASH interruption.
895 
896     [..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
897          HMAC processing mode.
898 
899 
900 @endverbatim
901   * @{
902   */
903 
904 /**
905   * @brief  Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
906   *         read the computed digest in interruption mode.
907   * @note   Digest is available in pOutBuffer.
908   * @param  hhash HASH handle.
909   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
910   * @param  Size length of the input buffer in bytes.
911   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
912   * @retval HAL status
913   */
HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)914 HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
915                                         uint8_t *pOutBuffer)
916 {
917   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
918 }
919 
920 /**
921   * @brief  If not already done, initialize the HASH peripheral in MD5 mode then
922   *         processes pInBuffer in interruption mode.
923   * @note   Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
924   *         several input buffers back-to-back to the Peripheral that will yield a single
925   *         HASH signature once all buffers have been entered. Wrap-up of input
926   *         buffers feeding and retrieval of digest is done by a call to
927   *         HAL_HASH_MD5_Accmlt_End_IT().
928   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
929   *         the Peripheral has already been initialized.
930   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
931   *         HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
932   *         to manage the ending buffer with a length in bytes not a multiple of 4.
933   * @param  hhash HASH handle.
934   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
935   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
936   * @retval HAL status
937   */
HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)938 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
939 {
940   return  HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
941 }
942 
943 /**
944   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
945   * @note   Digest is available in pOutBuffer.
946   * @param  hhash HASH handle.
947   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
948   * @param  Size length of the input buffer in bytes.
949   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
950   * @retval HAL status
951   */
HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)952 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
953                                              uint8_t *pOutBuffer)
954 {
955   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
956 }
957 
958 /**
959   * @brief  Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
960   *         read the computed digest in interruption mode.
961   * @note   Digest is available in pOutBuffer.
962   * @param  hhash HASH handle.
963   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
964   * @param  Size length of the input buffer in bytes.
965   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
966   * @retval HAL status
967   */
HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)968 HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
969                                          uint8_t *pOutBuffer)
970 {
971   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
972 }
973 
974 
975 /**
976   * @brief  If not already done, initialize the HASH peripheral in SHA1 mode then
977   *         processes pInBuffer in interruption mode.
978   * @note   Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
979   *         several input buffers back-to-back to the Peripheral that will yield a single
980   *         HASH signature once all buffers have been entered. Wrap-up of input
981   *         buffers feeding and retrieval of digest is done by a call to
982   *         HAL_HASH_SHA1_Accmlt_End_IT().
983   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
984   *         the Peripheral has already been initialized.
985   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
986   *         HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
987   *         to manage the ending buffer with a length in bytes not a multiple of 4.
988   * @param  hhash HASH handle.
989   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
990   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
991   * @retval HAL status
992   */
HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)993 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
994 {
995   return  HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
996 }
997 
998 /**
999   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
1000   * @note   Digest is available in pOutBuffer.
1001   * @param  hhash HASH handle.
1002   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1003   * @param  Size length of the input buffer in bytes.
1004   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1005   * @retval HAL status
1006   */
HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1007 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1008                                               uint8_t *pOutBuffer)
1009 {
1010   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1011 }
1012 
1013 /**
1014   * @brief Handle HASH interrupt request.
1015   * @param hhash HASH handle.
1016   * @note  HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
1017   * @note  In case of error reported during the HASH interruption processing,
1018   *        HAL_HASH_ErrorCallback() API is called so that user code can
1019   *        manage the error. The error type is available in hhash->Status field.
1020   * @retval None
1021   */
HAL_HASH_IRQHandler(HASH_HandleTypeDef * hhash)1022 void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
1023 {
1024   hhash->Status = HASH_IT(hhash);
1025   if (hhash->Status != HAL_OK)
1026   {
1027     hhash->ErrorCode |= HAL_HASH_ERROR_IT;
1028 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1029     hhash->ErrorCallback(hhash);
1030 #else
1031     HAL_HASH_ErrorCallback(hhash);
1032 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1033     /* After error handling by code user, reset HASH handle HAL status */
1034     hhash->Status = HAL_OK;
1035   }
1036 }
1037 
1038 /**
1039   * @}
1040   */
1041 
1042 /** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
1043   *  @brief   HASH processing functions using DMA mode.
1044   *
1045 @verbatim
1046  ===============================================================================
1047                     ##### DMA mode HASH processing functions #####
1048  ===============================================================================
1049     [..]  This section provides functions allowing to calculate in DMA mode
1050           the hash value using one of the following algorithms:
1051       (+) MD5
1052          (++) HAL_HASH_MD5_Start_DMA()
1053          (++) HAL_HASH_MD5_Finish()
1054       (+) SHA1
1055          (++) HAL_HASH_SHA1_Start_DMA()
1056          (++) HAL_HASH_SHA1_Finish()
1057 
1058     [..]  When resorting to DMA mode to enter the data in the Peripheral, user must resort
1059           to  HAL_HASH_xxx_Start_DMA() then read the resulting digest with
1060           HAL_HASH_xxx_Finish().
1061     [..]  In case of multi-buffer HASH processing, MDMAT bit must first be set before
1062           the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
1063           reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
1064           retrieved thanks to HAL_HASH_xxx_Finish().
1065 
1066 @endverbatim
1067   * @{
1068   */
1069 
1070 /**
1071   * @brief  Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
1072   *         to feed the input buffer to the Peripheral.
1073   * @note   Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
1074   *         be called to retrieve the computed digest.
1075   * @param  hhash HASH handle.
1076   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1077   * @param  Size length of the input buffer in bytes.
1078   * @retval HAL status
1079   */
HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1080 HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1081 {
1082   return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1083 }
1084 
1085 /**
1086   * @brief  Return the computed digest in MD5 mode.
1087   * @note   The API waits for DCIS to be set then reads the computed digest.
1088   * @note   HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
1089   *         HMAC MD5 mode.
1090   * @param  hhash HASH handle.
1091   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1092   * @param  Timeout Timeout value.
1093   * @retval HAL status
1094   */
HAL_HASH_MD5_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1095 HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1096 {
1097   return HASH_Finish(hhash, pOutBuffer, Timeout);
1098 }
1099 
1100 /**
1101   * @brief  Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
1102   *         to feed the input buffer to the Peripheral.
1103   * @note   Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
1104   *         be called to retrieve the computed digest.
1105   * @param  hhash HASH handle.
1106   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1107   * @param  Size length of the input buffer in bytes.
1108   * @retval HAL status
1109   */
HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1110 HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1111 {
1112   return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1113 }
1114 
1115 
1116 /**
1117   * @brief  Return the computed digest in SHA1 mode.
1118   * @note   The API waits for DCIS to be set then reads the computed digest.
1119   * @note   HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
1120   *         HMAC SHA1 mode.
1121   * @param  hhash HASH handle.
1122   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1123   * @param  Timeout Timeout value.
1124   * @retval HAL status
1125   */
HAL_HASH_SHA1_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1126 HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1127 {
1128   return HASH_Finish(hhash, pOutBuffer, Timeout);
1129 }
1130 
1131 /**
1132   * @}
1133   */
1134 
1135 /** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
1136   *  @brief   HMAC processing functions using polling mode.
1137   *
1138 @verbatim
1139  ===============================================================================
1140                  ##### Polling mode HMAC processing functions #####
1141  ===============================================================================
1142     [..]  This section provides functions allowing to calculate in polling mode
1143           the HMAC value using one of the following algorithms:
1144       (+) MD5
1145          (++) HAL_HMAC_MD5_Start()
1146       (+) SHA1
1147          (++) HAL_HMAC_SHA1_Start()
1148 
1149 
1150 @endverbatim
1151   * @{
1152   */
1153 
1154 /**
1155   * @brief  Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1156   *         read the computed digest.
1157   * @note   Digest is available in pOutBuffer.
1158   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1159   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1160   * @param  hhash HASH handle.
1161   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1162   * @param  Size length of the input buffer in bytes.
1163   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1164   * @param  Timeout Timeout value.
1165   * @retval HAL status
1166   */
HAL_HMAC_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1167 HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1168                                      uint32_t Timeout)
1169 {
1170   return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
1171 }
1172 
1173 /**
1174   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1175   *         read the computed digest.
1176   * @note   Digest is available in pOutBuffer.
1177   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1178   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1179   * @param  hhash HASH handle.
1180   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1181   * @param  Size length of the input buffer in bytes.
1182   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1183   * @param  Timeout Timeout value.
1184   * @retval HAL status
1185   */
HAL_HMAC_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1186 HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1187                                       uint32_t Timeout)
1188 {
1189   return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
1190 }
1191 
1192 /**
1193   * @}
1194   */
1195 
1196 
1197 /** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
1198   *  @brief   HMAC processing functions using interrupt mode.
1199   *
1200 @verbatim
1201  ===============================================================================
1202                  ##### Interrupt mode HMAC processing functions #####
1203  ===============================================================================
1204     [..]  This section provides functions allowing to calculate in interrupt mode
1205           the HMAC value using one of the following algorithms:
1206       (+) MD5
1207          (++) HAL_HMAC_MD5_Start_IT()
1208       (+) SHA1
1209          (++) HAL_HMAC_SHA1_Start_IT()
1210 
1211 @endverbatim
1212   * @{
1213   */
1214 
1215 
1216 /**
1217   * @brief  Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1218   *         read the computed digest in interrupt mode.
1219   * @note   Digest is available in pOutBuffer.
1220   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1221   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1222   * @param  hhash HASH handle.
1223   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1224   * @param  Size length of the input buffer in bytes.
1225   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1226   * @retval HAL status
1227   */
HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1228 HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1229                                         uint8_t *pOutBuffer)
1230 {
1231   return  HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
1232 }
1233 
1234 /**
1235   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1236   *         read the computed digest in interrupt mode.
1237   * @note   Digest is available in pOutBuffer.
1238   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1239   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1240   * @param  hhash HASH handle.
1241   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1242   * @param  Size length of the input buffer in bytes.
1243   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1244   * @retval HAL status
1245   */
HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1246 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1247                                          uint8_t *pOutBuffer)
1248 {
1249   return  HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1250 }
1251 
1252 /**
1253   * @}
1254   */
1255 
1256 
1257 
1258 /** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
1259   *  @brief   HMAC processing functions using DMA modes.
1260   *
1261 @verbatim
1262  ===============================================================================
1263                  ##### DMA mode HMAC processing functions #####
1264  ===============================================================================
1265     [..]  This section provides functions allowing to calculate in DMA mode
1266           the HMAC value using one of the following algorithms:
1267       (+) MD5
1268          (++) HAL_HMAC_MD5_Start_DMA()
1269       (+) SHA1
1270          (++) HAL_HMAC_SHA1_Start_DMA()
1271 
1272     [..]  When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
1273           user must resort to  HAL_HMAC_xxx_Start_DMA() then read the resulting digest
1274           with HAL_HASH_xxx_Finish().
1275 
1276 @endverbatim
1277   * @{
1278   */
1279 
1280 
1281 /**
1282   * @brief  Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
1283   *         DMA transfers to feed the key and the input buffer to the Peripheral.
1284   * @note   Once the DMA transfers are finished (indicated by hhash->State set back
1285   *         to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
1286   *         the computed digest.
1287   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1288   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1289   * @note   If MDMAT bit is set before calling this function (multi-buffer
1290   *          HASH processing case), the input buffer size (in bytes) must be
1291   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
1292   *          For the processing of the last buffer of the thread, MDMAT bit must
1293   *          be reset and the buffer length (in bytes) doesn't have to be a
1294   *          multiple of 4.
1295   * @param  hhash HASH handle.
1296   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1297   * @param  Size length of the input buffer in bytes.
1298   * @retval HAL status
1299   */
HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1300 HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1301 {
1302   return  HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1303 }
1304 
1305 
1306 /**
1307   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
1308   *         DMA transfers to feed the key and the input buffer to the Peripheral.
1309   * @note   Once the DMA transfers are finished (indicated by hhash->State set back
1310   *         to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
1311   *         the computed digest.
1312   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1313   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1314   * @note   If MDMAT bit is set before calling this function (multi-buffer
1315   *          HASH processing case), the input buffer size (in bytes) must be
1316   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
1317   *          For the processing of the last buffer of the thread, MDMAT bit must
1318   *          be reset and the buffer length (in bytes) doesn't have to be a
1319   *          multiple of 4.
1320   * @param  hhash HASH handle.
1321   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1322   * @param  Size length of the input buffer in bytes.
1323   * @retval HAL status
1324   */
HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1325 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1326 {
1327   return  HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1328 }
1329 
1330 /**
1331   * @}
1332   */
1333 
1334 /** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
1335   *  @brief   Peripheral State functions.
1336   *
1337 @verbatim
1338  ===============================================================================
1339                       ##### Peripheral State methods #####
1340  ===============================================================================
1341     [..]
1342     This section permits to get in run-time the state and the peripheral handle
1343     status of the peripheral:
1344       (+) HAL_HASH_GetState()
1345       (+) HAL_HASH_GetStatus()
1346 
1347     [..]
1348     Additionally, this subsection provides functions allowing to save and restore
1349     the HASH or HMAC processing context in case of calculation suspension:
1350       (+) HAL_HASH_ContextSaving()
1351       (+) HAL_HASH_ContextRestoring()
1352 
1353     [..]
1354     This subsection provides functions allowing to suspend the HASH processing
1355       (+) when input are fed to the Peripheral by software
1356           (++) HAL_HASH_SwFeed_ProcessSuspend()
1357       (+) when input are fed to the Peripheral by DMA
1358           (++) HAL_HASH_DMAFeed_ProcessSuspend()
1359 
1360 
1361 
1362 @endverbatim
1363   * @{
1364   */
1365 
1366 /**
1367   * @brief  Return the HASH handle state.
1368   * @note   The API yields the current state of the handle (BUSY, READY,...).
1369   * @param  hhash HASH handle.
1370   * @retval HAL HASH state
1371   */
HAL_HASH_GetState(HASH_HandleTypeDef * hhash)1372 HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
1373 {
1374   return hhash->State;
1375 }
1376 
1377 
1378 /**
1379   * @brief Return the HASH HAL status.
1380   * @note  The API yields the HAL status of the handle: it is the result of the
1381   *        latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
1382   * @param  hhash HASH handle.
1383   * @retval HAL status
1384   */
HAL_HASH_GetStatus(HASH_HandleTypeDef * hhash)1385 HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
1386 {
1387   return hhash->Status;
1388 }
1389 
1390 /**
1391   * @brief  Save the HASH context in case of processing suspension.
1392   * @param  hhash HASH handle.
1393   * @param  pMemBuffer pointer to the memory buffer where the HASH context
1394   *         is saved.
1395   * @note   The IMR, STR, CR then all the CSR registers are saved
1396   *         in that order. Only the r/w bits are read to be restored later on.
1397   * @note   By default, all the context swap registers (there are
1398   *         HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
1399   * @note   pMemBuffer points to a buffer allocated by the user. The buffer size
1400   *         must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
1401   * @retval None
1402   */
HAL_HASH_ContextSaving(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1403 void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1404 {
1405   uint32_t mem_ptr = (uint32_t)pMemBuffer;
1406   uint32_t csr_ptr = (uint32_t)HASH->CSR;
1407   uint32_t i;
1408 
1409   /* Prevent unused argument(s) compilation warning */
1410   UNUSED(hhash);
1411 
1412   /* Save IMR register content */
1413   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
1414   mem_ptr += 4U;
1415   /* Save STR register content */
1416   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
1417   mem_ptr += 4U;
1418   /* Save CR register content */
1419   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
1420                                     HASH_CR_LKEY | HASH_CR_MDMAT);
1421   mem_ptr += 4U;
1422   /* By default, save all CSRs registers */
1423   for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1424   {
1425     *(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
1426     mem_ptr += 4U;
1427     csr_ptr += 4U;
1428   }
1429 }
1430 
1431 
1432 /**
1433   * @brief  Restore the HASH context in case of processing resumption.
1434   * @param  hhash HASH handle.
1435   * @param  pMemBuffer pointer to the memory buffer where the HASH context
1436   *         is stored.
1437   * @note   The IMR, STR, CR then all the CSR registers are restored
1438   *         in that order. Only the r/w bits are restored.
1439   * @note   By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
1440   *         of those) are restored (all of them have been saved by default
1441   *         beforehand).
1442   * @retval None
1443   */
HAL_HASH_ContextRestoring(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1444 void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1445 {
1446   uint32_t mem_ptr = (uint32_t)pMemBuffer;
1447   uint32_t csr_ptr = (uint32_t)HASH->CSR;
1448   uint32_t i;
1449 
1450   /* Prevent unused argument(s) compilation warning */
1451   UNUSED(hhash);
1452 
1453   /* Restore IMR register content */
1454   WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
1455   mem_ptr += 4U;
1456   /* Restore STR register content */
1457   WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
1458   mem_ptr += 4U;
1459   /* Restore CR register content */
1460   WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
1461   mem_ptr += 4U;
1462 
1463   /* Reset the HASH processor before restoring the Context
1464   Swap Registers (CSR) */
1465   __HAL_HASH_INIT();
1466 
1467   /* By default, restore all CSR registers */
1468   for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1469   {
1470     WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
1471     mem_ptr += 4U;
1472     csr_ptr += 4U;
1473   }
1474 }
1475 
1476 
1477 /**
1478   * @brief  Initiate HASH processing suspension when in polling or interruption mode.
1479   * @param  hhash HASH handle.
1480   * @note   Set the handle field SuspendRequest to the appropriate value so that
1481   *         the on-going HASH processing is suspended as soon as the required
1482   *         conditions are met. Note that the actual suspension is carried out
1483   *         by the functions HASH_WriteData() in polling mode and HASH_IT() in
1484   *         interruption mode.
1485   * @retval None
1486   */
HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1487 void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1488 {
1489   /* Set Handle Suspend Request field */
1490   hhash->SuspendRequest = HAL_HASH_SUSPEND;
1491 }
1492 
1493 /**
1494   * @brief  Suspend the HASH processing when in DMA mode.
1495   * @param  hhash HASH handle.
1496   * @note   When suspension attempt occurs at the very end of a DMA transfer and
1497   *         all the data have already been entered in the Peripheral, hhash->State is
1498   *         set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
1499   *         recommended to wrap-up the processing in reading the digest as usual.
1500   * @retval HAL status
1501   */
HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1502 HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1503 {
1504   uint32_t tmp_remaining_DMATransferSize_inWords;
1505   uint32_t tmp_initial_DMATransferSize_inWords;
1506   uint32_t tmp_words_already_pushed;
1507 
1508   if (hhash->State == HAL_HASH_STATE_READY)
1509   {
1510     return HAL_ERROR;
1511   }
1512   else
1513   {
1514 
1515     /* Make sure there is enough time to suspend the processing */
1516     tmp_remaining_DMATransferSize_inWords = ((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CNDTR;
1517 
1518     if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
1519     {
1520       /* No suspension attempted since almost to the end of the transferred data. */
1521       /* Best option for user code is to wrap up low priority message hashing     */
1522       return HAL_ERROR;
1523     }
1524 
1525     /* Wait for BUSY flag to be reset */
1526     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1527     {
1528       return HAL_TIMEOUT;
1529     }
1530 
1531     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1532     {
1533       return HAL_ERROR;
1534     }
1535 
1536     /* Wait for BUSY flag to be set */
1537     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
1538     {
1539       return HAL_TIMEOUT;
1540     }
1541     /* Disable DMA channel */
1542     /* Note that the Abort function will
1543       - Clear the transfer error flags
1544       - Unlock
1545       - Set the State
1546     */
1547     if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
1548     {
1549       return HAL_ERROR;
1550     }
1551 
1552     /* Clear DMAE bit */
1553     CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1554 
1555     /* Wait for BUSY flag to be reset */
1556     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1557     {
1558       return HAL_TIMEOUT;
1559     }
1560 
1561     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1562     {
1563       return HAL_ERROR;
1564     }
1565 
1566     /* At this point, DMA interface is disabled and no transfer is on-going */
1567     /* Retrieve from the DMA handle how many words remain to be written */
1568     tmp_remaining_DMATransferSize_inWords = ((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CNDTR;
1569 
1570     if (tmp_remaining_DMATransferSize_inWords == 0U)
1571     {
1572       /* All the DMA transfer is actually done. Suspension occurred at the very end
1573          of the transfer. Either the digest computation is about to start (HASH case)
1574          or processing is about to move from one step to another (HMAC case).
1575          In both cases, the processing can't be suspended at this point. It is
1576          safer to
1577          - retrieve the low priority block digest before starting the high
1578            priority block processing (HASH case)
1579          - re-attempt a new suspension (HMAC case)
1580          */
1581       return HAL_ERROR;
1582     }
1583     else
1584     {
1585 
1586       /* Compute how many words were supposed to be transferred by DMA */
1587       tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
1588                                              ((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
1589 
1590       /* If discrepancy between the number of words reported by DMA Peripheral and
1591         the numbers of words entered as reported by HASH Peripheral, correct it */
1592       /* tmp_words_already_pushed reflects the number of words that were already pushed before
1593          the start of DMA transfer (multi-buffer processing case) */
1594       tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
1595       if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - \
1596             tmp_remaining_DMATransferSize_inWords) % 16U) != HASH_NBW_PUSHED())
1597       {
1598         tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
1599       }
1600 
1601       /* Accordingly, update the input pointer that points at the next word to be
1602          transferred to the Peripheral by DMA */
1603       hhash->pHashInBuffPtr +=  4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
1604 
1605       /* And store in HashInCount the remaining size to transfer (in bytes) */
1606       hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
1607 
1608     }
1609 
1610     /* Set State as suspended */
1611     hhash->State = HAL_HASH_STATE_SUSPENDED;
1612 
1613     return HAL_OK;
1614 
1615   }
1616 }
1617 
1618 /**
1619   * @brief  Return the HASH handle error code.
1620   * @param  hhash pointer to a HASH_HandleTypeDef structure.
1621   * @retval HASH Error Code
1622   */
HAL_HASH_GetError(HASH_HandleTypeDef * hhash)1623 uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
1624 {
1625   /* Return HASH Error Code */
1626   return hhash->ErrorCode;
1627 }
1628 /**
1629   * @}
1630   */
1631 
1632 
1633 /**
1634   * @}
1635   */
1636 
1637 /** @defgroup HASH_Private_Functions HASH Private Functions
1638   * @{
1639   */
1640 
1641 /**
1642   * @brief DMA HASH Input Data transfer completion callback.
1643   * @param hdma DMA handle.
1644   * @note  In case of HMAC processing, HASH_DMAXferCplt() initiates
1645   *        the next DMA transfer for the following HMAC step.
1646   * @retval None
1647   */
HASH_DMAXferCplt(DMA_HandleTypeDef * hdma)1648 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
1649 {
1650   HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1651   uint32_t inputaddr;
1652   uint32_t buffersize;
1653   HAL_StatusTypeDef status;
1654 
1655   if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1656   {
1657 
1658     /* Disable the DMA transfer */
1659     CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1660 
1661     if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
1662     {
1663       /* If no HMAC processing, input data transfer is now over */
1664 
1665       /* Change the HASH state to ready */
1666       hhash->State = HAL_HASH_STATE_READY;
1667 
1668       /* Call Input data transfer complete call back */
1669 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1670       hhash->InCpltCallback(hhash);
1671 #else
1672       HAL_HASH_InCpltCallback(hhash);
1673 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1674 
1675     }
1676     else
1677     {
1678       /* HMAC processing: depending on the current HMAC step and whether or
1679       not multi-buffer processing is on-going, the next step is initiated
1680       and MDMAT bit is set.  */
1681 
1682 
1683       if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
1684       {
1685         /* This is the end of HMAC processing */
1686 
1687         /* Change the HASH state to ready */
1688         hhash->State = HAL_HASH_STATE_READY;
1689 
1690         /* Call Input data transfer complete call back
1691         (note that the last DMA transfer was that of the key
1692         for the outer HASH operation). */
1693 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1694         hhash->InCpltCallback(hhash);
1695 #else
1696         HAL_HASH_InCpltCallback(hhash);
1697 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1698 
1699         return;
1700       }
1701       else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
1702       {
1703         inputaddr = (uint32_t)hhash->pHashMsgBuffPtr;     /* DMA transfer start address */
1704         buffersize = hhash->HashBuffSize;                 /* DMA transfer size (in bytes) */
1705         hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;        /* Move phase from Step 1 to Step 2 */
1706 
1707         /* In case of suspension request, save the new starting parameters */
1708         hhash->HashInCount = hhash->HashBuffSize;         /* Initial DMA transfer size (in bytes) */
1709         hhash->pHashInBuffPtr  = hhash->pHashMsgBuffPtr ; /* DMA transfer start address           */
1710 
1711         hhash->NbWordsAlreadyPushed = 0U;                  /* Reset number of words already pushed */
1712         /* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
1713         if (hhash->DigestCalculationDisable != RESET)
1714         {
1715           /* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
1716           no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
1717           __HAL_HASH_SET_MDMAT();
1718         }
1719       }
1720       else  /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
1721       {
1722         if (hhash->DigestCalculationDisable != RESET)
1723         {
1724           /* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
1725           (case of multi-buffer HMAC processing):
1726           DCAL must not be set.
1727           Phase remains in Step 2, MDMAT remains set at this point.
1728           Change the HASH state to ready and call Input data transfer complete call back. */
1729           hhash->State = HAL_HASH_STATE_READY;
1730 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1731           hhash->InCpltCallback(hhash);
1732 #else
1733           HAL_HASH_InCpltCallback(hhash);
1734 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1735           return ;
1736         }
1737         else
1738         {
1739           /* Digest calculation is not disabled (case of single buffer input or last buffer
1740           of multi-buffer HMAC processing) */
1741           inputaddr = (uint32_t)hhash->Init.pKey;       /* DMA transfer start address */
1742           buffersize = hhash->Init.KeySize;             /* DMA transfer size (in bytes) */
1743           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;    /* Move phase from Step 2 to Step 3 */
1744           /* In case of suspension request, save the new starting parameters */
1745           hhash->HashInCount = hhash->Init.KeySize;     /* Initial size for second DMA transfer (input data) */
1746           hhash->pHashInBuffPtr  = hhash->Init.pKey ;   /* address passed to DMA, now entering data message */
1747 
1748           hhash->NbWordsAlreadyPushed = 0U;              /* Reset number of words already pushed */
1749         }
1750       }
1751 
1752       /* Configure the Number of valid bits in last word of the message */
1753       __HAL_HASH_SET_NBVALIDBITS(buffersize);
1754 
1755       /* Set the HASH DMA transfer completion call back */
1756       hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
1757 
1758       /* Enable the DMA In DMA channel */
1759       status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
1760                                 (((buffersize % 4U) != 0U) ? ((buffersize + (4U - (buffersize % 4U))) / 4U) : \
1761                                  (buffersize / 4U)));
1762 
1763       /* Enable DMA requests */
1764       SET_BIT(HASH->CR, HASH_CR_DMAE);
1765 
1766       /* Return function status */
1767       if (status != HAL_OK)
1768       {
1769         /* Update HASH state machine to error */
1770         hhash->State = HAL_HASH_STATE_ERROR;
1771       }
1772       else
1773       {
1774         /* Change HASH state */
1775         hhash->State = HAL_HASH_STATE_BUSY;
1776       }
1777     }
1778   }
1779 
1780   return;
1781 }
1782 
1783 /**
1784   * @brief DMA HASH communication error callback.
1785   * @param hdma DMA handle.
1786   * @note  HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
1787   *        can contain user code to manage the error.
1788   * @retval None
1789   */
HASH_DMAError(DMA_HandleTypeDef * hdma)1790 static void HASH_DMAError(DMA_HandleTypeDef *hdma)
1791 {
1792   HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1793 
1794   if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1795   {
1796     hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
1797     /* Set HASH state to ready to prevent any blocking issue in user code
1798        present in HAL_HASH_ErrorCallback() */
1799     hhash->State = HAL_HASH_STATE_READY;
1800     /* Set HASH handle status to error */
1801     hhash->Status = HAL_ERROR;
1802 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1803     hhash->ErrorCallback(hhash);
1804 #else
1805     HAL_HASH_ErrorCallback(hhash);
1806 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1807     /* After error handling by code user, reset HASH handle HAL status */
1808     hhash->Status = HAL_OK;
1809 
1810   }
1811 }
1812 
1813 /**
1814   * @brief  Feed the input buffer to the HASH Peripheral.
1815   * @param  hhash HASH handle.
1816   * @param  pInBuffer pointer to input buffer.
1817   * @param  Size the size of input buffer in bytes.
1818   * @note   HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
1819   *         or not the HASH processing must be suspended. If this is the case, the
1820   *         processing is suspended when possible and the Peripheral feeding point reached at
1821   *         suspension time is stored in the handle for resumption later on.
1822   * @retval HAL status
1823   */
HASH_WriteData(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1824 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1825 {
1826   uint32_t buffercounter;
1827   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
1828   uint32_t tmp;
1829 
1830   for (buffercounter = 0U; buffercounter < (Size / 4U); buffercounter++)
1831   {
1832     /* Write input data 4 bytes at a time */
1833     HASH->DIN = *(uint32_t *)inputaddr;
1834     inputaddr += 4U;
1835 
1836     /* If the suspension flag has been raised and if the processing is not about
1837     to end, suspend processing */
1838     if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && (((buffercounter * 4U) + 4U) < Size))
1839     {
1840       /* wait for flag BUSY not set before  Wait for DINIS = 1*/
1841       if ((buffercounter * 4U) >= 64U)
1842       {
1843         if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1844         {
1845           return HAL_TIMEOUT;
1846         }
1847       }
1848       /* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
1849       in the input buffer */
1850       if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
1851       {
1852         /* Reset SuspendRequest */
1853         hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
1854 
1855         /* Depending whether the key or the input data were fed to the Peripheral, the feeding point
1856         reached at suspension time is not saved in the same handle fields */
1857         if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
1858         {
1859           /* Save current reading and writing locations of Input and Output buffers */
1860           hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
1861           /* Save the number of bytes that remain to be processed at this point */
1862           hhash->HashInCount    =  Size - ((buffercounter * 4U) + 4U);
1863         }
1864         else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
1865         {
1866           /* Save current reading and writing locations of Input and Output buffers */
1867           hhash->pHashKeyBuffPtr  = (uint8_t *)inputaddr;
1868           /* Save the number of bytes that remain to be processed at this point */
1869           hhash->HashKeyCount  =  Size - ((buffercounter * 4U) + 4U);
1870         }
1871         else
1872         {
1873           /* Unexpected phase: unlock process and report error */
1874           hhash->State = HAL_HASH_STATE_READY;
1875           __HAL_UNLOCK(hhash);
1876           return HAL_ERROR;
1877         }
1878 
1879         /* Set the HASH state to Suspended and exit to stop entering data */
1880         hhash->State = HAL_HASH_STATE_SUSPENDED;
1881 
1882         return HAL_OK;
1883       } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))  */
1884     } /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
1885   }   /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4)                 */
1886 
1887   /* At this point, all the data have been entered to the Peripheral: exit */
1888 
1889   if ((Size % 4U) != 0U)
1890   {
1891     if (hhash->Init.DataType == HASH_DATATYPE_16B)
1892     {
1893       /* Write remaining input data */
1894 
1895       if ((Size % 4U) <= 2U)
1896       {
1897         HASH->DIN = (uint32_t) * (uint16_t *)inputaddr;
1898       }
1899       if ((Size % 4U) == 3U)
1900       {
1901         HASH->DIN = *(uint32_t *)inputaddr;
1902       }
1903 
1904     }
1905     else if ((hhash->Init.DataType == HASH_DATATYPE_8B)
1906              || (hhash->Init.DataType == HASH_DATATYPE_1B))  /* byte swap or bit swap or */
1907     {
1908       /* Write remaining input data */
1909       if ((Size % 4U) == 1U)
1910       {
1911         HASH->DIN = (uint32_t) * (uint8_t *)inputaddr;
1912       }
1913       if ((Size % 4U) == 2U)
1914       {
1915         HASH->DIN = (uint32_t) * (uint16_t *)inputaddr;
1916       }
1917       if ((Size % 4U) == 3U)
1918       {
1919         tmp  = *(uint8_t *)inputaddr;
1920         tmp |= (uint32_t)*(uint8_t *)(inputaddr + 1U) << 8U;
1921         tmp |= (uint32_t)*(uint8_t *)(inputaddr + 2U) << 16U;
1922         HASH->DIN = tmp;
1923       }
1924 
1925     }
1926     else
1927     {
1928       HASH->DIN = *(uint32_t *)inputaddr;
1929     }
1930     /*hhash->HashInCount += 4U;*/
1931   }
1932 
1933 
1934   return  HAL_OK;
1935 }
1936 
1937 /**
1938   * @brief  Retrieve the message digest.
1939   * @param  pMsgDigest pointer to the computed digest.
1940   * @param  Size message digest size in bytes.
1941   * @retval None
1942   */
HASH_GetDigest(uint8_t * pMsgDigest,uint8_t Size)1943 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
1944 {
1945   uint32_t msgdigest = (uint32_t)pMsgDigest;
1946 
1947   switch (Size)
1948   {
1949     /* Read the message digest */
1950     case 16:  /* MD5 */
1951       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1952       msgdigest += 4U;
1953       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1954       msgdigest += 4U;
1955       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1956       msgdigest += 4U;
1957       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1958       break;
1959     case 20:  /* SHA1 */
1960       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1961       msgdigest += 4U;
1962       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1963       msgdigest += 4U;
1964       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1965       msgdigest += 4U;
1966       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1967       msgdigest += 4U;
1968       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1969       break;
1970     case 28:  /* SHA224 */
1971       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1972       msgdigest += 4U;
1973       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1974       msgdigest += 4U;
1975       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1976       msgdigest += 4U;
1977       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1978       msgdigest += 4U;
1979       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1980       msgdigest += 4U;
1981       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1982       msgdigest += 4U;
1983       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1984       break;
1985     case 32:   /* SHA256 */
1986       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1987       msgdigest += 4U;
1988       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1989       msgdigest += 4U;
1990       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1991       msgdigest += 4U;
1992       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1993       msgdigest += 4U;
1994       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1995       msgdigest += 4U;
1996       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1997       msgdigest += 4U;
1998       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1999       msgdigest += 4U;
2000       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
2001       break;
2002     default:
2003       break;
2004   }
2005 }
2006 
2007 
2008 
2009 /**
2010   * @brief  Handle HASH processing Timeout.
2011   * @param  hhash HASH handle.
2012   * @param  Flag specifies the HASH flag to check.
2013   * @param  Status the Flag status (SET or RESET).
2014   * @param  Timeout Timeout duration.
2015   * @retval HAL status
2016   */
HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef * hhash,uint32_t Flag,FlagStatus Status,uint32_t Timeout)2017 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
2018                                                      uint32_t Timeout)
2019 {
2020   uint32_t tickstart = HAL_GetTick();
2021 
2022   /* Wait until flag is set */
2023   if (Status == RESET)
2024   {
2025     while (__HAL_HASH_GET_FLAG(Flag) == RESET)
2026     {
2027       /* Check for the Timeout */
2028       if (Timeout != HAL_MAX_DELAY)
2029       {
2030         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2031         {
2032           /* Set State to Ready to be able to restart later on */
2033           hhash->State  = HAL_HASH_STATE_READY;
2034           /* Store time out issue in handle status */
2035           hhash->Status = HAL_TIMEOUT;
2036 
2037           /* Process Unlocked */
2038           __HAL_UNLOCK(hhash);
2039 
2040           return HAL_TIMEOUT;
2041         }
2042       }
2043     }
2044   }
2045   else
2046   {
2047     while (__HAL_HASH_GET_FLAG(Flag) != RESET)
2048     {
2049       /* Check for the Timeout */
2050       if (Timeout != HAL_MAX_DELAY)
2051       {
2052         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2053         {
2054           /* Set State to Ready to be able to restart later on */
2055           hhash->State  = HAL_HASH_STATE_READY;
2056           /* Store time out issue in handle status */
2057           hhash->Status = HAL_TIMEOUT;
2058 
2059           /* Process Unlocked */
2060           __HAL_UNLOCK(hhash);
2061 
2062           return HAL_TIMEOUT;
2063         }
2064       }
2065     }
2066   }
2067   return HAL_OK;
2068 }
2069 
2070 
2071 /**
2072   * @brief  HASH processing in interruption mode.
2073   * @param  hhash HASH handle.
2074   * @note   HASH_IT() regularly reads hhash->SuspendRequest to check whether
2075   *         or not the HASH processing must be suspended. If this is the case, the
2076   *         processing is suspended when possible and the Peripheral feeding point reached at
2077   *         suspension time is stored in the handle for resumption later on.
2078   * @retval HAL status
2079   */
HASH_IT(HASH_HandleTypeDef * hhash)2080 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
2081 {
2082   if (hhash->State == HAL_HASH_STATE_BUSY)
2083   {
2084     /* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
2085     if (hhash->HashITCounter == 0U)
2086     {
2087       /* Disable Interrupts */
2088       __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2089       /* HASH state set back to Ready to prevent any issue in user code
2090          present in HAL_HASH_ErrorCallback() */
2091       hhash->State = HAL_HASH_STATE_READY;
2092       return HAL_ERROR;
2093     }
2094     else if (hhash->HashITCounter == 1U)
2095     {
2096       /* This is the first call to HASH_IT, the first input data are about to be
2097          entered in the Peripheral. A specific processing is carried out at this point to
2098          start-up the processing. */
2099       hhash->HashITCounter = 2U;
2100     }
2101     else
2102     {
2103       /* Cruise speed reached, HashITCounter remains equal to 3 until the end of
2104         the HASH processing or the end of the current step for HMAC processing. */
2105       hhash->HashITCounter = 3U;
2106     }
2107 
2108     /* If digest is ready */
2109     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
2110     {
2111       /* Read the digest */
2112       HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2113 
2114       /* Disable Interrupts */
2115       __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2116       /* Change the HASH state */
2117       hhash->State = HAL_HASH_STATE_READY;
2118       /* Reset HASH state machine */
2119       hhash->Phase = HAL_HASH_PHASE_READY;
2120       /* Call digest computation complete call back */
2121 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2122       hhash->DgstCpltCallback(hhash);
2123 #else
2124       HAL_HASH_DgstCpltCallback(hhash);
2125 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2126 
2127       return HAL_OK;
2128     }
2129 
2130     /* If Peripheral ready to accept new data */
2131     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2132     {
2133 
2134       /* If the suspension flag has been raised and if the processing is not about
2135          to end, suspend processing */
2136       if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
2137       {
2138         /* Disable Interrupts */
2139         __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2140 
2141         /* Reset SuspendRequest */
2142         hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
2143 
2144         /* Change the HASH state */
2145         hhash->State = HAL_HASH_STATE_SUSPENDED;
2146 
2147         return HAL_OK;
2148       }
2149 
2150       /* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
2151         check whether the digest calculation has been triggered */
2152       if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
2153       {
2154         /* Call Input data transfer complete call back
2155            (called at the end of each step for HMAC) */
2156 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2157         hhash->InCpltCallback(hhash);
2158 #else
2159         HAL_HASH_InCpltCallback(hhash);
2160 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2161 
2162         if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2163         {
2164           /* Wait until Peripheral is not busy anymore */
2165           if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2166           {
2167             /* Disable Interrupts */
2168             __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2169             return HAL_TIMEOUT;
2170           }
2171           /* Initialization start for HMAC STEP 2 */
2172           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;        /* Move phase from Step 1 to Step 2 */
2173           __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);  /* Set NBLW for the input message */
2174           hhash->HashInCount = hhash->HashBuffSize;         /* Set the input data size (in bytes) */
2175           hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr;   /* Set the input data address */
2176           hhash->HashITCounter = 1;                         /* Set ITCounter to 1 to indicate the start
2177                                                                of a new phase */
2178           __HAL_HASH_ENABLE_IT(HASH_IT_DINI);               /* Enable IT (was disabled in HASH_Write_Block_Data) */
2179         }
2180         else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2181         {
2182           /* Wait until Peripheral is not busy anymore */
2183           if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2184           {
2185             /* Disable Interrupts */
2186             __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2187             return HAL_TIMEOUT;
2188           }
2189           /* Initialization start for HMAC STEP 3 */
2190           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;         /* Move phase from Step 2 to Step 3 */
2191           __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);   /* Set NBLW for the key */
2192           hhash->HashInCount = hhash->Init.KeySize;          /* Set the key size (in bytes) */
2193           hhash->pHashInBuffPtr = hhash->Init.pKey;          /* Set the key address */
2194           hhash->HashITCounter = 1;                          /* Set ITCounter to 1 to indicate the start
2195                                                                 of a new phase */
2196           __HAL_HASH_ENABLE_IT(HASH_IT_DINI);                /* Enable IT (was disabled in HASH_Write_Block_Data) */
2197         }
2198         else
2199         {
2200           /* Nothing to do */
2201         }
2202       } /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
2203     }  /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
2204 
2205     /* Return function status */
2206     return HAL_OK;
2207   }
2208   else
2209   {
2210     return HAL_BUSY;
2211   }
2212 }
2213 
2214 
2215 /**
2216   * @brief  Write a block of data in HASH Peripheral in interruption mode.
2217   * @param  hhash HASH handle.
2218   * @note   HASH_Write_Block_Data() is called under interruption by HASH_IT().
2219   * @retval HAL status
2220   */
HASH_Write_Block_Data(HASH_HandleTypeDef * hhash)2221 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
2222 {
2223   uint32_t inputaddr;
2224   uint32_t buffercounter;
2225   uint32_t inputcounter;
2226   uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
2227 
2228   /* If there are more than 64 bytes remaining to be entered */
2229   if (hhash->HashInCount > 64U)
2230   {
2231     inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2232     /* Write the Input block in the Data IN register
2233       (16 32-bit words, or 64 bytes are entered) */
2234     for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
2235     {
2236       HASH->DIN = *(uint32_t *)inputaddr;
2237       inputaddr += 4U;
2238     }
2239     /* If this is the start of input data entering, an additional word
2240       must be entered to start up the HASH processing */
2241     if (hhash->HashITCounter == 2U)
2242     {
2243       HASH->DIN = *(uint32_t *)inputaddr;
2244       if (hhash->HashInCount >= 68U)
2245       {
2246         /* There are still data waiting to be entered in the Peripheral.
2247            Decrement buffer counter and set pointer to the proper
2248            memory location for the next data entering round. */
2249         hhash->HashInCount -= 68U;
2250         hhash->pHashInBuffPtr += 68U;
2251       }
2252       else
2253       {
2254         /* All the input buffer has been fed to the HW. */
2255         hhash->HashInCount = 0U;
2256       }
2257     }
2258     else
2259     {
2260       /* 64 bytes have been entered and there are still some remaining:
2261          Decrement buffer counter and set pointer to the proper
2262         memory location for the next data entering round.*/
2263       hhash->HashInCount -= 64U;
2264       hhash->pHashInBuffPtr += 64U;
2265     }
2266   }
2267   else
2268   {
2269     /* 64 or less bytes remain to be entered. This is the last
2270       data entering round. */
2271 
2272     /* Get the buffer address */
2273     inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2274     /* Get the buffer counter */
2275     inputcounter = hhash->HashInCount;
2276     /* Disable Interrupts */
2277     __HAL_HASH_DISABLE_IT(HASH_IT_DINI);
2278 
2279     /* Write the Input block in the Data IN register */
2280     for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
2281     {
2282       HASH->DIN = *(uint32_t *)inputaddr;
2283       inputaddr += 4U;
2284     }
2285 
2286     if (hhash->Accumulation == 1U)
2287     {
2288       /* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
2289          The digest computation will be started when the last buffer data are entered. */
2290 
2291       /* Reset multi buffers accumulation flag */
2292       hhash->Accumulation = 0U;
2293       /* Change the HASH state */
2294       hhash->State = HAL_HASH_STATE_READY;
2295       /* Call Input data transfer complete call back */
2296 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2297       hhash->InCpltCallback(hhash);
2298 #else
2299       HAL_HASH_InCpltCallback(hhash);
2300 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2301     }
2302     else
2303     {
2304       /* Start the Digest calculation */
2305       __HAL_HASH_START_DIGEST();
2306       /* Return indication that digest calculation has started:
2307          this return value triggers the call to Input data transfer
2308          complete call back as well as the proper transition from
2309          one step to another in HMAC mode. */
2310       ret = HASH_DIGEST_CALCULATION_STARTED;
2311     }
2312     /* Reset buffer counter */
2313     hhash->HashInCount = 0;
2314   }
2315 
2316   /* Return whether or digest calculation has started */
2317   return ret;
2318 }
2319 
2320 /**
2321   * @brief  HMAC processing in polling mode.
2322   * @param  hhash HASH handle.
2323   * @param  Timeout Timeout value.
2324   * @retval HAL status
2325   */
HMAC_Processing(HASH_HandleTypeDef * hhash,uint32_t Timeout)2326 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
2327 {
2328   /* Ensure first that Phase is correct */
2329   if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
2330       && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
2331   {
2332     /* Change the HASH state */
2333     hhash->State = HAL_HASH_STATE_READY;
2334 
2335     /* Process Unlock */
2336     __HAL_UNLOCK(hhash);
2337 
2338     /* Return function status */
2339     return HAL_ERROR;
2340   }
2341 
2342   /* HMAC Step 1 processing */
2343   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2344   {
2345     /************************** STEP 1 ******************************************/
2346     /* Configure the Number of valid bits in last word of the message */
2347     __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2348 
2349     /* Write input buffer in Data register */
2350     hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2351     if (hhash->Status != HAL_OK)
2352     {
2353       return hhash->Status;
2354     }
2355 
2356     /* Check whether or not key entering process has been suspended */
2357     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2358     {
2359       /* Process Unlocked */
2360       __HAL_UNLOCK(hhash);
2361 
2362       /* Stop right there and return function status */
2363       return HAL_OK;
2364     }
2365 
2366     /* No processing suspension at this point: set DCAL bit. */
2367     __HAL_HASH_START_DIGEST();
2368 
2369     /* Wait for BUSY flag to be cleared */
2370     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2371     {
2372       return HAL_TIMEOUT;
2373     }
2374 
2375     /* Move from Step 1 to Step 2 */
2376     hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
2377 
2378   }
2379 
2380   /* HMAC Step 2 processing.
2381      After phase check, HMAC_Processing() may
2382      - directly start up from this point in resumption case
2383        if the same Step 2 processing was suspended previously
2384     - or fall through from the Step 1 processing carried out hereabove */
2385   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2386   {
2387     /************************** STEP 2 ******************************************/
2388     /* Configure the Number of valid bits in last word of the message */
2389     __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
2390 
2391     /* Write input buffer in Data register */
2392     hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
2393     if (hhash->Status != HAL_OK)
2394     {
2395       return hhash->Status;
2396     }
2397 
2398     /* Check whether or not data entering process has been suspended */
2399     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2400     {
2401       /* Process Unlocked */
2402       __HAL_UNLOCK(hhash);
2403 
2404       /* Stop right there and return function status */
2405       return HAL_OK;
2406     }
2407 
2408     /* No processing suspension at this point: set DCAL bit. */
2409     __HAL_HASH_START_DIGEST();
2410 
2411     /* Wait for BUSY flag to be cleared */
2412     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2413     {
2414       return HAL_TIMEOUT;
2415     }
2416 
2417     /* Move from Step 2 to Step 3 */
2418     hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
2419     /* In case Step 1 phase was suspended then resumed,
2420        set again Key input buffers and size before moving to
2421        next step */
2422     hhash->pHashKeyBuffPtr = hhash->Init.pKey;
2423     hhash->HashKeyCount    = hhash->Init.KeySize;
2424   }
2425 
2426 
2427   /* HMAC Step 3 processing.
2428       After phase check, HMAC_Processing() may
2429       - directly start up from this point in resumption case
2430         if the same Step 3 processing was suspended previously
2431      - or fall through from the Step 2 processing carried out hereabove */
2432   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
2433   {
2434     /************************** STEP 3 ******************************************/
2435     /* Configure the Number of valid bits in last word of the message */
2436     __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2437 
2438     /* Write input buffer in Data register */
2439     hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2440     if (hhash->Status != HAL_OK)
2441     {
2442       return hhash->Status;
2443     }
2444 
2445     /* Check whether or not key entering process has been suspended */
2446     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2447     {
2448       /* Process Unlocked */
2449       __HAL_UNLOCK(hhash);
2450 
2451       /* Stop right there and return function status */
2452       return HAL_OK;
2453     }
2454 
2455     /* No processing suspension at this point: start the Digest calculation. */
2456     __HAL_HASH_START_DIGEST();
2457 
2458     /* Wait for DCIS flag to be set */
2459     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2460     {
2461       return HAL_TIMEOUT;
2462     }
2463 
2464     /* Read the message digest */
2465     HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2466 
2467     /* Reset HASH state machine */
2468     hhash->Phase = HAL_HASH_PHASE_READY;
2469   }
2470 
2471   /* Change the HASH state */
2472   hhash->State = HAL_HASH_STATE_READY;
2473 
2474   /* Process Unlock */
2475   __HAL_UNLOCK(hhash);
2476 
2477   /* Return function status */
2478   return HAL_OK;
2479 }
2480 
2481 
2482 /**
2483   * @brief  Initialize the HASH peripheral, next process pInBuffer then
2484   *         read the computed digest.
2485   * @note   Digest is available in pOutBuffer.
2486   * @param  hhash HASH handle.
2487   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2488   * @param  Size length of the input buffer in bytes.
2489   * @param  pOutBuffer pointer to the computed digest.
2490   * @param  Timeout Timeout value.
2491   * @param  Algorithm HASH algorithm.
2492   * @retval HAL status
2493   */
HASH_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)2494 HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2495                              uint32_t Timeout, uint32_t Algorithm)
2496 {
2497   uint8_t *pInBuffer_tmp;  /* input data address, input parameter of HASH_WriteData()         */
2498   uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2499   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2500 
2501 
2502   /* Initiate HASH processing in case of start or resumption */
2503   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2504   {
2505     /* Check input parameters */
2506     if ((pInBuffer == NULL) || (pOutBuffer == NULL))
2507     {
2508       hhash->State = HAL_HASH_STATE_READY;
2509       return  HAL_ERROR;
2510     }
2511 
2512     /* Process Locked */
2513     __HAL_LOCK(hhash);
2514 
2515     /* Check if initialization phase has not been already performed */
2516     if (hhash->Phase == HAL_HASH_PHASE_READY)
2517     {
2518       /* Change the HASH state */
2519       hhash->State = HAL_HASH_STATE_BUSY;
2520 
2521       /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2522       MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2523 
2524       /* Configure the number of valid bits in last word of the message */
2525       __HAL_HASH_SET_NBVALIDBITS(Size);
2526 
2527       /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2528       input parameters of HASH_WriteData() */
2529       pInBuffer_tmp = pInBuffer;   /* pInBuffer_tmp is set to the input data address */
2530       Size_tmp = Size;             /* Size_tmp contains the input data size in bytes */
2531 
2532       /* Set the phase */
2533       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2534     }
2535     else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
2536     {
2537       /* if the Peripheral has already been initialized, two cases are possible */
2538 
2539       /* Process resumption time ... */
2540       if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2541       {
2542         /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2543         to the API input parameters but to those saved beforehand by HASH_WriteData()
2544         when the processing was suspended */
2545         pInBuffer_tmp = hhash->pHashInBuffPtr;
2546         Size_tmp = hhash->HashInCount;
2547       }
2548       /* ... or multi-buffer HASH processing end */
2549       else
2550       {
2551         /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2552         input parameters of HASH_WriteData() */
2553         pInBuffer_tmp = pInBuffer;
2554         Size_tmp = Size;
2555         /* Configure the number of valid bits in last word of the message */
2556         __HAL_HASH_SET_NBVALIDBITS(Size);
2557       }
2558       /* Change the HASH state */
2559       hhash->State = HAL_HASH_STATE_BUSY;
2560     }
2561     else
2562     {
2563       /* Phase error */
2564       hhash->State = HAL_HASH_STATE_READY;
2565 
2566       /* Process Unlocked */
2567       __HAL_UNLOCK(hhash);
2568 
2569       /* Return function status */
2570       return HAL_ERROR;
2571     }
2572 
2573 
2574     /* Write input buffer in Data register */
2575     hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2576     if (hhash->Status != HAL_OK)
2577     {
2578       return hhash->Status;
2579     }
2580 
2581     /* If the process has not been suspended, carry on to digest calculation */
2582     if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2583     {
2584       /* Start the Digest calculation */
2585       __HAL_HASH_START_DIGEST();
2586 
2587       /* Wait for DCIS flag to be set */
2588       if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2589       {
2590         return HAL_TIMEOUT;
2591       }
2592 
2593       /* Read the message digest */
2594       HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
2595 
2596       /* Change the HASH state */
2597       hhash->State = HAL_HASH_STATE_READY;
2598 
2599       /* Reset HASH state machine */
2600       hhash->Phase = HAL_HASH_PHASE_READY;
2601 
2602     }
2603 
2604     /* Process Unlocked */
2605     __HAL_UNLOCK(hhash);
2606 
2607     /* Return function status */
2608     return HAL_OK;
2609 
2610   }
2611   else
2612   {
2613     return HAL_BUSY;
2614   }
2615 }
2616 
2617 
2618 /**
2619   * @brief  If not already done, initialize the HASH peripheral then
2620   *         processes pInBuffer.
2621   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
2622   *         the Peripheral has already been initialized.
2623   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2624   *         HASH digest computation is corrupted.
2625   * @param  hhash HASH handle.
2626   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2627   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
2628   * @param  Algorithm HASH algorithm.
2629   * @retval HAL status
2630   */
HASH_Accumulate(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2631 HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2632 {
2633   uint8_t *pInBuffer_tmp;   /* input data address, input parameter of HASH_WriteData()         */
2634   uint32_t Size_tmp;  /* input data size (in bytes), input parameter of HASH_WriteData() */
2635   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2636 
2637   /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2638   if ((Size % 4U) != 0U)
2639   {
2640     return  HAL_ERROR;
2641   }
2642 
2643   /* Initiate HASH processing in case of start or resumption */
2644   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2645   {
2646     /* Check input parameters */
2647     if ((pInBuffer == NULL) || (Size == 0U))
2648     {
2649       hhash->State = HAL_HASH_STATE_READY;
2650       return  HAL_ERROR;
2651     }
2652 
2653     /* Process Locked */
2654     __HAL_LOCK(hhash);
2655 
2656     /* If resuming the HASH processing */
2657     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2658     {
2659       /* Change the HASH state */
2660       hhash->State = HAL_HASH_STATE_BUSY;
2661 
2662       /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2663          to the API input parameters but to those saved beforehand by HASH_WriteData()
2664          when the processing was suspended */
2665       pInBuffer_tmp = hhash->pHashInBuffPtr;  /* pInBuffer_tmp is set to the input data address */
2666       Size_tmp = hhash->HashInCount;          /* Size_tmp contains the input data size in bytes */
2667 
2668     }
2669     else
2670     {
2671       /* Change the HASH state */
2672       hhash->State = HAL_HASH_STATE_BUSY;
2673 
2674       /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2675          input parameters of HASH_WriteData() */
2676       pInBuffer_tmp = pInBuffer;    /* pInBuffer_tmp is set to the input data address */
2677       Size_tmp = Size;              /* Size_tmp contains the input data size in bytes */
2678 
2679       /* Check if initialization phase has already be performed */
2680       if (hhash->Phase == HAL_HASH_PHASE_READY)
2681       {
2682         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2683         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2684       }
2685 
2686       /* Set the phase */
2687       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2688 
2689     }
2690 
2691     /* Write input buffer in Data register */
2692     hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2693     if (hhash->Status != HAL_OK)
2694     {
2695       return hhash->Status;
2696     }
2697 
2698     /* If the process has not been suspended, move the state to Ready */
2699     if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2700     {
2701       /* Change the HASH state */
2702       hhash->State = HAL_HASH_STATE_READY;
2703     }
2704 
2705     /* Process Unlocked */
2706     __HAL_UNLOCK(hhash);
2707 
2708     /* Return function status */
2709     return HAL_OK;
2710 
2711   }
2712   else
2713   {
2714     return HAL_BUSY;
2715   }
2716 
2717 
2718 }
2719 
2720 
2721 /**
2722   * @brief  If not already done, initialize the HASH peripheral then
2723   *         processes pInBuffer in interruption mode.
2724   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
2725   *         the Peripheral has already been initialized.
2726   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2727   *         HASH digest computation is corrupted.
2728   * @param  hhash HASH handle.
2729   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2730   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
2731   * @param  Algorithm HASH algorithm.
2732   * @retval HAL status
2733   */
HASH_Accumulate_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2734 HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2735 {
2736   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2737   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2738   uint32_t SizeVar = Size;
2739 
2740   /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2741   if ((Size % 4U) != 0U)
2742   {
2743     return  HAL_ERROR;
2744   }
2745 
2746   /* Initiate HASH processing in case of start or resumption */
2747   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2748   {
2749     /* Check input parameters */
2750     if ((pInBuffer == NULL) || (Size == 0U))
2751     {
2752       hhash->State = HAL_HASH_STATE_READY;
2753       return  HAL_ERROR;
2754     }
2755 
2756     /* Process Locked */
2757     __HAL_LOCK(hhash);
2758 
2759     /* If resuming the HASH processing */
2760     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2761     {
2762       /* Change the HASH state */
2763       hhash->State = HAL_HASH_STATE_BUSY;
2764     }
2765     else
2766     {
2767       /* Change the HASH state */
2768       hhash->State = HAL_HASH_STATE_BUSY;
2769 
2770       /* Check if initialization phase has already be performed */
2771       if (hhash->Phase == HAL_HASH_PHASE_READY)
2772       {
2773         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2774         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2775         hhash->HashITCounter = 1;
2776       }
2777       else
2778       {
2779         hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2780       }
2781 
2782       /* Set the phase */
2783       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2784 
2785       /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2786        fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2787        Therefore, first words are manually entered until DINIS raises, or until there
2788        is not more data to enter. */
2789       while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
2790       {
2791 
2792         /* Write input data 4 bytes at a time */
2793         HASH->DIN = *(uint32_t *)inputaddr;
2794         inputaddr += 4U;
2795         SizeVar -= 4U;
2796       }
2797 
2798       /* If DINIS is still not set or if all the data have been fed, stop here */
2799       if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
2800       {
2801         /* Change the HASH state */
2802         hhash->State = HAL_HASH_STATE_READY;
2803 
2804         /* Process Unlock */
2805         __HAL_UNLOCK(hhash);
2806 
2807         /* Return function status */
2808         return HAL_OK;
2809       }
2810 
2811       /* otherwise, carry on in interrupt-mode */
2812       hhash->HashInCount = SizeVar;               /* Counter used to keep track of number of data
2813                                                   to be fed to the Peripheral */
2814       hhash->pHashInBuffPtr = (uint8_t *)inputaddr;       /* Points at data which will be fed to the Peripheral at
2815                                                   the next interruption */
2816       /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2817          the information describing where the HASH process is stopped.
2818          These variables are used later on to resume the HASH processing at the
2819          correct location. */
2820 
2821     }
2822 
2823     /* Set multi buffers accumulation flag */
2824     hhash->Accumulation = 1U;
2825 
2826     /* Process Unlock */
2827     __HAL_UNLOCK(hhash);
2828 
2829     /* Enable Data Input interrupt */
2830     __HAL_HASH_ENABLE_IT(HASH_IT_DINI);
2831 
2832     /* Return function status */
2833     return HAL_OK;
2834 
2835   }
2836   else
2837   {
2838     return HAL_BUSY;
2839   }
2840 
2841 }
2842 
2843 
2844 
2845 /**
2846   * @brief  Initialize the HASH peripheral, next process pInBuffer then
2847   *         read the computed digest in interruption mode.
2848   * @note   Digest is available in pOutBuffer.
2849   * @param  hhash HASH handle.
2850   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2851   * @param  Size length of the input buffer in bytes.
2852   * @param  pOutBuffer pointer to the computed digest.
2853   * @param  Algorithm HASH algorithm.
2854   * @retval HAL status
2855   */
HASH_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)2856 HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2857                                 uint32_t Algorithm)
2858 {
2859   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2860   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2861   uint32_t polling_step = 0U;
2862   uint32_t initialization_skipped = 0U;
2863   uint32_t SizeVar = Size;
2864 
2865   /* If State is ready or suspended, start or resume IT-based HASH processing */
2866   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2867   {
2868     /* Check input parameters */
2869     if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
2870     {
2871       hhash->State = HAL_HASH_STATE_READY;
2872       return  HAL_ERROR;
2873     }
2874 
2875     /* Process Locked */
2876     __HAL_LOCK(hhash);
2877 
2878     /* Change the HASH state */
2879     hhash->State = HAL_HASH_STATE_BUSY;
2880 
2881     /* Initialize IT counter */
2882     hhash->HashITCounter = 1;
2883 
2884     /* Check if initialization phase has already be performed */
2885     if (hhash->Phase == HAL_HASH_PHASE_READY)
2886     {
2887       /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2888       MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2889 
2890       /* Configure the number of valid bits in last word of the message */
2891       __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2892 
2893 
2894       hhash->HashInCount = SizeVar;            /* Counter used to keep track of number of data
2895                                                   to be fed to the Peripheral */
2896       hhash->pHashInBuffPtr = pInBuffer;       /* Points at data which will be fed to the Peripheral at
2897                                                   the next interruption */
2898       /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2899          the information describing where the HASH process is stopped.
2900          These variables are used later on to resume the HASH processing at the
2901          correct location. */
2902 
2903       hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2904     }
2905     else
2906     {
2907       initialization_skipped = 1; /* info user later on in case of multi-buffer */
2908     }
2909 
2910     /* Set the phase */
2911     hhash->Phase = HAL_HASH_PHASE_PROCESS;
2912 
2913     /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2914       fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2915       Therefore, first words are manually entered until DINIS raises. */
2916     while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
2917     {
2918       polling_step = 1U; /* note that some words are entered before enabling the interrupt */
2919 
2920       /* Write input data 4 bytes at a time */
2921       HASH->DIN = *(uint32_t *)inputaddr;
2922       inputaddr += 4U;
2923       SizeVar -= 4U;
2924     }
2925 
2926     if (polling_step == 1U)
2927     {
2928       if (SizeVar == 0U)
2929       {
2930         /* If all the data have been entered at this point, it only remains to
2931          read the digest */
2932         hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2933 
2934         /* Start the Digest calculation */
2935         __HAL_HASH_START_DIGEST();
2936         /* Process Unlock */
2937         __HAL_UNLOCK(hhash);
2938 
2939         /* Enable Interrupts */
2940         __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2941 
2942         /* Return function status */
2943         return HAL_OK;
2944       }
2945       else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2946       {
2947         /* It remains data to enter and the Peripheral is ready to trigger DINIE,
2948            carry on as usual.
2949            Update HashInCount and pHashInBuffPtr accordingly. */
2950         hhash->HashInCount = SizeVar;
2951         hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
2952         /* Update the configuration of the number of valid bits in last word of the message */
2953         __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2954         hhash->pHashOutBuffPtr = pOutBuffer;  /* Points at the computed digest */
2955         if (initialization_skipped == 1U)
2956         {
2957           hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2958         }
2959       }
2960       else
2961       {
2962         /* DINIS is not set but it remains a few data to enter (not enough for a full word).
2963            Manually enter the last bytes before enabling DCIE. */
2964         __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2965         HASH->DIN = *(uint32_t *)inputaddr;
2966 
2967         /* Start the Digest calculation */
2968         hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2969         __HAL_HASH_START_DIGEST();
2970         /* Process Unlock */
2971         __HAL_UNLOCK(hhash);
2972 
2973         /* Enable Interrupts */
2974         __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2975 
2976         /* Return function status */
2977         return HAL_OK;
2978       }
2979     } /*  if (polling_step == 1) */
2980 
2981 
2982     /* Process Unlock */
2983     __HAL_UNLOCK(hhash);
2984 
2985     /* Enable Interrupts */
2986     __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2987 
2988     /* Return function status */
2989     return HAL_OK;
2990   }
2991   else
2992   {
2993     return HAL_BUSY;
2994   }
2995 
2996 }
2997 
2998 
2999 /**
3000   * @brief  Initialize the HASH peripheral then initiate a DMA transfer
3001   *         to feed the input buffer to the Peripheral.
3002   * @note   If MDMAT bit is set before calling this function (multi-buffer
3003   *          HASH processing case), the input buffer size (in bytes) must be
3004   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
3005   *          For the processing of the last buffer of the thread, MDMAT bit must
3006   *          be reset and the buffer length (in bytes) doesn't have to be a
3007   *          multiple of 4.
3008   * @param  hhash HASH handle.
3009   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3010   * @param  Size length of the input buffer in bytes.
3011   * @param  Algorithm HASH algorithm.
3012   * @retval HAL status
3013   */
HASH_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3014 HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3015 {
3016   uint32_t inputaddr;
3017   uint32_t inputSize;
3018   HAL_StatusTypeDef status ;
3019   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3020 
3021 
3022   /* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
3023      (case of multi-buffer HASH processing) */
3024   assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
3025 
3026   /* If State is ready or suspended, start or resume polling-based HASH processing */
3027   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3028   {
3029     /* Check input parameters */
3030     if ((pInBuffer == NULL) || (Size == 0U) ||
3031         /* Check phase coherency. Phase must be
3032            either READY (fresh start)
3033            or PROCESS (multi-buffer HASH management) */
3034         ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
3035     {
3036       hhash->State = HAL_HASH_STATE_READY;
3037       return  HAL_ERROR;
3038     }
3039 
3040 
3041     /* Process Locked */
3042     __HAL_LOCK(hhash);
3043 
3044     /* If not a resumption case */
3045     if (hhash->State == HAL_HASH_STATE_READY)
3046     {
3047       /* Change the HASH state */
3048       hhash->State = HAL_HASH_STATE_BUSY;
3049 
3050       /* Check if initialization phase has already been performed.
3051          If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
3052          API is processing a new input data message in case of multi-buffer HASH
3053          computation. */
3054       if (hhash->Phase == HAL_HASH_PHASE_READY)
3055       {
3056         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
3057         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
3058 
3059         /* Set the phase */
3060         hhash->Phase = HAL_HASH_PHASE_PROCESS;
3061       }
3062 
3063       /* Configure the Number of valid bits in last word of the message */
3064       __HAL_HASH_SET_NBVALIDBITS(Size);
3065 
3066       inputaddr = (uint32_t)pInBuffer;     /* DMA transfer start address   */
3067       inputSize = Size;                    /* DMA transfer size (in bytes) */
3068 
3069       /* In case of suspension request, save the starting parameters */
3070       hhash->pHashInBuffPtr =  pInBuffer;  /* DMA transfer start address   */
3071       hhash->HashInCount = Size;           /* DMA transfer size (in bytes) */
3072 
3073     }
3074     /* If resumption case */
3075     else
3076     {
3077       /* Change the HASH state */
3078       hhash->State = HAL_HASH_STATE_BUSY;
3079 
3080       /* Resumption case, inputaddr and inputSize are not set to the API input parameters
3081          but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3082          processing was suspended */
3083       inputaddr = (uint32_t)hhash->pHashInBuffPtr;  /* DMA transfer start address   */
3084       inputSize = hhash->HashInCount;               /* DMA transfer size (in bytes) */
3085 
3086     }
3087 
3088     /* Set the HASH DMA transfer complete callback */
3089     hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3090     /* Set the DMA error callback */
3091     hhash->hdmain->XferErrorCallback = HASH_DMAError;
3092 
3093     /* Store number of words already pushed to manage proper DMA processing suspension */
3094     hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3095 
3096     /* Enable the DMA In DMA channel */
3097     status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3098                               (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) : \
3099                                (inputSize / 4U)));
3100 
3101     /* Enable DMA requests */
3102     SET_BIT(HASH->CR, HASH_CR_DMAE);
3103 
3104     /* Process Unlock */
3105     __HAL_UNLOCK(hhash);
3106 
3107     /* Return function status */
3108     if (status != HAL_OK)
3109     {
3110       /* Update HASH state machine to error */
3111       hhash->State = HAL_HASH_STATE_ERROR;
3112     }
3113 
3114     return status;
3115   }
3116   else
3117   {
3118     return HAL_BUSY;
3119   }
3120 }
3121 
3122 /**
3123   * @brief  Return the computed digest.
3124   * @note   The API waits for DCIS to be set then reads the computed digest.
3125   * @param  hhash HASH handle.
3126   * @param  pOutBuffer pointer to the computed digest.
3127   * @param  Timeout Timeout value.
3128   * @retval HAL status
3129   */
HASH_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)3130 HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
3131 {
3132 
3133   if (hhash->State == HAL_HASH_STATE_READY)
3134   {
3135     /* Check parameter */
3136     if (pOutBuffer == NULL)
3137     {
3138       return  HAL_ERROR;
3139     }
3140 
3141     /* Process Locked */
3142     __HAL_LOCK(hhash);
3143 
3144     /* Change the HASH state to busy */
3145     hhash->State = HAL_HASH_STATE_BUSY;
3146 
3147     /* Wait for DCIS flag to be set */
3148     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
3149     {
3150       return HAL_TIMEOUT;
3151     }
3152 
3153     /* Read the message digest */
3154     HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
3155 
3156     /* Change the HASH state to ready */
3157     hhash->State = HAL_HASH_STATE_READY;
3158 
3159     /* Reset HASH state machine */
3160     hhash->Phase = HAL_HASH_PHASE_READY;
3161 
3162     /* Process UnLock */
3163     __HAL_UNLOCK(hhash);
3164 
3165     /* Return function status */
3166     return HAL_OK;
3167 
3168   }
3169   else
3170   {
3171     return HAL_BUSY;
3172   }
3173 
3174 }
3175 
3176 
3177 /**
3178   * @brief  Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3179   *         read the computed digest.
3180   * @note   Digest is available in pOutBuffer.
3181   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3182   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3183   * @param  hhash HASH handle.
3184   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3185   * @param  Size length of the input buffer in bytes.
3186   * @param  pOutBuffer pointer to the computed digest.
3187   * @param  Timeout Timeout value.
3188   * @param  Algorithm HASH algorithm.
3189   * @retval HAL status
3190   */
HMAC_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)3191 HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3192                              uint32_t Timeout, uint32_t Algorithm)
3193 {
3194   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3195 
3196   /* If State is ready or suspended, start or resume polling-based HASH processing */
3197   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3198   {
3199     /* Check input parameters */
3200     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3201         || (pOutBuffer == NULL))
3202     {
3203       hhash->State = HAL_HASH_STATE_READY;
3204       return  HAL_ERROR;
3205     }
3206 
3207     /* Process Locked */
3208     __HAL_LOCK(hhash);
3209 
3210     /* Change the HASH state */
3211     hhash->State = HAL_HASH_STATE_BUSY;
3212 
3213     /* Check if initialization phase has already be performed */
3214     if (hhash->Phase == HAL_HASH_PHASE_READY)
3215     {
3216       /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3217       if (hhash->Init.KeySize > 64U)
3218       {
3219         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3220                    Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3221       }
3222       else
3223       {
3224         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3225                    Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3226       }
3227       /* Set the phase to Step 1 */
3228       hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3229       /* Resort to hhash internal fields to feed the Peripheral.
3230          Parameters will be updated in case of suspension to contain the proper
3231          information at resumption time. */
3232       hhash->pHashOutBuffPtr  = pOutBuffer;            /* Output digest address    */
3233       hhash->pHashInBuffPtr   = pInBuffer;             /* Input data address, HMAC_Processing input
3234                                                           parameter for Step 2     */
3235       hhash->HashInCount      = Size;                  /* Input data size, HMAC_Processing input
3236                                                           parameter for Step 2        */
3237       hhash->HashBuffSize     = Size;                  /* Store the input buffer size for the whole HMAC process*/
3238       hhash->pHashKeyBuffPtr  = hhash->Init.pKey;      /* Key address, HMAC_Processing input parameter for Step
3239                                                           1 and Step 3 */
3240       hhash->HashKeyCount     = hhash->Init.KeySize;   /* Key size, HMAC_Processing input parameter for Step 1
3241                                                           and Step 3    */
3242     }
3243 
3244     /* Carry out HMAC processing */
3245     return HMAC_Processing(hhash, Timeout);
3246 
3247   }
3248   else
3249   {
3250     return HAL_BUSY;
3251   }
3252 }
3253 
3254 
3255 
3256 /**
3257   * @brief  Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3258   *         read the computed digest in interruption mode.
3259   * @note   Digest is available in pOutBuffer.
3260   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3261   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3262   * @param  hhash HASH handle.
3263   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3264   * @param  Size length of the input buffer in bytes.
3265   * @param  pOutBuffer pointer to the computed digest.
3266   * @param  Algorithm HASH algorithm.
3267   * @retval HAL status
3268   */
HMAC_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)3269 HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3270                                 uint32_t Algorithm)
3271 {
3272   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3273 
3274   /* If State is ready or suspended, start or resume IT-based HASH processing */
3275   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3276   {
3277     /* Check input parameters */
3278     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3279         || (pOutBuffer == NULL))
3280     {
3281       hhash->State = HAL_HASH_STATE_READY;
3282       return  HAL_ERROR;
3283     }
3284 
3285     /* Process Locked */
3286     __HAL_LOCK(hhash);
3287 
3288     /* Change the HASH state */
3289     hhash->State = HAL_HASH_STATE_BUSY;
3290 
3291     /* Initialize IT counter */
3292     hhash->HashITCounter = 1;
3293 
3294     /* Check if initialization phase has already be performed */
3295     if (hhash->Phase == HAL_HASH_PHASE_READY)
3296     {
3297       /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3298       if (hhash->Init.KeySize > 64U)
3299       {
3300         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3301                    Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3302       }
3303       else
3304       {
3305         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3306                    Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3307       }
3308 
3309       /* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
3310          to feed the Peripheral whatever the HMAC step.
3311          Lines below are set to start HMAC Step 1 processing where key is entered first. */
3312       hhash->HashInCount     = hhash->Init.KeySize; /* Key size                      */
3313       hhash->pHashInBuffPtr  = hhash->Init.pKey ;   /* Key address                   */
3314 
3315       /* Store input and output parameters in handle fields to manage steps transition
3316          or possible HMAC suspension/resumption */
3317       hhash->pHashKeyBuffPtr = hhash->Init.pKey;    /* Key address                   */
3318       hhash->pHashMsgBuffPtr = pInBuffer;           /* Input message address         */
3319       hhash->HashBuffSize    = Size;                /* Input message size (in bytes) */
3320       hhash->pHashOutBuffPtr = pOutBuffer;          /* Output digest address         */
3321 
3322       /* Configure the number of valid bits in last word of the key */
3323       __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3324 
3325       /* Set the phase to Step 1 */
3326       hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3327     }
3328     else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
3329     {
3330       /* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
3331 
3332     }
3333     else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3334     {
3335       /* Restart IT-based HASH processing after Step 2 suspension */
3336 
3337     }
3338     else
3339     {
3340       /* Error report as phase incorrect */
3341       /* Process Unlock */
3342       __HAL_UNLOCK(hhash);
3343       hhash->State = HAL_HASH_STATE_READY;
3344       return HAL_ERROR;
3345     }
3346 
3347     /* Process Unlock */
3348     __HAL_UNLOCK(hhash);
3349 
3350     /* Enable Interrupts */
3351     __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
3352 
3353     /* Return function status */
3354     return HAL_OK;
3355   }
3356   else
3357   {
3358     return HAL_BUSY;
3359   }
3360 
3361 }
3362 
3363 
3364 
3365 /**
3366   * @brief  Initialize the HASH peripheral in HMAC mode then initiate the required
3367   *         DMA transfers to feed the key and the input buffer to the Peripheral.
3368   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3369   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3370   * @note   In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
3371   *         be a multiple of 4 otherwise, the HASH digest computation is corrupted.
3372   *         Only the length of the last buffer of the thread doesn't have to be a
3373   *         multiple of 4.
3374   * @param  hhash HASH handle.
3375   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3376   * @param  Size length of the input buffer in bytes.
3377   * @param  Algorithm HASH algorithm.
3378   * @retval HAL status
3379   */
HMAC_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3380 HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3381 {
3382   uint32_t inputaddr;
3383   uint32_t inputSize;
3384   HAL_StatusTypeDef status ;
3385   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3386   /* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
3387      is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
3388   assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
3389   /* If State is ready or suspended, start or resume DMA-based HASH processing */
3390   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3391   {
3392     /* Check input parameters */
3393     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
3394         /* Check phase coherency. Phase must be
3395             either READY (fresh start)
3396             or one of HMAC PROCESS steps (multi-buffer HASH management) */
3397         ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
3398     {
3399       hhash->State = HAL_HASH_STATE_READY;
3400       return  HAL_ERROR;
3401     }
3402 
3403 
3404     /* Process Locked */
3405     __HAL_LOCK(hhash);
3406 
3407     /* If not a case of resumption after suspension */
3408     if (hhash->State == HAL_HASH_STATE_READY)
3409     {
3410       /* Check whether or not initialization phase has already be performed */
3411       if (hhash->Phase == HAL_HASH_PHASE_READY)
3412       {
3413         /* Change the HASH state */
3414         hhash->State = HAL_HASH_STATE_BUSY;
3415         /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
3416            At the same time, ensure MDMAT bit is cleared. */
3417         if (hhash->Init.KeySize > 64U)
3418         {
3419           MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3420                      Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3421         }
3422         else
3423         {
3424           MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3425                      Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3426         }
3427         /* Store input aparameters in handle fields to manage steps transition
3428            or possible HMAC suspension/resumption */
3429         hhash->HashInCount = hhash->Init.KeySize;   /* Initial size for first DMA transfer (key size)      */
3430         hhash->pHashKeyBuffPtr = hhash->Init.pKey;  /* Key address                                         */
3431         hhash->pHashInBuffPtr  = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
3432         hhash->pHashMsgBuffPtr = pInBuffer;         /* Input data address                                  */
3433         hhash->HashBuffSize = Size;                 /* input data size (in bytes)                          */
3434 
3435         /* Set DMA input parameters */
3436         inputaddr = (uint32_t)(hhash->Init.pKey);   /* Address passed to DMA (start by entering Key message) */
3437         inputSize = hhash->Init.KeySize;            /* Size for first DMA transfer (in bytes) */
3438 
3439         /* Configure the number of valid bits in last word of the key */
3440         __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3441 
3442         /* Set the phase to Step 1 */
3443         hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3444 
3445       }
3446       else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3447       {
3448         /* Process a new input data message in case of multi-buffer HMAC processing
3449           (this is not a resumption case) */
3450 
3451         /* Change the HASH state */
3452         hhash->State = HAL_HASH_STATE_BUSY;
3453 
3454         /* Save input parameters to be able to manage possible suspension/resumption */
3455         hhash->HashInCount = Size;                /* Input message address       */
3456         hhash->pHashInBuffPtr = pInBuffer;        /* Input message size in bytes */
3457 
3458         /* Set DMA input parameters */
3459         inputaddr = (uint32_t)pInBuffer;           /* Input message address       */
3460         inputSize = Size;                          /* Input message size in bytes */
3461 
3462         if (hhash->DigestCalculationDisable == RESET)
3463         {
3464           /* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
3465           __HAL_HASH_RESET_MDMAT();
3466           __HAL_HASH_SET_NBVALIDBITS(inputSize);
3467         }
3468       }
3469       else
3470       {
3471         /* Phase not aligned with handle READY state */
3472         __HAL_UNLOCK(hhash);
3473         /* Return function status */
3474         return HAL_ERROR;
3475       }
3476     }
3477     else
3478     {
3479       /* Resumption case (phase may be Step 1, 2 or 3) */
3480 
3481       /* Change the HASH state */
3482       hhash->State = HAL_HASH_STATE_BUSY;
3483 
3484       /* Set DMA input parameters at resumption location;
3485          inputaddr and inputSize are not set to the API input parameters
3486          but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3487          processing was suspended. */
3488       inputaddr = (uint32_t)(hhash->pHashInBuffPtr);  /* Input message address       */
3489       inputSize = hhash->HashInCount;                 /* Input message size in bytes */
3490     }
3491 
3492 
3493     /* Set the HASH DMA transfer complete callback */
3494     hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3495     /* Set the DMA error callback */
3496     hhash->hdmain->XferErrorCallback = HASH_DMAError;
3497 
3498     /* Store number of words already pushed to manage proper DMA processing suspension */
3499     hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3500 
3501     /* Enable the DMA In DMA channel */
3502     status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN,  \
3503                               (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) \
3504                                : (inputSize / 4U)));
3505 
3506     /* Enable DMA requests */
3507     SET_BIT(HASH->CR, HASH_CR_DMAE);
3508 
3509     /* Process Unlocked */
3510     __HAL_UNLOCK(hhash);
3511 
3512     /* Return function status */
3513     if (status != HAL_OK)
3514     {
3515       /* Update HASH state machine to error */
3516       hhash->State = HAL_HASH_STATE_ERROR;
3517     }
3518 
3519     /* Return function status */
3520     return status;
3521   }
3522   else
3523   {
3524     return HAL_BUSY;
3525   }
3526 }
3527 /**
3528   * @}
3529   */
3530 
3531 #endif /* HAL_HASH_MODULE_ENABLED */
3532 
3533 /**
3534   * @}
3535   */
3536 
3537 /**
3538   * @}
3539   */
3540 
3541