1 /**
2 ******************************************************************************
3 * @file stm32l4xx_hal_sai.c
4 * @author MCD Application Team
5 * @brief SAI HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Serial Audio Interface (SAI) peripheral:
8 * + Initialization/de-initialization functions
9 * + I/O operation functions
10 * + Peripheral Control functions
11 * + Peripheral State functions
12 *
13 ******************************************************************************
14 * @attention
15 *
16 * Copyright (c) 2017 STMicroelectronics.
17 * All rights reserved.
18 *
19 * This software is licensed under terms that can be found in the LICENSE file
20 * in the root directory of this software component.
21 * If no LICENSE file comes with this software, it is provided AS-IS.
22 *
23 ******************************************************************************
24 @verbatim
25 ==============================================================================
26 ##### How to use this driver #####
27 ==============================================================================
28
29 [..]
30 The SAI HAL driver can be used as follows:
31
32 (#) Declare a SAI_HandleTypeDef handle structure (eg. SAI_HandleTypeDef hsai).
33 (#) Initialize the SAI low level resources by implementing the HAL_SAI_MspInit() API:
34 (##) Enable the SAI interface clock.
35 (##) SAI pins configuration:
36 (+++) Enable the clock for the SAI GPIOs.
37 (+++) Configure these SAI pins as alternate function pull-up.
38 (##) NVIC configuration if you need to use interrupt process (HAL_SAI_Transmit_IT()
39 and HAL_SAI_Receive_IT() APIs):
40 (+++) Configure the SAI interrupt priority.
41 (+++) Enable the NVIC SAI IRQ handle.
42
43 (##) DMA Configuration if you need to use DMA process (HAL_SAI_Transmit_DMA()
44 and HAL_SAI_Receive_DMA() APIs):
45 (+++) Declare a DMA handle structure for the Tx/Rx stream.
46 (+++) Enable the DMAx interface clock.
47 (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
48 (+++) Configure the DMA Tx/Rx Stream.
49 (+++) Associate the initialized DMA handle to the SAI DMA Tx/Rx handle.
50 (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the
51 DMA Tx/Rx Stream.
52
53 (#) The initialization can be done by two ways
54 (##) Expert mode : Initialize the structures Init, FrameInit and SlotInit and call HAL_SAI_Init().
55 (##) Simplified mode : Initialize the high part of Init Structure and call HAL_SAI_InitProtocol().
56
57 [..]
58 (@) The specific SAI interrupts (FIFO request and Overrun underrun interrupt)
59 will be managed using the macros __HAL_SAI_ENABLE_IT() and __HAL_SAI_DISABLE_IT()
60 inside the transmit and receive process.
61 [..]
62 (@) Make sure that either:
63 (+@) PLLSAI1CLK output is configured or
64 (+@) PLLSAI2CLK output is configured or
65 (+@) PLLSAI3CLK output is configured or
66 (+@) External clock source is configured after setting correctly
67 the define constant EXTERNAL_SAI1_CLOCK_VALUE or EXTERNAL_SAI2_CLOCK_VALUE in the stm32l4xx_hal_conf.h file.
68
69 [..]
70 (@) In master Tx mode: enabling the audio block immediately generates the bit clock
71 for the external slaves even if there is no data in the FIFO, However FS signal
72 generation is conditioned by the presence of data in the FIFO.
73
74 [..]
75 (@) In master Rx mode: enabling the audio block immediately generates the bit clock
76 and FS signal for the external slaves.
77
78 [..]
79 (@) It is mandatory to respect the following conditions in order to avoid bad SAI behavior:
80 (+@) First bit Offset <= (SLOT size - Data size)
81 (+@) Data size <= SLOT size
82 (+@) Number of SLOT x SLOT size = Frame length
83 (+@) The number of slots should be even when SAI_FS_CHANNEL_IDENTIFICATION is selected.
84
85 [..]
86 (@) For STM32L4Rx/STM32L4Sx devices, PDM interface can be activated through HAL_SAI_Init function.
87 Please note that PDM interface is only available for SAI1 sub-block A.
88 PDM microphone delays can be tuned with HAL_SAIEx_ConfigPdmMicDelay function.
89
90 [..]
91 Three operation modes are available within this driver :
92
93 *** Polling mode IO operation ***
94 =================================
95 [..]
96 (+) Send an amount of data in blocking mode using HAL_SAI_Transmit()
97 (+) Receive an amount of data in blocking mode using HAL_SAI_Receive()
98
99 *** Interrupt mode IO operation ***
100 ===================================
101 [..]
102 (+) Send an amount of data in non-blocking mode using HAL_SAI_Transmit_IT()
103 (+) At transmission end of transfer HAL_SAI_TxCpltCallback() is executed and user can
104 add his own code by customization of function pointer HAL_SAI_TxCpltCallback()
105 (+) Receive an amount of data in non-blocking mode using HAL_SAI_Receive_IT()
106 (+) At reception end of transfer HAL_SAI_RxCpltCallback() is executed and user can
107 add his own code by customization of function pointer HAL_SAI_RxCpltCallback()
108 (+) In case of flag error, HAL_SAI_ErrorCallback() function is executed and user can
109 add his own code by customization of function pointer HAL_SAI_ErrorCallback()
110
111 *** DMA mode IO operation ***
112 =============================
113 [..]
114 (+) Send an amount of data in non-blocking mode (DMA) using HAL_SAI_Transmit_DMA()
115 (+) At transmission end of transfer HAL_SAI_TxCpltCallback() is executed and user can
116 add his own code by customization of function pointer HAL_SAI_TxCpltCallback()
117 (+) Receive an amount of data in non-blocking mode (DMA) using HAL_SAI_Receive_DMA()
118 (+) At reception end of transfer HAL_SAI_RxCpltCallback() is executed and user can
119 add his own code by customization of function pointer HAL_SAI_RxCpltCallback()
120 (+) In case of flag error, HAL_SAI_ErrorCallback() function is executed and user can
121 add his own code by customization of function pointer HAL_SAI_ErrorCallback()
122 (+) Pause the DMA Transfer using HAL_SAI_DMAPause()
123 (+) Resume the DMA Transfer using HAL_SAI_DMAResume()
124 (+) Stop the DMA Transfer using HAL_SAI_DMAStop()
125
126 *** SAI HAL driver additional function list ***
127 ===============================================
128 [..]
129 Below the list the others API available SAI HAL driver :
130
131 (+) HAL_SAI_EnableTxMuteMode(): Enable the mute in tx mode
132 (+) HAL_SAI_DisableTxMuteMode(): Disable the mute in tx mode
133 (+) HAL_SAI_EnableRxMuteMode(): Enable the mute in Rx mode
134 (+) HAL_SAI_DisableRxMuteMode(): Disable the mute in Rx mode
135 (+) HAL_SAI_FlushRxFifo(): Flush the rx fifo.
136 (+) HAL_SAI_Abort(): Abort the current transfer
137
138 *** SAI HAL driver macros list ***
139 ==================================
140 [..]
141 Below the list of most used macros in SAI HAL driver :
142
143 (+) __HAL_SAI_ENABLE(): Enable the SAI peripheral
144 (+) __HAL_SAI_DISABLE(): Disable the SAI peripheral
145 (+) __HAL_SAI_ENABLE_IT(): Enable the specified SAI interrupts
146 (+) __HAL_SAI_DISABLE_IT(): Disable the specified SAI interrupts
147 (+) __HAL_SAI_GET_IT_SOURCE(): Check if the specified SAI interrupt source is
148 enabled or disabled
149 (+) __HAL_SAI_GET_FLAG(): Check whether the specified SAI flag is set or not
150
151 *** Callback registration ***
152 =============================
153 [..]
154 The compilation define USE_HAL_SAI_REGISTER_CALLBACKS when set to 1
155 allows the user to configure dynamically the driver callbacks.
156 Use functions HAL_SAI_RegisterCallback() to register a user callback.
157
158 [..]
159 Function HAL_SAI_RegisterCallback() allows to register following callbacks:
160 (+) RxCpltCallback : SAI receive complete.
161 (+) RxHalfCpltCallback : SAI receive half complete.
162 (+) TxCpltCallback : SAI transmit complete.
163 (+) TxHalfCpltCallback : SAI transmit half complete.
164 (+) ErrorCallback : SAI error.
165 (+) MspInitCallback : SAI MspInit.
166 (+) MspDeInitCallback : SAI MspDeInit.
167 [..]
168 This function takes as parameters the HAL peripheral handle, the callback ID
169 and a pointer to the user callback function.
170
171 [..]
172 Use function HAL_SAI_UnRegisterCallback() to reset a callback to the default
173 weak function.
174 HAL_SAI_UnRegisterCallback() takes as parameters the HAL peripheral handle,
175 and the callback ID.
176 [..]
177 This function allows to reset following callbacks:
178 (+) RxCpltCallback : SAI receive complete.
179 (+) RxHalfCpltCallback : SAI receive half complete.
180 (+) TxCpltCallback : SAI transmit complete.
181 (+) TxHalfCpltCallback : SAI transmit half complete.
182 (+) ErrorCallback : SAI error.
183 (+) MspInitCallback : SAI MspInit.
184 (+) MspDeInitCallback : SAI MspDeInit.
185
186 [..]
187 By default, after the HAL_SAI_Init and if the state is HAL_SAI_STATE_RESET
188 all callbacks are reset to the corresponding legacy weak functions:
189 examples HAL_SAI_RxCpltCallback(), HAL_SAI_ErrorCallback().
190 Exception done for MspInit and MspDeInit callbacks that are respectively
191 reset to the legacy weak functions in the HAL_SAI_Init
192 and HAL_SAI_DeInit only when these callbacks are null (not registered beforehand).
193 If not, MspInit or MspDeInit are not null, the HAL_SAI_Init and HAL_SAI_DeInit
194 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
195
196 [..]
197 Callbacks can be registered/unregistered in READY state only.
198 Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
199 in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
200 during the Init/DeInit.
201 In that case first register the MspInit/MspDeInit user callbacks
202 using HAL_SAI_RegisterCallback before calling HAL_SAI_DeInit
203 or HAL_SAI_Init function.
204
205 [..]
206 When the compilation define USE_HAL_SAI_REGISTER_CALLBACKS is set to 0 or
207 not defined, the callback registering feature is not available
208 and weak callbacks are used.
209
210 @endverbatim
211 */
212
213 /* Includes ------------------------------------------------------------------*/
214 #include "stm32l4xx_hal.h"
215
216 /** @addtogroup STM32L4xx_HAL_Driver
217 * @{
218 */
219
220 #ifdef HAL_SAI_MODULE_ENABLED
221 #if !defined(STM32L412xx) && !defined(STM32L422xx)
222
223 /** @defgroup SAI SAI
224 * @brief SAI HAL module driver
225 * @{
226 */
227
228 /* Private typedef -----------------------------------------------------------*/
229 /** @defgroup SAI_Private_Typedefs SAI Private Typedefs
230 * @{
231 */
232 typedef enum
233 {
234 SAI_MODE_DMA,
235 SAI_MODE_IT
236 } SAI_ModeTypedef;
237 /**
238 * @}
239 */
240
241 /* Private define ------------------------------------------------------------*/
242 /** @defgroup SAI_Private_Constants SAI Private Constants
243 * @{
244 */
245 #define SAI_DEFAULT_TIMEOUT 4U
246 #define SAI_LONG_TIMEOUT 1000U
247 #define SAI_SPDIF_FRAME_LENGTH 64U
248 #define SAI_AC97_FRAME_LENGTH 256U
249 /**
250 * @}
251 */
252
253 /* Private macro -------------------------------------------------------------*/
254 /* Private variables ---------------------------------------------------------*/
255 /* Private function prototypes -----------------------------------------------*/
256 /** @defgroup SAI_Private_Functions SAI Private Functions
257 * @{
258 */
259 static void SAI_FillFifo(SAI_HandleTypeDef *hsai);
260 static uint32_t SAI_InterruptFlag(const SAI_HandleTypeDef *hsai, SAI_ModeTypedef mode);
261 static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot);
262 static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot);
263
264 static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai);
265 static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai);
266 static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai);
267 static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai);
268 static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai);
269 static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai);
270 static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai);
271
272 static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma);
273 static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
274 static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma);
275 static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
276 static void SAI_DMAError(DMA_HandleTypeDef *hdma);
277 static void SAI_DMAAbort(DMA_HandleTypeDef *hdma);
278 /**
279 * @}
280 */
281
282 /* Exported functions ---------------------------------------------------------*/
283 /** @defgroup SAI_Exported_Functions SAI Exported Functions
284 * @{
285 */
286
287 /** @defgroup SAI_Exported_Functions_Group1 Initialization and de-initialization functions
288 * @brief Initialization and Configuration functions
289 *
290 @verbatim
291 ===============================================================================
292 ##### Initialization and de-initialization functions #####
293 ===============================================================================
294 [..] This subsection provides a set of functions allowing to initialize and
295 de-initialize the SAIx peripheral:
296
297 (+) User must implement HAL_SAI_MspInit() function in which he configures
298 all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
299
300 (+) Call the function HAL_SAI_Init() to configure the selected device with
301 the selected configuration:
302 (++) Mode (Master/slave TX/RX)
303 (++) Protocol
304 (++) Data Size
305 (++) MCLK Output
306 (++) Audio frequency
307 (++) FIFO Threshold
308 (++) Frame Config
309 (++) Slot Config
310 (++) PDM Config (only for STM32L4Rx/STM32L4Sx devices)
311
312 (+) Call the function HAL_SAI_DeInit() to restore the default configuration
313 of the selected SAI peripheral.
314
315 @endverbatim
316 * @{
317 */
318
319 /**
320 * @brief Initialize the structure FrameInit, SlotInit and the low part of
321 * Init according to the specified parameters and call the function
322 * HAL_SAI_Init to initialize the SAI block.
323 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
324 * the configuration information for SAI module.
325 * @param protocol one of the supported protocol @ref SAI_Protocol
326 * @param datasize one of the supported datasize @ref SAI_Protocol_DataSize
327 * the configuration information for SAI module.
328 * @param nbslot Number of slot.
329 * @retval HAL status
330 */
HAL_SAI_InitProtocol(SAI_HandleTypeDef * hsai,uint32_t protocol,uint32_t datasize,uint32_t nbslot)331 HAL_StatusTypeDef HAL_SAI_InitProtocol(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot)
332 {
333 HAL_StatusTypeDef status;
334
335 /* Check the parameters */
336 assert_param(IS_SAI_SUPPORTED_PROTOCOL(protocol));
337 assert_param(IS_SAI_PROTOCOL_DATASIZE(datasize));
338
339 switch (protocol)
340 {
341 case SAI_I2S_STANDARD :
342 case SAI_I2S_MSBJUSTIFIED :
343 case SAI_I2S_LSBJUSTIFIED :
344 status = SAI_InitI2S(hsai, protocol, datasize, nbslot);
345 break;
346 case SAI_PCM_LONG :
347 case SAI_PCM_SHORT :
348 status = SAI_InitPCM(hsai, protocol, datasize, nbslot);
349 break;
350 default :
351 status = HAL_ERROR;
352 break;
353 }
354
355 if (status == HAL_OK)
356 {
357 status = HAL_SAI_Init(hsai);
358 }
359
360 return status;
361 }
362
363 /**
364 * @brief Initialize the SAI according to the specified parameters.
365 * in the SAI_InitTypeDef structure and initialize the associated handle.
366 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
367 * the configuration information for SAI module.
368 * @retval HAL status
369 */
HAL_SAI_Init(SAI_HandleTypeDef * hsai)370 HAL_StatusTypeDef HAL_SAI_Init(SAI_HandleTypeDef *hsai)
371 {
372 #if defined(SAI2)
373 uint32_t tmpregisterGCR;
374 #endif /* SAI2 */
375 uint32_t ckstr_bits;
376 uint32_t syncen_bits;
377
378 /* Check the SAI handle allocation */
379 if (hsai == NULL)
380 {
381 return HAL_ERROR;
382 }
383
384 /* check the instance */
385 assert_param(IS_SAI_ALL_INSTANCE(hsai->Instance));
386
387 /* Check the SAI Block parameters */
388 assert_param(IS_SAI_AUDIO_FREQUENCY(hsai->Init.AudioFrequency));
389 assert_param(IS_SAI_BLOCK_PROTOCOL(hsai->Init.Protocol));
390 assert_param(IS_SAI_BLOCK_MODE(hsai->Init.AudioMode));
391 assert_param(IS_SAI_BLOCK_DATASIZE(hsai->Init.DataSize));
392 assert_param(IS_SAI_BLOCK_FIRST_BIT(hsai->Init.FirstBit));
393 assert_param(IS_SAI_BLOCK_CLOCK_STROBING(hsai->Init.ClockStrobing));
394 assert_param(IS_SAI_BLOCK_SYNCHRO(hsai->Init.Synchro));
395 assert_param(IS_SAI_BLOCK_OUTPUT_DRIVE(hsai->Init.OutputDrive));
396 assert_param(IS_SAI_BLOCK_NODIVIDER(hsai->Init.NoDivider));
397 assert_param(IS_SAI_BLOCK_FIFO_THRESHOLD(hsai->Init.FIFOThreshold));
398 assert_param(IS_SAI_MONO_STEREO_MODE(hsai->Init.MonoStereoMode));
399 assert_param(IS_SAI_BLOCK_COMPANDING_MODE(hsai->Init.CompandingMode));
400 assert_param(IS_SAI_BLOCK_TRISTATE_MANAGEMENT(hsai->Init.TriState));
401 assert_param(IS_SAI_BLOCK_SYNCEXT(hsai->Init.SynchroExt));
402 #if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
403 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
404 assert_param(IS_SAI_BLOCK_MCK_OVERSAMPLING(hsai->Init.MckOverSampling));
405 #endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
406 /* STM32L4P5xx || STM32L4Q5xx */
407
408 /* Check the SAI Block Frame parameters */
409 assert_param(IS_SAI_BLOCK_FRAME_LENGTH(hsai->FrameInit.FrameLength));
410 assert_param(IS_SAI_BLOCK_ACTIVE_FRAME(hsai->FrameInit.ActiveFrameLength));
411 assert_param(IS_SAI_BLOCK_FS_DEFINITION(hsai->FrameInit.FSDefinition));
412 assert_param(IS_SAI_BLOCK_FS_POLARITY(hsai->FrameInit.FSPolarity));
413 assert_param(IS_SAI_BLOCK_FS_OFFSET(hsai->FrameInit.FSOffset));
414
415 /* Check the SAI Block Slot parameters */
416 assert_param(IS_SAI_BLOCK_FIRSTBIT_OFFSET(hsai->SlotInit.FirstBitOffset));
417 assert_param(IS_SAI_BLOCK_SLOT_SIZE(hsai->SlotInit.SlotSize));
418 assert_param(IS_SAI_BLOCK_SLOT_NUMBER(hsai->SlotInit.SlotNumber));
419 assert_param(IS_SAI_SLOT_ACTIVE(hsai->SlotInit.SlotActive));
420
421 #if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
422 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
423 /* Check the SAI PDM parameters */
424 assert_param(IS_FUNCTIONAL_STATE(hsai->Init.PdmInit.Activation));
425 if (hsai->Init.PdmInit.Activation == ENABLE)
426 {
427 assert_param(IS_SAI_PDM_MIC_PAIRS_NUMBER(hsai->Init.PdmInit.MicPairsNbr));
428 assert_param(IS_SAI_PDM_CLOCK_ENABLE(hsai->Init.PdmInit.ClockEnable));
429 /* Check that SAI sub-block is SAI1 sub-block A, in master RX mode with free protocol */
430 if ((hsai->Instance != SAI1_Block_A) ||
431 (hsai->Init.AudioMode != SAI_MODEMASTER_RX) ||
432 (hsai->Init.Protocol != SAI_FREE_PROTOCOL))
433 {
434 return HAL_ERROR;
435 }
436 }
437 #endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
438 /* STM32L4P5xx || STM32L4Q5xx */
439
440 if (hsai->State == HAL_SAI_STATE_RESET)
441 {
442 /* Allocate lock resource and initialize it */
443 hsai->Lock = HAL_UNLOCKED;
444
445 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
446 /* Reset callback pointers to the weak predefined callbacks */
447 hsai->RxCpltCallback = HAL_SAI_RxCpltCallback;
448 hsai->RxHalfCpltCallback = HAL_SAI_RxHalfCpltCallback;
449 hsai->TxCpltCallback = HAL_SAI_TxCpltCallback;
450 hsai->TxHalfCpltCallback = HAL_SAI_TxHalfCpltCallback;
451 hsai->ErrorCallback = HAL_SAI_ErrorCallback;
452
453 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
454 if (hsai->MspInitCallback == NULL)
455 {
456 hsai->MspInitCallback = HAL_SAI_MspInit;
457 }
458 hsai->MspInitCallback(hsai);
459 #else
460 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
461 HAL_SAI_MspInit(hsai);
462 #endif
463 }
464
465 /* Disable the selected SAI peripheral */
466 if (SAI_Disable(hsai) != HAL_OK)
467 {
468 return HAL_ERROR;
469 }
470
471 hsai->State = HAL_SAI_STATE_BUSY;
472
473 /* SAI Block Synchro Configuration -----------------------------------------*/
474 /* This setting must be done with both audio block (A & B) disabled */
475 #if defined(SAI2)
476 switch (hsai->Init.SynchroExt)
477 {
478 case SAI_SYNCEXT_DISABLE :
479 tmpregisterGCR = 0;
480 break;
481 case SAI_SYNCEXT_OUTBLOCKA_ENABLE :
482 tmpregisterGCR = SAI_GCR_SYNCOUT_0;
483 break;
484 case SAI_SYNCEXT_OUTBLOCKB_ENABLE :
485 tmpregisterGCR = SAI_GCR_SYNCOUT_1;
486 break;
487 default :
488 tmpregisterGCR = 0;
489 break;
490 }
491 #endif /* SAI2 */
492
493 switch (hsai->Init.Synchro)
494 {
495 case SAI_ASYNCHRONOUS :
496 syncen_bits = 0;
497 break;
498 case SAI_SYNCHRONOUS :
499 syncen_bits = SAI_xCR1_SYNCEN_0;
500 break;
501 #if defined(SAI2)
502 case SAI_SYNCHRONOUS_EXT_SAI1 :
503 syncen_bits = SAI_xCR1_SYNCEN_1;
504 break;
505 case SAI_SYNCHRONOUS_EXT_SAI2 :
506 syncen_bits = SAI_xCR1_SYNCEN_1;
507 tmpregisterGCR |= SAI_GCR_SYNCIN_0;
508 break;
509 #endif /* SAI2 */
510 default :
511 syncen_bits = 0;
512 break;
513 }
514
515 #if defined(SAI2)
516 if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B))
517 {
518 SAI1->GCR = tmpregisterGCR;
519 }
520 else
521 {
522 SAI2->GCR = tmpregisterGCR;
523 }
524 #else
525 SAI1->GCR = 0;
526 #endif /* SAI2 */
527
528 if (hsai->Init.AudioFrequency != SAI_AUDIO_FREQUENCY_MCKDIV)
529 {
530 uint32_t freq;
531 uint32_t tmpval;
532
533 /* In this case, the MCKDIV value is calculated to get AudioFrequency */
534 #if defined(STM32L471xx) || defined(STM32L475xx) || defined(STM32L476xx) || defined(STM32L485xx) || defined(STM32L486xx) || \
535 defined(STM32L496xx) || defined(STM32L4A6xx) || \
536 defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
537 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
538
539 if ((hsai->Instance == SAI1_Block_A) || (hsai->Instance == SAI1_Block_B))
540 {
541 freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI1);
542 }
543 else
544 {
545 /* SAI2_Block_A or SAI2_Block_B */
546 freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI2);
547 }
548
549 #else
550
551 freq = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SAI1);
552
553 #endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || */
554 /* STM32L496xx || STM32L4A6xx || */
555 /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
556 /* STM32L4P5xx || STM32L4Q5xx */
557
558 #if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
559 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
560 /* Configure Master Clock Divider using the following formula :
561 - If NOMCK = 1 :
562 MCKDIV[5:0] = SAI_CK_x / (FS * (FRL + 1))
563 - If NOMCK = 0 :
564 MCKDIV[5:0] = SAI_CK_x / (FS * (OSR + 1) * 256) */
565 if (hsai->Init.NoDivider == SAI_MASTERDIVIDER_DISABLE)
566 {
567 /* NOMCK = 1 */
568 uint32_t tmpframelength;
569
570 if (hsai->Init.Protocol == SAI_SPDIF_PROTOCOL)
571 {
572 /* For SPDIF protocol, frame length is set by hardware to 64 */
573 tmpframelength = SAI_SPDIF_FRAME_LENGTH;
574 }
575 else if (hsai->Init.Protocol == SAI_AC97_PROTOCOL)
576 {
577 /* For AC97 protocol, frame length is set by hardware to 256 */
578 tmpframelength = SAI_AC97_FRAME_LENGTH;
579 }
580 else
581 {
582 /* For free protocol, frame length is set by user */
583 tmpframelength = hsai->FrameInit.FrameLength;
584 }
585
586 /* (freq x 10) to keep Significant digits */
587 tmpval = (freq * 10U) / (hsai->Init.AudioFrequency * tmpframelength);
588 }
589 else
590 {
591 /* NOMCK = 0 */
592 uint32_t tmposr;
593 tmposr = (hsai->Init.MckOverSampling == SAI_MCK_OVERSAMPLING_ENABLE) ? 2U : 1U;
594 /* (freq x 10) to keep Significant digits */
595 tmpval = (freq * 10U) / (hsai->Init.AudioFrequency * tmposr * 256U);
596 }
597 hsai->Init.Mckdiv = tmpval / 10U;
598
599 /* Round result to the nearest integer */
600 if ((tmpval % 10U) > 8U)
601 {
602 hsai->Init.Mckdiv += 1U;
603 }
604 #else
605 /* Configure Master Clock using the following formula :
606 MCLK_x = SAI_CK_x / (MCKDIV[3:0] * 2) with MCLK_x = 256 * FS
607 FS = SAI_CK_x / (MCKDIV[3:0] * 2) * 256
608 MCKDIV[3:0] = SAI_CK_x / FS * 512 */
609 /* (freq x 10) to keep Significant digits */
610 tmpval = (freq * 10U) / (hsai->Init.AudioFrequency * 2U * 256U);
611 hsai->Init.Mckdiv = tmpval / 10U;
612
613 /* Round result to the nearest integer */
614 if ((tmpval % 10U) > 8U)
615 {
616 hsai->Init.Mckdiv += 1U;
617 }
618 #endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
619 /* STM32L4P5xx || STM32L4Q5xx */
620
621 /* For SPDIF protocol, SAI shall provide a bit clock twice faster the symbol-rate */
622 if (hsai->Init.Protocol == SAI_SPDIF_PROTOCOL)
623 {
624 hsai->Init.Mckdiv = hsai->Init.Mckdiv >> 1;
625 }
626 }
627 /* Check the SAI Block master clock divider parameter */
628 assert_param(IS_SAI_BLOCK_MASTER_DIVIDER(hsai->Init.Mckdiv));
629
630 /* Compute CKSTR bits of SAI CR1 according ClockStrobing and AudioMode */
631 if ((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
632 {
633 /* Transmit */
634 ckstr_bits = (hsai->Init.ClockStrobing == SAI_CLOCKSTROBING_RISINGEDGE) ? 0U : SAI_xCR1_CKSTR;
635 }
636 else
637 {
638 /* Receive */
639 ckstr_bits = (hsai->Init.ClockStrobing == SAI_CLOCKSTROBING_RISINGEDGE) ? SAI_xCR1_CKSTR : 0U;
640 }
641
642 /* SAI Block Configuration -------------------------------------------------*/
643 /* SAI CR1 Configuration */
644 #if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
645 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
646 hsai->Instance->CR1 &= ~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \
647 SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN | \
648 SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \
649 SAI_xCR1_NOMCK | SAI_xCR1_MCKDIV | SAI_xCR1_OSR);
650
651 hsai->Instance->CR1 |= (hsai->Init.AudioMode | hsai->Init.Protocol | \
652 hsai->Init.DataSize | hsai->Init.FirstBit | \
653 ckstr_bits | syncen_bits | \
654 hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \
655 hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20) | \
656 hsai->Init.MckOverSampling);
657 #else
658 hsai->Instance->CR1 &= ~(SAI_xCR1_MODE | SAI_xCR1_PRTCFG | SAI_xCR1_DS | \
659 SAI_xCR1_LSBFIRST | SAI_xCR1_CKSTR | SAI_xCR1_SYNCEN | \
660 SAI_xCR1_MONO | SAI_xCR1_OUTDRIV | SAI_xCR1_DMAEN | \
661 SAI_xCR1_NODIV | SAI_xCR1_MCKDIV);
662
663 hsai->Instance->CR1 |= (hsai->Init.AudioMode | hsai->Init.Protocol | \
664 hsai->Init.DataSize | hsai->Init.FirstBit | \
665 ckstr_bits | syncen_bits | \
666 hsai->Init.MonoStereoMode | hsai->Init.OutputDrive | \
667 hsai->Init.NoDivider | (hsai->Init.Mckdiv << 20));
668 #endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
669 /* STM32L4P5xx || STM32L4Q5xx */
670
671 /* SAI CR2 Configuration */
672 hsai->Instance->CR2 &= ~(SAI_xCR2_FTH | SAI_xCR2_FFLUSH | SAI_xCR2_COMP | SAI_xCR2_CPL);
673 hsai->Instance->CR2 |= (hsai->Init.FIFOThreshold | hsai->Init.CompandingMode | hsai->Init.TriState);
674
675 /* SAI Frame Configuration -----------------------------------------*/
676 hsai->Instance->FRCR &= (~(SAI_xFRCR_FRL | SAI_xFRCR_FSALL | SAI_xFRCR_FSDEF | \
677 SAI_xFRCR_FSPOL | SAI_xFRCR_FSOFF));
678 hsai->Instance->FRCR |= ((hsai->FrameInit.FrameLength - 1U) |
679 hsai->FrameInit.FSOffset |
680 hsai->FrameInit.FSDefinition |
681 hsai->FrameInit.FSPolarity |
682 ((hsai->FrameInit.ActiveFrameLength - 1U) << 8));
683
684 /* SAI Block_x SLOT Configuration ------------------------------------------*/
685 /* This register has no meaning in AC 97 and SPDIF audio protocol */
686 hsai->Instance->SLOTR &= (~(SAI_xSLOTR_FBOFF | SAI_xSLOTR_SLOTSZ | \
687 SAI_xSLOTR_NBSLOT | SAI_xSLOTR_SLOTEN));
688
689 hsai->Instance->SLOTR |= hsai->SlotInit.FirstBitOffset | hsai->SlotInit.SlotSize | \
690 (hsai->SlotInit.SlotActive << 16) | ((hsai->SlotInit.SlotNumber - 1U) << 8);
691
692 #if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
693 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
694 /* SAI PDM Configuration ---------------------------------------------------*/
695 if (hsai->Instance == SAI1_Block_A)
696 {
697 /* Disable PDM interface */
698 SAI1->PDMCR &= ~(SAI_PDMCR_PDMEN);
699 if (hsai->Init.PdmInit.Activation == ENABLE)
700 {
701 /* Configure and enable PDM interface */
702 SAI1->PDMCR = (hsai->Init.PdmInit.ClockEnable |
703 ((hsai->Init.PdmInit.MicPairsNbr - 1U) << SAI_PDMCR_MICNBR_Pos));
704 SAI1->PDMCR |= SAI_PDMCR_PDMEN;
705 }
706 }
707 #endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
708 /* STM32L4P5xx || STM32L4Q5xx */
709
710 /* Initialize the error code */
711 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
712
713 /* Initialize the SAI state */
714 hsai->State = HAL_SAI_STATE_READY;
715
716 /* Release Lock */
717 __HAL_UNLOCK(hsai);
718
719 return HAL_OK;
720 }
721
722 /**
723 * @brief DeInitialize the SAI peripheral.
724 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
725 * the configuration information for SAI module.
726 * @retval HAL status
727 */
HAL_SAI_DeInit(SAI_HandleTypeDef * hsai)728 HAL_StatusTypeDef HAL_SAI_DeInit(SAI_HandleTypeDef *hsai)
729 {
730 /* Check the SAI handle allocation */
731 if (hsai == NULL)
732 {
733 return HAL_ERROR;
734 }
735
736 hsai->State = HAL_SAI_STATE_BUSY;
737
738 /* Disabled All interrupt and clear all the flag */
739 hsai->Instance->IMR = 0;
740 hsai->Instance->CLRFR = 0xFFFFFFFFU;
741
742 /* Disable the SAI */
743 if (SAI_Disable(hsai) != HAL_OK)
744 {
745 /* Reset SAI state to ready */
746 hsai->State = HAL_SAI_STATE_READY;
747
748 /* Release Lock */
749 __HAL_UNLOCK(hsai);
750
751 return HAL_ERROR;
752 }
753
754 /* Flush the fifo */
755 SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
756
757 #if defined(STM32L4R5xx) || defined(STM32L4R7xx) || defined(STM32L4R9xx) || defined(STM32L4S5xx) || defined(STM32L4S7xx) || defined(STM32L4S9xx) || \
758 defined(STM32L4P5xx) || defined(STM32L4Q5xx)
759 /* Disable SAI PDM interface */
760 if (hsai->Instance == SAI1_Block_A)
761 {
762 /* Reset PDM delays */
763 SAI1->PDMDLY = 0U;
764
765 /* Disable PDM interface */
766 SAI1->PDMCR &= ~(SAI_PDMCR_PDMEN);
767 }
768 #endif /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx || */
769 /* STM32L4P5xx || STM32L4Q5xx */
770
771 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
772 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
773 if (hsai->MspDeInitCallback == NULL)
774 {
775 hsai->MspDeInitCallback = HAL_SAI_MspDeInit;
776 }
777 hsai->MspDeInitCallback(hsai);
778 #else
779 HAL_SAI_MspDeInit(hsai);
780 #endif
781
782 /* Initialize the error code */
783 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
784
785 /* Initialize the SAI state */
786 hsai->State = HAL_SAI_STATE_RESET;
787
788 /* Release Lock */
789 __HAL_UNLOCK(hsai);
790
791 return HAL_OK;
792 }
793
794 /**
795 * @brief Initialize the SAI MSP.
796 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
797 * the configuration information for SAI module.
798 * @retval None
799 */
HAL_SAI_MspInit(SAI_HandleTypeDef * hsai)800 __weak void HAL_SAI_MspInit(SAI_HandleTypeDef *hsai)
801 {
802 /* Prevent unused argument(s) compilation warning */
803 UNUSED(hsai);
804
805 /* NOTE : This function should not be modified, when the callback is needed,
806 the HAL_SAI_MspInit could be implemented in the user file
807 */
808 }
809
810 /**
811 * @brief DeInitialize the SAI MSP.
812 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
813 * the configuration information for SAI module.
814 * @retval None
815 */
HAL_SAI_MspDeInit(SAI_HandleTypeDef * hsai)816 __weak void HAL_SAI_MspDeInit(SAI_HandleTypeDef *hsai)
817 {
818 /* Prevent unused argument(s) compilation warning */
819 UNUSED(hsai);
820
821 /* NOTE : This function should not be modified, when the callback is needed,
822 the HAL_SAI_MspDeInit could be implemented in the user file
823 */
824 }
825
826 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
827 /**
828 * @brief Register a user SAI callback
829 * to be used instead of the weak predefined callback.
830 * @param hsai SAI handle.
831 * @param CallbackID ID of the callback to be registered.
832 * This parameter can be one of the following values:
833 * @arg @ref HAL_SAI_RX_COMPLETE_CB_ID receive complete callback ID.
834 * @arg @ref HAL_SAI_RX_HALFCOMPLETE_CB_ID receive half complete callback ID.
835 * @arg @ref HAL_SAI_TX_COMPLETE_CB_ID transmit complete callback ID.
836 * @arg @ref HAL_SAI_TX_HALFCOMPLETE_CB_ID transmit half complete callback ID.
837 * @arg @ref HAL_SAI_ERROR_CB_ID error callback ID.
838 * @arg @ref HAL_SAI_MSPINIT_CB_ID MSP init callback ID.
839 * @arg @ref HAL_SAI_MSPDEINIT_CB_ID MSP de-init callback ID.
840 * @param pCallback pointer to the callback function.
841 * @retval HAL status.
842 */
HAL_SAI_RegisterCallback(SAI_HandleTypeDef * hsai,HAL_SAI_CallbackIDTypeDef CallbackID,pSAI_CallbackTypeDef pCallback)843 HAL_StatusTypeDef HAL_SAI_RegisterCallback(SAI_HandleTypeDef *hsai,
844 HAL_SAI_CallbackIDTypeDef CallbackID,
845 pSAI_CallbackTypeDef pCallback)
846 {
847 HAL_StatusTypeDef status = HAL_OK;
848
849 if (pCallback == NULL)
850 {
851 /* update the error code */
852 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
853 /* update return status */
854 status = HAL_ERROR;
855 }
856 else
857 {
858 if (HAL_SAI_STATE_READY == hsai->State)
859 {
860 switch (CallbackID)
861 {
862 case HAL_SAI_RX_COMPLETE_CB_ID :
863 hsai->RxCpltCallback = pCallback;
864 break;
865 case HAL_SAI_RX_HALFCOMPLETE_CB_ID :
866 hsai->RxHalfCpltCallback = pCallback;
867 break;
868 case HAL_SAI_TX_COMPLETE_CB_ID :
869 hsai->TxCpltCallback = pCallback;
870 break;
871 case HAL_SAI_TX_HALFCOMPLETE_CB_ID :
872 hsai->TxHalfCpltCallback = pCallback;
873 break;
874 case HAL_SAI_ERROR_CB_ID :
875 hsai->ErrorCallback = pCallback;
876 break;
877 case HAL_SAI_MSPINIT_CB_ID :
878 hsai->MspInitCallback = pCallback;
879 break;
880 case HAL_SAI_MSPDEINIT_CB_ID :
881 hsai->MspDeInitCallback = pCallback;
882 break;
883 default :
884 /* update the error code */
885 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
886 /* update return status */
887 status = HAL_ERROR;
888 break;
889 }
890 }
891 else if (HAL_SAI_STATE_RESET == hsai->State)
892 {
893 switch (CallbackID)
894 {
895 case HAL_SAI_MSPINIT_CB_ID :
896 hsai->MspInitCallback = pCallback;
897 break;
898 case HAL_SAI_MSPDEINIT_CB_ID :
899 hsai->MspDeInitCallback = pCallback;
900 break;
901 default :
902 /* update the error code */
903 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
904 /* update return status */
905 status = HAL_ERROR;
906 break;
907 }
908 }
909 else
910 {
911 /* update the error code */
912 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
913 /* update return status */
914 status = HAL_ERROR;
915 }
916 }
917 return status;
918 }
919
920 /**
921 * @brief Unregister a user SAI callback.
922 * SAI callback is redirected to the weak predefined callback.
923 * @param hsai SAI handle.
924 * @param CallbackID ID of the callback to be unregistered.
925 * This parameter can be one of the following values:
926 * @arg @ref HAL_SAI_RX_COMPLETE_CB_ID receive complete callback ID.
927 * @arg @ref HAL_SAI_RX_HALFCOMPLETE_CB_ID receive half complete callback ID.
928 * @arg @ref HAL_SAI_TX_COMPLETE_CB_ID transmit complete callback ID.
929 * @arg @ref HAL_SAI_TX_HALFCOMPLETE_CB_ID transmit half complete callback ID.
930 * @arg @ref HAL_SAI_ERROR_CB_ID error callback ID.
931 * @arg @ref HAL_SAI_MSPINIT_CB_ID MSP init callback ID.
932 * @arg @ref HAL_SAI_MSPDEINIT_CB_ID MSP de-init callback ID.
933 * @retval HAL status.
934 */
HAL_SAI_UnRegisterCallback(SAI_HandleTypeDef * hsai,HAL_SAI_CallbackIDTypeDef CallbackID)935 HAL_StatusTypeDef HAL_SAI_UnRegisterCallback(SAI_HandleTypeDef *hsai,
936 HAL_SAI_CallbackIDTypeDef CallbackID)
937 {
938 HAL_StatusTypeDef status = HAL_OK;
939
940 if (HAL_SAI_STATE_READY == hsai->State)
941 {
942 switch (CallbackID)
943 {
944 case HAL_SAI_RX_COMPLETE_CB_ID :
945 hsai->RxCpltCallback = HAL_SAI_RxCpltCallback;
946 break;
947 case HAL_SAI_RX_HALFCOMPLETE_CB_ID :
948 hsai->RxHalfCpltCallback = HAL_SAI_RxHalfCpltCallback;
949 break;
950 case HAL_SAI_TX_COMPLETE_CB_ID :
951 hsai->TxCpltCallback = HAL_SAI_TxCpltCallback;
952 break;
953 case HAL_SAI_TX_HALFCOMPLETE_CB_ID :
954 hsai->TxHalfCpltCallback = HAL_SAI_TxHalfCpltCallback;
955 break;
956 case HAL_SAI_ERROR_CB_ID :
957 hsai->ErrorCallback = HAL_SAI_ErrorCallback;
958 break;
959 case HAL_SAI_MSPINIT_CB_ID :
960 hsai->MspInitCallback = HAL_SAI_MspInit;
961 break;
962 case HAL_SAI_MSPDEINIT_CB_ID :
963 hsai->MspDeInitCallback = HAL_SAI_MspDeInit;
964 break;
965 default :
966 /* update the error code */
967 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
968 /* update return status */
969 status = HAL_ERROR;
970 break;
971 }
972 }
973 else if (HAL_SAI_STATE_RESET == hsai->State)
974 {
975 switch (CallbackID)
976 {
977 case HAL_SAI_MSPINIT_CB_ID :
978 hsai->MspInitCallback = HAL_SAI_MspInit;
979 break;
980 case HAL_SAI_MSPDEINIT_CB_ID :
981 hsai->MspDeInitCallback = HAL_SAI_MspDeInit;
982 break;
983 default :
984 /* update the error code */
985 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
986 /* update return status */
987 status = HAL_ERROR;
988 break;
989 }
990 }
991 else
992 {
993 /* update the error code */
994 hsai->ErrorCode |= HAL_SAI_ERROR_INVALID_CALLBACK;
995 /* update return status */
996 status = HAL_ERROR;
997 }
998 return status;
999 }
1000 #endif /* USE_HAL_SAI_REGISTER_CALLBACKS */
1001
1002 /**
1003 * @}
1004 */
1005
1006 /** @defgroup SAI_Exported_Functions_Group2 IO operation functions
1007 * @brief Data transfers functions
1008 *
1009 @verbatim
1010 ==============================================================================
1011 ##### IO operation functions #####
1012 ==============================================================================
1013 [..]
1014 This subsection provides a set of functions allowing to manage the SAI data
1015 transfers.
1016
1017 (+) There are two modes of transfer:
1018 (++) Blocking mode : The communication is performed in the polling mode.
1019 The status of all data processing is returned by the same function
1020 after finishing transfer.
1021 (++) No-Blocking mode : The communication is performed using Interrupts
1022 or DMA. These functions return the status of the transfer startup.
1023 The end of the data processing will be indicated through the
1024 dedicated SAI IRQ when using Interrupt mode or the DMA IRQ when
1025 using DMA mode.
1026
1027 (+) Blocking mode functions are :
1028 (++) HAL_SAI_Transmit()
1029 (++) HAL_SAI_Receive()
1030
1031 (+) Non Blocking mode functions with Interrupt are :
1032 (++) HAL_SAI_Transmit_IT()
1033 (++) HAL_SAI_Receive_IT()
1034
1035 (+) Non Blocking mode functions with DMA are :
1036 (++) HAL_SAI_Transmit_DMA()
1037 (++) HAL_SAI_Receive_DMA()
1038
1039 (+) A set of Transfer Complete Callbacks are provided in non Blocking mode:
1040 (++) HAL_SAI_TxCpltCallback()
1041 (++) HAL_SAI_RxCpltCallback()
1042 (++) HAL_SAI_ErrorCallback()
1043
1044 @endverbatim
1045 * @{
1046 */
1047
1048 /**
1049 * @brief Transmit an amount of data in blocking mode.
1050 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1051 * the configuration information for SAI module.
1052 * @param pData Pointer to data buffer
1053 * @param Size Amount of data to be sent
1054 * @param Timeout Timeout duration
1055 * @retval HAL status
1056 */
HAL_SAI_Transmit(SAI_HandleTypeDef * hsai,uint8_t * pData,uint16_t Size,uint32_t Timeout)1057 HAL_StatusTypeDef HAL_SAI_Transmit(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1058 {
1059 uint32_t tickstart = HAL_GetTick();
1060 uint32_t temp;
1061
1062 if ((pData == NULL) || (Size == 0U))
1063 {
1064 return HAL_ERROR;
1065 }
1066
1067 if (hsai->State == HAL_SAI_STATE_READY)
1068 {
1069 /* Process Locked */
1070 __HAL_LOCK(hsai);
1071
1072 hsai->XferSize = Size;
1073 hsai->XferCount = Size;
1074 hsai->pBuffPtr = pData;
1075 hsai->State = HAL_SAI_STATE_BUSY_TX;
1076 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
1077
1078 /* Check if the SAI is already enabled */
1079 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1080 {
1081 /* fill the fifo with data before to enabled the SAI */
1082 SAI_FillFifo(hsai);
1083 /* Enable SAI peripheral */
1084 __HAL_SAI_ENABLE(hsai);
1085 }
1086
1087 while (hsai->XferCount > 0U)
1088 {
1089 /* Write data if the FIFO is not full */
1090 if ((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL)
1091 {
1092 if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
1093 {
1094 hsai->Instance->DR = *hsai->pBuffPtr;
1095 hsai->pBuffPtr++;
1096 }
1097 else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
1098 {
1099 temp = (uint32_t)(*hsai->pBuffPtr);
1100 hsai->pBuffPtr++;
1101 temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
1102 hsai->pBuffPtr++;
1103 hsai->Instance->DR = temp;
1104 }
1105 else
1106 {
1107 temp = (uint32_t)(*hsai->pBuffPtr);
1108 hsai->pBuffPtr++;
1109 temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
1110 hsai->pBuffPtr++;
1111 temp |= ((uint32_t)(*hsai->pBuffPtr) << 16);
1112 hsai->pBuffPtr++;
1113 temp |= ((uint32_t)(*hsai->pBuffPtr) << 24);
1114 hsai->pBuffPtr++;
1115 hsai->Instance->DR = temp;
1116 }
1117 hsai->XferCount--;
1118 }
1119 else
1120 {
1121 /* Check for the Timeout */
1122 if ((((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) && (Timeout != HAL_MAX_DELAY))
1123 {
1124 /* Update error code */
1125 hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
1126
1127 /* Clear all the flags */
1128 hsai->Instance->CLRFR = 0xFFFFFFFFU;
1129
1130 /* Disable SAI peripheral */
1131 /* No need to check return value because state update, unlock and error return will be performed later */
1132 (void) SAI_Disable(hsai);
1133
1134 /* Flush the fifo */
1135 SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
1136
1137 /* Change the SAI state */
1138 hsai->State = HAL_SAI_STATE_READY;
1139
1140 /* Process Unlocked */
1141 __HAL_UNLOCK(hsai);
1142
1143 return HAL_ERROR;
1144 }
1145 }
1146 }
1147
1148 hsai->State = HAL_SAI_STATE_READY;
1149
1150 /* Process Unlocked */
1151 __HAL_UNLOCK(hsai);
1152
1153 return HAL_OK;
1154 }
1155 else
1156 {
1157 return HAL_BUSY;
1158 }
1159 }
1160
1161 /**
1162 * @brief Receive an amount of data in blocking mode.
1163 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1164 * the configuration information for SAI module.
1165 * @param pData Pointer to data buffer
1166 * @param Size Amount of data to be received
1167 * @param Timeout Timeout duration
1168 * @retval HAL status
1169 */
HAL_SAI_Receive(SAI_HandleTypeDef * hsai,uint8_t * pData,uint16_t Size,uint32_t Timeout)1170 HAL_StatusTypeDef HAL_SAI_Receive(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1171 {
1172 uint32_t tickstart = HAL_GetTick();
1173 uint32_t temp;
1174
1175 if ((pData == NULL) || (Size == 0U))
1176 {
1177 return HAL_ERROR;
1178 }
1179
1180 if (hsai->State == HAL_SAI_STATE_READY)
1181 {
1182 /* Process Locked */
1183 __HAL_LOCK(hsai);
1184
1185 hsai->pBuffPtr = pData;
1186 hsai->XferSize = Size;
1187 hsai->XferCount = Size;
1188 hsai->State = HAL_SAI_STATE_BUSY_RX;
1189 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
1190
1191 /* Check if the SAI is already enabled */
1192 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1193 {
1194 /* Enable SAI peripheral */
1195 __HAL_SAI_ENABLE(hsai);
1196 }
1197
1198 /* Receive data */
1199 while (hsai->XferCount > 0U)
1200 {
1201 if ((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_EMPTY)
1202 {
1203 if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
1204 {
1205 *hsai->pBuffPtr = (uint8_t)hsai->Instance->DR;
1206 hsai->pBuffPtr++;
1207 }
1208 else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
1209 {
1210 temp = hsai->Instance->DR;
1211 *hsai->pBuffPtr = (uint8_t)temp;
1212 hsai->pBuffPtr++;
1213 *hsai->pBuffPtr = (uint8_t)(temp >> 8);
1214 hsai->pBuffPtr++;
1215 }
1216 else
1217 {
1218 temp = hsai->Instance->DR;
1219 *hsai->pBuffPtr = (uint8_t)temp;
1220 hsai->pBuffPtr++;
1221 *hsai->pBuffPtr = (uint8_t)(temp >> 8);
1222 hsai->pBuffPtr++;
1223 *hsai->pBuffPtr = (uint8_t)(temp >> 16);
1224 hsai->pBuffPtr++;
1225 *hsai->pBuffPtr = (uint8_t)(temp >> 24);
1226 hsai->pBuffPtr++;
1227 }
1228 hsai->XferCount--;
1229 }
1230 else
1231 {
1232 /* Check for the Timeout */
1233 if ((((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) && (Timeout != HAL_MAX_DELAY))
1234 {
1235 /* Update error code */
1236 hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
1237
1238 /* Clear all the flags */
1239 hsai->Instance->CLRFR = 0xFFFFFFFFU;
1240
1241 /* Disable SAI peripheral */
1242 /* No need to check return value because state update, unlock and error return will be performed later */
1243 (void) SAI_Disable(hsai);
1244
1245 /* Flush the fifo */
1246 SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
1247
1248 /* Change the SAI state */
1249 hsai->State = HAL_SAI_STATE_READY;
1250
1251 /* Process Unlocked */
1252 __HAL_UNLOCK(hsai);
1253
1254 return HAL_ERROR;
1255 }
1256 }
1257 }
1258
1259 hsai->State = HAL_SAI_STATE_READY;
1260
1261 /* Process Unlocked */
1262 __HAL_UNLOCK(hsai);
1263
1264 return HAL_OK;
1265 }
1266 else
1267 {
1268 return HAL_BUSY;
1269 }
1270 }
1271
1272 /**
1273 * @brief Transmit an amount of data in non-blocking mode with Interrupt.
1274 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1275 * the configuration information for SAI module.
1276 * @param pData Pointer to data buffer
1277 * @param Size Amount of data to be sent
1278 * @retval HAL status
1279 */
HAL_SAI_Transmit_IT(SAI_HandleTypeDef * hsai,uint8_t * pData,uint16_t Size)1280 HAL_StatusTypeDef HAL_SAI_Transmit_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
1281 {
1282 if ((pData == NULL) || (Size == 0U))
1283 {
1284 return HAL_ERROR;
1285 }
1286
1287 if (hsai->State == HAL_SAI_STATE_READY)
1288 {
1289 /* Process Locked */
1290 __HAL_LOCK(hsai);
1291
1292 hsai->pBuffPtr = pData;
1293 hsai->XferSize = Size;
1294 hsai->XferCount = Size;
1295 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
1296 hsai->State = HAL_SAI_STATE_BUSY_TX;
1297
1298 if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
1299 {
1300 hsai->InterruptServiceRoutine = SAI_Transmit_IT8Bit;
1301 }
1302 else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
1303 {
1304 hsai->InterruptServiceRoutine = SAI_Transmit_IT16Bit;
1305 }
1306 else
1307 {
1308 hsai->InterruptServiceRoutine = SAI_Transmit_IT32Bit;
1309 }
1310
1311 /* Fill the fifo before starting the communication */
1312 SAI_FillFifo(hsai);
1313
1314 /* Enable FRQ and OVRUDR interrupts */
1315 __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
1316
1317 /* Check if the SAI is already enabled */
1318 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1319 {
1320 /* Enable SAI peripheral */
1321 __HAL_SAI_ENABLE(hsai);
1322 }
1323 /* Process Unlocked */
1324 __HAL_UNLOCK(hsai);
1325
1326 return HAL_OK;
1327 }
1328 else
1329 {
1330 return HAL_BUSY;
1331 }
1332 }
1333
1334 /**
1335 * @brief Receive an amount of data in non-blocking mode with Interrupt.
1336 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1337 * the configuration information for SAI module.
1338 * @param pData Pointer to data buffer
1339 * @param Size Amount of data to be received
1340 * @retval HAL status
1341 */
HAL_SAI_Receive_IT(SAI_HandleTypeDef * hsai,uint8_t * pData,uint16_t Size)1342 HAL_StatusTypeDef HAL_SAI_Receive_IT(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
1343 {
1344 if ((pData == NULL) || (Size == 0U))
1345 {
1346 return HAL_ERROR;
1347 }
1348
1349 if (hsai->State == HAL_SAI_STATE_READY)
1350 {
1351 /* Process Locked */
1352 __HAL_LOCK(hsai);
1353
1354 hsai->pBuffPtr = pData;
1355 hsai->XferSize = Size;
1356 hsai->XferCount = Size;
1357 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
1358 hsai->State = HAL_SAI_STATE_BUSY_RX;
1359
1360 if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
1361 {
1362 hsai->InterruptServiceRoutine = SAI_Receive_IT8Bit;
1363 }
1364 else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
1365 {
1366 hsai->InterruptServiceRoutine = SAI_Receive_IT16Bit;
1367 }
1368 else
1369 {
1370 hsai->InterruptServiceRoutine = SAI_Receive_IT32Bit;
1371 }
1372
1373 /* Enable TXE and OVRUDR interrupts */
1374 __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
1375
1376 /* Check if the SAI is already enabled */
1377 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1378 {
1379 /* Enable SAI peripheral */
1380 __HAL_SAI_ENABLE(hsai);
1381 }
1382
1383 /* Process Unlocked */
1384 __HAL_UNLOCK(hsai);
1385
1386 return HAL_OK;
1387 }
1388 else
1389 {
1390 return HAL_BUSY;
1391 }
1392 }
1393
1394 /**
1395 * @brief Pause the audio stream playing from the Media.
1396 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1397 * the configuration information for SAI module.
1398 * @retval HAL status
1399 */
HAL_SAI_DMAPause(SAI_HandleTypeDef * hsai)1400 HAL_StatusTypeDef HAL_SAI_DMAPause(SAI_HandleTypeDef *hsai)
1401 {
1402 /* Process Locked */
1403 __HAL_LOCK(hsai);
1404
1405 /* Pause the audio file playing by disabling the SAI DMA requests */
1406 hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
1407
1408 /* Process Unlocked */
1409 __HAL_UNLOCK(hsai);
1410
1411 return HAL_OK;
1412 }
1413
1414 /**
1415 * @brief Resume the audio stream playing from the Media.
1416 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1417 * the configuration information for SAI module.
1418 * @retval HAL status
1419 */
HAL_SAI_DMAResume(SAI_HandleTypeDef * hsai)1420 HAL_StatusTypeDef HAL_SAI_DMAResume(SAI_HandleTypeDef *hsai)
1421 {
1422 /* Process Locked */
1423 __HAL_LOCK(hsai);
1424
1425 /* Enable the SAI DMA requests */
1426 hsai->Instance->CR1 |= SAI_xCR1_DMAEN;
1427
1428 /* If the SAI peripheral is still not enabled, enable it */
1429 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1430 {
1431 /* Enable SAI peripheral */
1432 __HAL_SAI_ENABLE(hsai);
1433 }
1434
1435 /* Process Unlocked */
1436 __HAL_UNLOCK(hsai);
1437
1438 return HAL_OK;
1439 }
1440
1441 /**
1442 * @brief Stop the audio stream playing from the Media.
1443 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1444 * the configuration information for SAI module.
1445 * @retval HAL status
1446 */
HAL_SAI_DMAStop(SAI_HandleTypeDef * hsai)1447 HAL_StatusTypeDef HAL_SAI_DMAStop(SAI_HandleTypeDef *hsai)
1448 {
1449 HAL_StatusTypeDef status = HAL_OK;
1450
1451 /* Process Locked */
1452 __HAL_LOCK(hsai);
1453
1454 /* Disable SAI peripheral */
1455 if (SAI_Disable(hsai) != HAL_OK)
1456 {
1457 status = HAL_ERROR;
1458 }
1459
1460 /* Disable the SAI DMA request */
1461 hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
1462
1463 /* Abort the SAI Tx DMA Stream */
1464 if ((hsai->State == HAL_SAI_STATE_BUSY_TX) && (hsai->hdmatx != NULL))
1465 {
1466 /* No need to check the returned value of HAL_DMA_Abort. */
1467 /* Only HAL_DMA_ERROR_NO_XFER can be returned in case of error and it's not an error for SAI. */
1468 (void) HAL_DMA_Abort(hsai->hdmatx);
1469 }
1470
1471 /* Abort the SAI Rx DMA Stream */
1472 if ((hsai->State == HAL_SAI_STATE_BUSY_RX) && (hsai->hdmarx != NULL))
1473 {
1474 /* No need to check the returned value of HAL_DMA_Abort. */
1475 /* Only HAL_DMA_ERROR_NO_XFER can be returned in case of error and it's not an error for SAI. */
1476 (void) HAL_DMA_Abort(hsai->hdmarx);
1477 }
1478
1479 /* Flush the fifo */
1480 SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
1481
1482 /* Set hsai state to ready */
1483 hsai->State = HAL_SAI_STATE_READY;
1484
1485 /* Process Unlocked */
1486 __HAL_UNLOCK(hsai);
1487
1488 return status;
1489 }
1490
1491 /**
1492 * @brief Abort the current transfer and disable the SAI.
1493 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1494 * the configuration information for SAI module.
1495 * @retval HAL status
1496 */
HAL_SAI_Abort(SAI_HandleTypeDef * hsai)1497 HAL_StatusTypeDef HAL_SAI_Abort(SAI_HandleTypeDef *hsai)
1498 {
1499 HAL_StatusTypeDef status = HAL_OK;
1500
1501 /* Process Locked */
1502 __HAL_LOCK(hsai);
1503
1504 /* Disable SAI peripheral */
1505 if (SAI_Disable(hsai) != HAL_OK)
1506 {
1507 status = HAL_ERROR;
1508 }
1509
1510 /* Check SAI DMA is enabled or not */
1511 if ((hsai->Instance->CR1 & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
1512 {
1513 /* Disable the SAI DMA request */
1514 hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
1515
1516 /* Abort the SAI Tx DMA Stream */
1517 if ((hsai->State == HAL_SAI_STATE_BUSY_TX) && (hsai->hdmatx != NULL))
1518 {
1519 /* No need to check the returned value of HAL_DMA_Abort. */
1520 /* Only HAL_DMA_ERROR_NO_XFER can be returned in case of error and it's not an error for SAI. */
1521 (void) HAL_DMA_Abort(hsai->hdmatx);
1522 }
1523
1524 /* Abort the SAI Rx DMA Stream */
1525 if ((hsai->State == HAL_SAI_STATE_BUSY_RX) && (hsai->hdmarx != NULL))
1526 {
1527 /* No need to check the returned value of HAL_DMA_Abort. */
1528 /* Only HAL_DMA_ERROR_NO_XFER can be returned in case of error and it's not an error for SAI. */
1529 (void) HAL_DMA_Abort(hsai->hdmarx);
1530 }
1531 }
1532
1533 /* Disabled All interrupt and clear all the flag */
1534 hsai->Instance->IMR = 0;
1535 hsai->Instance->CLRFR = 0xFFFFFFFFU;
1536
1537 /* Flush the fifo */
1538 SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
1539
1540 /* Set hsai state to ready */
1541 hsai->State = HAL_SAI_STATE_READY;
1542
1543 /* Process Unlocked */
1544 __HAL_UNLOCK(hsai);
1545
1546 return status;
1547 }
1548
1549 /**
1550 * @brief Transmit an amount of data in non-blocking mode with DMA.
1551 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1552 * the configuration information for SAI module.
1553 * @param pData Pointer to data buffer
1554 * @param Size Amount of data to be sent
1555 * @retval HAL status
1556 */
HAL_SAI_Transmit_DMA(SAI_HandleTypeDef * hsai,uint8_t * pData,uint16_t Size)1557 HAL_StatusTypeDef HAL_SAI_Transmit_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
1558 {
1559 uint32_t tickstart = HAL_GetTick();
1560
1561 if ((pData == NULL) || (Size == 0U))
1562 {
1563 return HAL_ERROR;
1564 }
1565
1566 if (hsai->State == HAL_SAI_STATE_READY)
1567 {
1568 /* Process Locked */
1569 __HAL_LOCK(hsai);
1570
1571 hsai->pBuffPtr = pData;
1572 hsai->XferSize = Size;
1573 hsai->XferCount = Size;
1574 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
1575 hsai->State = HAL_SAI_STATE_BUSY_TX;
1576
1577 /* Set the SAI Tx DMA Half transfer complete callback */
1578 hsai->hdmatx->XferHalfCpltCallback = SAI_DMATxHalfCplt;
1579
1580 /* Set the SAI TxDMA transfer complete callback */
1581 hsai->hdmatx->XferCpltCallback = SAI_DMATxCplt;
1582
1583 /* Set the DMA error callback */
1584 hsai->hdmatx->XferErrorCallback = SAI_DMAError;
1585
1586 /* Set the DMA Tx abort callback */
1587 hsai->hdmatx->XferAbortCallback = NULL;
1588
1589 /* Enable the Tx DMA Stream */
1590 if (HAL_DMA_Start_IT(hsai->hdmatx, (uint32_t)hsai->pBuffPtr, (uint32_t)&hsai->Instance->DR, hsai->XferSize) != HAL_OK)
1591 {
1592 __HAL_UNLOCK(hsai);
1593 return HAL_ERROR;
1594 }
1595
1596 /* Enable the interrupts for error handling */
1597 __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
1598
1599 /* Enable SAI Tx DMA Request */
1600 hsai->Instance->CR1 |= SAI_xCR1_DMAEN;
1601
1602 /* Wait until FIFO is not empty */
1603 while ((hsai->Instance->SR & SAI_xSR_FLVL) == SAI_FIFOSTATUS_EMPTY)
1604 {
1605 /* Check for the Timeout */
1606 if ((HAL_GetTick() - tickstart) > SAI_LONG_TIMEOUT)
1607 {
1608 /* Update error code */
1609 hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
1610
1611 /* Process Unlocked */
1612 __HAL_UNLOCK(hsai);
1613
1614 return HAL_TIMEOUT;
1615 }
1616 }
1617
1618 /* Check if the SAI is already enabled */
1619 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1620 {
1621 /* Enable SAI peripheral */
1622 __HAL_SAI_ENABLE(hsai);
1623 }
1624
1625 /* Process Unlocked */
1626 __HAL_UNLOCK(hsai);
1627
1628 return HAL_OK;
1629 }
1630 else
1631 {
1632 return HAL_BUSY;
1633 }
1634 }
1635
1636 /**
1637 * @brief Receive an amount of data in non-blocking mode with DMA.
1638 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1639 * the configuration information for SAI module.
1640 * @param pData Pointer to data buffer
1641 * @param Size Amount of data to be received
1642 * @retval HAL status
1643 */
HAL_SAI_Receive_DMA(SAI_HandleTypeDef * hsai,uint8_t * pData,uint16_t Size)1644 HAL_StatusTypeDef HAL_SAI_Receive_DMA(SAI_HandleTypeDef *hsai, uint8_t *pData, uint16_t Size)
1645 {
1646
1647 if ((pData == NULL) || (Size == 0U))
1648 {
1649 return HAL_ERROR;
1650 }
1651
1652 if (hsai->State == HAL_SAI_STATE_READY)
1653 {
1654 /* Process Locked */
1655 __HAL_LOCK(hsai);
1656
1657 hsai->pBuffPtr = pData;
1658 hsai->XferSize = Size;
1659 hsai->XferCount = Size;
1660 hsai->ErrorCode = HAL_SAI_ERROR_NONE;
1661 hsai->State = HAL_SAI_STATE_BUSY_RX;
1662
1663 /* Set the SAI Rx DMA Half transfer complete callback */
1664 hsai->hdmarx->XferHalfCpltCallback = SAI_DMARxHalfCplt;
1665
1666 /* Set the SAI Rx DMA transfer complete callback */
1667 hsai->hdmarx->XferCpltCallback = SAI_DMARxCplt;
1668
1669 /* Set the DMA error callback */
1670 hsai->hdmarx->XferErrorCallback = SAI_DMAError;
1671
1672 /* Set the DMA Rx abort callback */
1673 hsai->hdmarx->XferAbortCallback = NULL;
1674
1675 /* Enable the Rx DMA Stream */
1676 if (HAL_DMA_Start_IT(hsai->hdmarx, (uint32_t)&hsai->Instance->DR, (uint32_t)hsai->pBuffPtr, hsai->XferSize) != HAL_OK)
1677 {
1678 __HAL_UNLOCK(hsai);
1679 return HAL_ERROR;
1680 }
1681
1682 /* Enable the interrupts for error handling */
1683 __HAL_SAI_ENABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
1684
1685 /* Enable SAI Rx DMA Request */
1686 hsai->Instance->CR1 |= SAI_xCR1_DMAEN;
1687
1688 /* Check if the SAI is already enabled */
1689 if ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) == 0U)
1690 {
1691 /* Enable SAI peripheral */
1692 __HAL_SAI_ENABLE(hsai);
1693 }
1694
1695 /* Process Unlocked */
1696 __HAL_UNLOCK(hsai);
1697
1698 return HAL_OK;
1699 }
1700 else
1701 {
1702 return HAL_BUSY;
1703 }
1704 }
1705
1706 /**
1707 * @brief Enable the Tx mute mode.
1708 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1709 * the configuration information for SAI module.
1710 * @param val value sent during the mute @ref SAI_Block_Mute_Value
1711 * @retval HAL status
1712 */
HAL_SAI_EnableTxMuteMode(SAI_HandleTypeDef * hsai,uint16_t val)1713 HAL_StatusTypeDef HAL_SAI_EnableTxMuteMode(SAI_HandleTypeDef *hsai, uint16_t val)
1714 {
1715 assert_param(IS_SAI_BLOCK_MUTE_VALUE(val));
1716
1717 if (hsai->State != HAL_SAI_STATE_RESET)
1718 {
1719 CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE);
1720 SET_BIT(hsai->Instance->CR2, SAI_xCR2_MUTE | (uint32_t)val);
1721 return HAL_OK;
1722 }
1723 return HAL_ERROR;
1724 }
1725
1726 /**
1727 * @brief Disable the Tx mute mode.
1728 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1729 * the configuration information for SAI module.
1730 * @retval HAL status
1731 */
HAL_SAI_DisableTxMuteMode(SAI_HandleTypeDef * hsai)1732 HAL_StatusTypeDef HAL_SAI_DisableTxMuteMode(SAI_HandleTypeDef *hsai)
1733 {
1734 if (hsai->State != HAL_SAI_STATE_RESET)
1735 {
1736 CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTEVAL | SAI_xCR2_MUTE);
1737 return HAL_OK;
1738 }
1739 return HAL_ERROR;
1740 }
1741
1742 /**
1743 * @brief Enable the Rx mute detection.
1744 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1745 * the configuration information for SAI module.
1746 * @param callback function called when the mute is detected.
1747 * @param counter number a data before mute detection max 63.
1748 * @retval HAL status
1749 */
HAL_SAI_EnableRxMuteMode(SAI_HandleTypeDef * hsai,SAIcallback callback,uint16_t counter)1750 HAL_StatusTypeDef HAL_SAI_EnableRxMuteMode(SAI_HandleTypeDef *hsai, SAIcallback callback, uint16_t counter)
1751 {
1752 assert_param(IS_SAI_BLOCK_MUTE_COUNTER(counter));
1753
1754 if (hsai->State != HAL_SAI_STATE_RESET)
1755 {
1756 /* set the mute counter */
1757 CLEAR_BIT(hsai->Instance->CR2, SAI_xCR2_MUTECNT);
1758 SET_BIT(hsai->Instance->CR2, (uint32_t)((uint32_t)counter << SAI_xCR2_MUTECNT_Pos));
1759 hsai->mutecallback = callback;
1760 /* enable the IT interrupt */
1761 __HAL_SAI_ENABLE_IT(hsai, SAI_IT_MUTEDET);
1762 return HAL_OK;
1763 }
1764 return HAL_ERROR;
1765 }
1766
1767 /**
1768 * @brief Disable the Rx mute detection.
1769 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1770 * the configuration information for SAI module.
1771 * @retval HAL status
1772 */
HAL_SAI_DisableRxMuteMode(SAI_HandleTypeDef * hsai)1773 HAL_StatusTypeDef HAL_SAI_DisableRxMuteMode(SAI_HandleTypeDef *hsai)
1774 {
1775 if (hsai->State != HAL_SAI_STATE_RESET)
1776 {
1777 /* set the mutecallback to NULL */
1778 hsai->mutecallback = NULL;
1779 /* enable the IT interrupt */
1780 __HAL_SAI_DISABLE_IT(hsai, SAI_IT_MUTEDET);
1781 return HAL_OK;
1782 }
1783 return HAL_ERROR;
1784 }
1785
1786 /**
1787 * @brief Handle SAI interrupt request.
1788 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
1789 * the configuration information for SAI module.
1790 * @retval None
1791 */
HAL_SAI_IRQHandler(SAI_HandleTypeDef * hsai)1792 void HAL_SAI_IRQHandler(SAI_HandleTypeDef *hsai)
1793 {
1794 if (hsai->State != HAL_SAI_STATE_RESET)
1795 {
1796 uint32_t itflags = hsai->Instance->SR;
1797 uint32_t itsources = hsai->Instance->IMR;
1798 uint32_t cr1config = hsai->Instance->CR1;
1799 uint32_t tmperror;
1800
1801 /* SAI Fifo request interrupt occurred -----------------------------------*/
1802 if (((itflags & SAI_xSR_FREQ) == SAI_xSR_FREQ) && ((itsources & SAI_IT_FREQ) == SAI_IT_FREQ))
1803 {
1804 hsai->InterruptServiceRoutine(hsai);
1805 }
1806 /* SAI Overrun error interrupt occurred ----------------------------------*/
1807 else if (((itflags & SAI_FLAG_OVRUDR) == SAI_FLAG_OVRUDR) && ((itsources & SAI_IT_OVRUDR) == SAI_IT_OVRUDR))
1808 {
1809 /* Clear the SAI Overrun flag */
1810 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
1811 /* Get the SAI error code */
1812 tmperror = ((hsai->State == HAL_SAI_STATE_BUSY_RX) ? HAL_SAI_ERROR_OVR : HAL_SAI_ERROR_UDR);
1813 /* Change the SAI error code */
1814 hsai->ErrorCode |= tmperror;
1815 /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */
1816 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1817 hsai->ErrorCallback(hsai);
1818 #else
1819 HAL_SAI_ErrorCallback(hsai);
1820 #endif
1821 }
1822 /* SAI mutedet interrupt occurred ----------------------------------*/
1823 else if (((itflags & SAI_FLAG_MUTEDET) == SAI_FLAG_MUTEDET) && ((itsources & SAI_IT_MUTEDET) == SAI_IT_MUTEDET))
1824 {
1825 /* Clear the SAI mutedet flag */
1826 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_MUTEDET);
1827 /* call the call back function */
1828 if (hsai->mutecallback != NULL)
1829 {
1830 /* inform the user that an RX mute event has been detected */
1831 hsai->mutecallback();
1832 }
1833 }
1834 /* SAI AFSDET interrupt occurred ----------------------------------*/
1835 else if (((itflags & SAI_FLAG_AFSDET) == SAI_FLAG_AFSDET) && ((itsources & SAI_IT_AFSDET) == SAI_IT_AFSDET))
1836 {
1837 /* Clear the SAI AFSDET flag */
1838 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_AFSDET);
1839
1840 /* Change the SAI error code */
1841 hsai->ErrorCode |= HAL_SAI_ERROR_AFSDET;
1842
1843 /* Check SAI DMA is enabled or not */
1844 if ((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
1845 {
1846 /* Abort the SAI DMA Streams */
1847 if (hsai->hdmatx != NULL)
1848 {
1849 /* Set the DMA Tx abort callback */
1850 hsai->hdmatx->XferAbortCallback = SAI_DMAAbort;
1851
1852 /* Abort DMA in IT mode */
1853 if (HAL_DMA_Abort_IT(hsai->hdmatx) != HAL_OK)
1854 {
1855 /* Update SAI error code */
1856 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
1857
1858 /* Call SAI error callback */
1859 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1860 hsai->ErrorCallback(hsai);
1861 #else
1862 HAL_SAI_ErrorCallback(hsai);
1863 #endif
1864 }
1865 }
1866 if (hsai->hdmarx != NULL)
1867 {
1868 /* Set the DMA Rx abort callback */
1869 hsai->hdmarx->XferAbortCallback = SAI_DMAAbort;
1870
1871 /* Abort DMA in IT mode */
1872 if (HAL_DMA_Abort_IT(hsai->hdmarx) != HAL_OK)
1873 {
1874 /* Update SAI error code */
1875 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
1876
1877 /* Call SAI error callback */
1878 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1879 hsai->ErrorCallback(hsai);
1880 #else
1881 HAL_SAI_ErrorCallback(hsai);
1882 #endif
1883 }
1884 }
1885 }
1886 else
1887 {
1888 /* Abort SAI */
1889 /* No need to check return value because HAL_SAI_ErrorCallback will be called later */
1890 (void) HAL_SAI_Abort(hsai);
1891
1892 /* Set error callback */
1893 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1894 hsai->ErrorCallback(hsai);
1895 #else
1896 HAL_SAI_ErrorCallback(hsai);
1897 #endif
1898 }
1899 }
1900 /* SAI LFSDET interrupt occurred ----------------------------------*/
1901 else if (((itflags & SAI_FLAG_LFSDET) == SAI_FLAG_LFSDET) && ((itsources & SAI_IT_LFSDET) == SAI_IT_LFSDET))
1902 {
1903 /* Clear the SAI LFSDET flag */
1904 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_LFSDET);
1905
1906 /* Change the SAI error code */
1907 hsai->ErrorCode |= HAL_SAI_ERROR_LFSDET;
1908
1909 /* Check SAI DMA is enabled or not */
1910 if ((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
1911 {
1912 /* Abort the SAI DMA Streams */
1913 if (hsai->hdmatx != NULL)
1914 {
1915 /* Set the DMA Tx abort callback */
1916 hsai->hdmatx->XferAbortCallback = SAI_DMAAbort;
1917
1918 /* Abort DMA in IT mode */
1919 if (HAL_DMA_Abort_IT(hsai->hdmatx) != HAL_OK)
1920 {
1921 /* Update SAI error code */
1922 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
1923
1924 /* Call SAI error callback */
1925 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1926 hsai->ErrorCallback(hsai);
1927 #else
1928 HAL_SAI_ErrorCallback(hsai);
1929 #endif
1930 }
1931 }
1932 if (hsai->hdmarx != NULL)
1933 {
1934 /* Set the DMA Rx abort callback */
1935 hsai->hdmarx->XferAbortCallback = SAI_DMAAbort;
1936
1937 /* Abort DMA in IT mode */
1938 if (HAL_DMA_Abort_IT(hsai->hdmarx) != HAL_OK)
1939 {
1940 /* Update SAI error code */
1941 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
1942
1943 /* Call SAI error callback */
1944 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1945 hsai->ErrorCallback(hsai);
1946 #else
1947 HAL_SAI_ErrorCallback(hsai);
1948 #endif
1949 }
1950 }
1951 }
1952 else
1953 {
1954 /* Abort SAI */
1955 /* No need to check return value because HAL_SAI_ErrorCallback will be called later */
1956 (void) HAL_SAI_Abort(hsai);
1957
1958 /* Set error callback */
1959 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1960 hsai->ErrorCallback(hsai);
1961 #else
1962 HAL_SAI_ErrorCallback(hsai);
1963 #endif
1964 }
1965 }
1966 /* SAI WCKCFG interrupt occurred ----------------------------------*/
1967 else if (((itflags & SAI_FLAG_WCKCFG) == SAI_FLAG_WCKCFG) && ((itsources & SAI_IT_WCKCFG) == SAI_IT_WCKCFG))
1968 {
1969 /* Clear the SAI WCKCFG flag */
1970 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_WCKCFG);
1971
1972 /* Change the SAI error code */
1973 hsai->ErrorCode |= HAL_SAI_ERROR_WCKCFG;
1974
1975 /* Check SAI DMA is enabled or not */
1976 if ((cr1config & SAI_xCR1_DMAEN) == SAI_xCR1_DMAEN)
1977 {
1978 /* Abort the SAI DMA Streams */
1979 if (hsai->hdmatx != NULL)
1980 {
1981 /* Set the DMA Tx abort callback */
1982 hsai->hdmatx->XferAbortCallback = SAI_DMAAbort;
1983
1984 /* Abort DMA in IT mode */
1985 if (HAL_DMA_Abort_IT(hsai->hdmatx) != HAL_OK)
1986 {
1987 /* Update SAI error code */
1988 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
1989
1990 /* Call SAI error callback */
1991 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
1992 hsai->ErrorCallback(hsai);
1993 #else
1994 HAL_SAI_ErrorCallback(hsai);
1995 #endif
1996 }
1997 }
1998 if (hsai->hdmarx != NULL)
1999 {
2000 /* Set the DMA Rx abort callback */
2001 hsai->hdmarx->XferAbortCallback = SAI_DMAAbort;
2002
2003 /* Abort DMA in IT mode */
2004 if (HAL_DMA_Abort_IT(hsai->hdmarx) != HAL_OK)
2005 {
2006 /* Update SAI error code */
2007 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
2008
2009 /* Call SAI error callback */
2010 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2011 hsai->ErrorCallback(hsai);
2012 #else
2013 HAL_SAI_ErrorCallback(hsai);
2014 #endif
2015 }
2016 }
2017 }
2018 else
2019 {
2020 /* If WCKCFG occurs, SAI audio block is automatically disabled */
2021 /* Disable all interrupts and clear all flags */
2022 hsai->Instance->IMR = 0U;
2023 hsai->Instance->CLRFR = 0xFFFFFFFFU;
2024 /* Set the SAI state to ready to be able to start again the process */
2025 hsai->State = HAL_SAI_STATE_READY;
2026
2027 /* Initialize XferCount */
2028 hsai->XferCount = 0U;
2029
2030 /* SAI error Callback */
2031 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2032 hsai->ErrorCallback(hsai);
2033 #else
2034 HAL_SAI_ErrorCallback(hsai);
2035 #endif
2036 }
2037 }
2038 /* SAI CNRDY interrupt occurred ----------------------------------*/
2039 else if (((itflags & SAI_FLAG_CNRDY) == SAI_FLAG_CNRDY) && ((itsources & SAI_IT_CNRDY) == SAI_IT_CNRDY))
2040 {
2041 /* Clear the SAI CNRDY flag */
2042 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_CNRDY);
2043 /* Change the SAI error code */
2044 hsai->ErrorCode |= HAL_SAI_ERROR_CNREADY;
2045 /* the transfer is not stopped, we will forward the information to the user and we let the user decide what needs to be done */
2046 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2047 hsai->ErrorCallback(hsai);
2048 #else
2049 HAL_SAI_ErrorCallback(hsai);
2050 #endif
2051 }
2052 else
2053 {
2054 /* Nothing to do */
2055 }
2056 }
2057 }
2058
2059 /**
2060 * @brief Tx Transfer completed callback.
2061 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2062 * the configuration information for SAI module.
2063 * @retval None
2064 */
HAL_SAI_TxCpltCallback(SAI_HandleTypeDef * hsai)2065 __weak void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai)
2066 {
2067 /* Prevent unused argument(s) compilation warning */
2068 UNUSED(hsai);
2069
2070 /* NOTE : This function should not be modified, when the callback is needed,
2071 the HAL_SAI_TxCpltCallback could be implemented in the user file
2072 */
2073 }
2074
2075 /**
2076 * @brief Tx Transfer Half completed callback.
2077 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2078 * the configuration information for SAI module.
2079 * @retval None
2080 */
HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef * hsai)2081 __weak void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai)
2082 {
2083 /* Prevent unused argument(s) compilation warning */
2084 UNUSED(hsai);
2085
2086 /* NOTE : This function should not be modified, when the callback is needed,
2087 the HAL_SAI_TxHalfCpltCallback could be implemented in the user file
2088 */
2089 }
2090
2091 /**
2092 * @brief Rx Transfer completed callback.
2093 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2094 * the configuration information for SAI module.
2095 * @retval None
2096 */
HAL_SAI_RxCpltCallback(SAI_HandleTypeDef * hsai)2097 __weak void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai)
2098 {
2099 /* Prevent unused argument(s) compilation warning */
2100 UNUSED(hsai);
2101
2102 /* NOTE : This function should not be modified, when the callback is needed,
2103 the HAL_SAI_RxCpltCallback could be implemented in the user file
2104 */
2105 }
2106
2107 /**
2108 * @brief Rx Transfer half completed callback.
2109 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2110 * the configuration information for SAI module.
2111 * @retval None
2112 */
HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef * hsai)2113 __weak void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai)
2114 {
2115 /* Prevent unused argument(s) compilation warning */
2116 UNUSED(hsai);
2117
2118 /* NOTE : This function should not be modified, when the callback is needed,
2119 the HAL_SAI_RxHalfCpltCallback could be implemented in the user file
2120 */
2121 }
2122
2123 /**
2124 * @brief SAI error callback.
2125 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2126 * the configuration information for SAI module.
2127 * @retval None
2128 */
HAL_SAI_ErrorCallback(SAI_HandleTypeDef * hsai)2129 __weak void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai)
2130 {
2131 /* Prevent unused argument(s) compilation warning */
2132 UNUSED(hsai);
2133
2134 /* NOTE : This function should not be modified, when the callback is needed,
2135 the HAL_SAI_ErrorCallback could be implemented in the user file
2136 */
2137 }
2138
2139 /**
2140 * @}
2141 */
2142
2143 /** @defgroup SAI_Exported_Functions_Group3 Peripheral State functions
2144 * @brief Peripheral State functions
2145 *
2146 @verbatim
2147 ===============================================================================
2148 ##### Peripheral State and Errors functions #####
2149 ===============================================================================
2150 [..]
2151 This subsection permits to get in run-time the status of the peripheral
2152 and the data flow.
2153
2154 @endverbatim
2155 * @{
2156 */
2157
2158 /**
2159 * @brief Return the SAI handle state.
2160 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2161 * the configuration information for SAI module.
2162 * @retval HAL state
2163 */
HAL_SAI_GetState(const SAI_HandleTypeDef * hsai)2164 HAL_SAI_StateTypeDef HAL_SAI_GetState(const SAI_HandleTypeDef *hsai)
2165 {
2166 return hsai->State;
2167 }
2168
2169 /**
2170 * @brief Return the SAI error code.
2171 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2172 * the configuration information for the specified SAI Block.
2173 * @retval SAI Error Code
2174 */
HAL_SAI_GetError(const SAI_HandleTypeDef * hsai)2175 uint32_t HAL_SAI_GetError(const SAI_HandleTypeDef *hsai)
2176 {
2177 return hsai->ErrorCode;
2178 }
2179
2180 /**
2181 * @}
2182 */
2183
2184 /**
2185 * @}
2186 */
2187
2188 /** @addtogroup SAI_Private_Functions
2189 * @brief Private functions
2190 * @{
2191 */
2192
2193 /**
2194 * @brief Initialize the SAI I2S protocol according to the specified parameters
2195 * in the SAI_InitTypeDef and create the associated handle.
2196 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2197 * the configuration information for SAI module.
2198 * @param protocol one of the supported protocol.
2199 * @param datasize one of the supported datasize @ref SAI_Protocol_DataSize.
2200 * @param nbslot number of slot minimum value is 2 and max is 16.
2201 * the value must be a multiple of 2.
2202 * @retval HAL status
2203 */
SAI_InitI2S(SAI_HandleTypeDef * hsai,uint32_t protocol,uint32_t datasize,uint32_t nbslot)2204 static HAL_StatusTypeDef SAI_InitI2S(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot)
2205 {
2206 HAL_StatusTypeDef status = HAL_OK;
2207
2208 hsai->Init.Protocol = SAI_FREE_PROTOCOL;
2209 hsai->Init.FirstBit = SAI_FIRSTBIT_MSB;
2210 /* Compute ClockStrobing according AudioMode */
2211 if ((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
2212 {
2213 /* Transmit */
2214 hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
2215 }
2216 else
2217 {
2218 /* Receive */
2219 hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
2220 }
2221 hsai->FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION;
2222 hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL;
2223 hsai->SlotInit.FirstBitOffset = 0;
2224 hsai->SlotInit.SlotNumber = nbslot;
2225
2226 /* in IS2 the number of slot must be even */
2227 if ((nbslot & 0x1U) != 0U)
2228 {
2229 return HAL_ERROR;
2230 }
2231
2232 if (protocol == SAI_I2S_STANDARD)
2233 {
2234 hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW;
2235 hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
2236 }
2237 else
2238 {
2239 /* SAI_I2S_MSBJUSTIFIED or SAI_I2S_LSBJUSTIFIED */
2240 hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH;
2241 hsai->FrameInit.FSOffset = SAI_FS_FIRSTBIT;
2242 }
2243
2244 /* Frame definition */
2245 switch (datasize)
2246 {
2247 case SAI_PROTOCOL_DATASIZE_16BIT:
2248 hsai->Init.DataSize = SAI_DATASIZE_16;
2249 hsai->FrameInit.FrameLength = 32U * (nbslot / 2U);
2250 hsai->FrameInit.ActiveFrameLength = 16U * (nbslot / 2U);
2251 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B;
2252 break;
2253 case SAI_PROTOCOL_DATASIZE_16BITEXTENDED :
2254 hsai->Init.DataSize = SAI_DATASIZE_16;
2255 hsai->FrameInit.FrameLength = 64U * (nbslot / 2U);
2256 hsai->FrameInit.ActiveFrameLength = 32U * (nbslot / 2U);
2257 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
2258 break;
2259 case SAI_PROTOCOL_DATASIZE_24BIT:
2260 hsai->Init.DataSize = SAI_DATASIZE_24;
2261 hsai->FrameInit.FrameLength = 64U * (nbslot / 2U);
2262 hsai->FrameInit.ActiveFrameLength = 32U * (nbslot / 2U);
2263 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
2264 break;
2265 case SAI_PROTOCOL_DATASIZE_32BIT:
2266 hsai->Init.DataSize = SAI_DATASIZE_32;
2267 hsai->FrameInit.FrameLength = 64U * (nbslot / 2U);
2268 hsai->FrameInit.ActiveFrameLength = 32U * (nbslot / 2U);
2269 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
2270 break;
2271 default :
2272 status = HAL_ERROR;
2273 break;
2274 }
2275 if (protocol == SAI_I2S_LSBJUSTIFIED)
2276 {
2277 if (datasize == SAI_PROTOCOL_DATASIZE_16BITEXTENDED)
2278 {
2279 hsai->SlotInit.FirstBitOffset = 16;
2280 }
2281 if (datasize == SAI_PROTOCOL_DATASIZE_24BIT)
2282 {
2283 hsai->SlotInit.FirstBitOffset = 8;
2284 }
2285 }
2286 return status;
2287 }
2288
2289 /**
2290 * @brief Initialize the SAI PCM protocol according to the specified parameters
2291 * in the SAI_InitTypeDef and create the associated handle.
2292 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2293 * the configuration information for SAI module.
2294 * @param protocol one of the supported protocol
2295 * @param datasize one of the supported datasize @ref SAI_Protocol_DataSize
2296 * @param nbslot number of slot minimum value is 1 and the max is 16.
2297 * @retval HAL status
2298 */
SAI_InitPCM(SAI_HandleTypeDef * hsai,uint32_t protocol,uint32_t datasize,uint32_t nbslot)2299 static HAL_StatusTypeDef SAI_InitPCM(SAI_HandleTypeDef *hsai, uint32_t protocol, uint32_t datasize, uint32_t nbslot)
2300 {
2301 HAL_StatusTypeDef status = HAL_OK;
2302
2303 hsai->Init.Protocol = SAI_FREE_PROTOCOL;
2304 hsai->Init.FirstBit = SAI_FIRSTBIT_MSB;
2305 /* Compute ClockStrobing according AudioMode */
2306 if ((hsai->Init.AudioMode == SAI_MODEMASTER_TX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
2307 {
2308 /* Transmit */
2309 hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE;
2310 }
2311 else
2312 {
2313 /* Receive */
2314 hsai->Init.ClockStrobing = SAI_CLOCKSTROBING_FALLINGEDGE;
2315 }
2316 hsai->FrameInit.FSDefinition = SAI_FS_STARTFRAME;
2317 hsai->FrameInit.FSPolarity = SAI_FS_ACTIVE_HIGH;
2318 hsai->FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT;
2319 hsai->SlotInit.FirstBitOffset = 0;
2320 hsai->SlotInit.SlotNumber = nbslot;
2321 hsai->SlotInit.SlotActive = SAI_SLOTACTIVE_ALL;
2322
2323 if (protocol == SAI_PCM_SHORT)
2324 {
2325 hsai->FrameInit.ActiveFrameLength = 1;
2326 }
2327 else
2328 {
2329 /* SAI_PCM_LONG */
2330 hsai->FrameInit.ActiveFrameLength = 13;
2331 }
2332
2333 switch (datasize)
2334 {
2335 case SAI_PROTOCOL_DATASIZE_16BIT:
2336 hsai->Init.DataSize = SAI_DATASIZE_16;
2337 hsai->FrameInit.FrameLength = 16U * nbslot;
2338 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_16B;
2339 break;
2340 case SAI_PROTOCOL_DATASIZE_16BITEXTENDED :
2341 hsai->Init.DataSize = SAI_DATASIZE_16;
2342 hsai->FrameInit.FrameLength = 32U * nbslot;
2343 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
2344 break;
2345 case SAI_PROTOCOL_DATASIZE_24BIT :
2346 hsai->Init.DataSize = SAI_DATASIZE_24;
2347 hsai->FrameInit.FrameLength = 32U * nbslot;
2348 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
2349 break;
2350 case SAI_PROTOCOL_DATASIZE_32BIT:
2351 hsai->Init.DataSize = SAI_DATASIZE_32;
2352 hsai->FrameInit.FrameLength = 32U * nbslot;
2353 hsai->SlotInit.SlotSize = SAI_SLOTSIZE_32B;
2354 break;
2355 default :
2356 status = HAL_ERROR;
2357 break;
2358 }
2359
2360 return status;
2361 }
2362
2363 /**
2364 * @brief Fill the fifo.
2365 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2366 * the configuration information for SAI module.
2367 * @retval None
2368 */
SAI_FillFifo(SAI_HandleTypeDef * hsai)2369 static void SAI_FillFifo(SAI_HandleTypeDef *hsai)
2370 {
2371 uint32_t temp;
2372
2373 /* fill the fifo with data before to enabled the SAI */
2374 while (((hsai->Instance->SR & SAI_xSR_FLVL) != SAI_FIFOSTATUS_FULL) && (hsai->XferCount > 0U))
2375 {
2376 if ((hsai->Init.DataSize == SAI_DATASIZE_8) && (hsai->Init.CompandingMode == SAI_NOCOMPANDING))
2377 {
2378 hsai->Instance->DR = *hsai->pBuffPtr;
2379 hsai->pBuffPtr++;
2380 }
2381 else if (hsai->Init.DataSize <= SAI_DATASIZE_16)
2382 {
2383 temp = (uint32_t)(*hsai->pBuffPtr);
2384 hsai->pBuffPtr++;
2385 temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
2386 hsai->pBuffPtr++;
2387 hsai->Instance->DR = temp;
2388 }
2389 else
2390 {
2391 temp = (uint32_t)(*hsai->pBuffPtr);
2392 hsai->pBuffPtr++;
2393 temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
2394 hsai->pBuffPtr++;
2395 temp |= ((uint32_t)(*hsai->pBuffPtr) << 16);
2396 hsai->pBuffPtr++;
2397 temp |= ((uint32_t)(*hsai->pBuffPtr) << 24);
2398 hsai->pBuffPtr++;
2399 hsai->Instance->DR = temp;
2400 }
2401 hsai->XferCount--;
2402 }
2403 }
2404
2405 /**
2406 * @brief Return the interrupt flag to set according the SAI setup.
2407 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2408 * the configuration information for SAI module.
2409 * @param mode SAI_MODE_DMA or SAI_MODE_IT
2410 * @retval the list of the IT flag to enable
2411 */
SAI_InterruptFlag(const SAI_HandleTypeDef * hsai,SAI_ModeTypedef mode)2412 static uint32_t SAI_InterruptFlag(const SAI_HandleTypeDef *hsai, SAI_ModeTypedef mode)
2413 {
2414 uint32_t tmpIT = SAI_IT_OVRUDR;
2415
2416 if (mode == SAI_MODE_IT)
2417 {
2418 tmpIT |= SAI_IT_FREQ;
2419 }
2420
2421 if ((hsai->Init.Protocol == SAI_AC97_PROTOCOL) &&
2422 ((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODEMASTER_RX)))
2423 {
2424 tmpIT |= SAI_IT_CNRDY;
2425 }
2426
2427 if ((hsai->Init.AudioMode == SAI_MODESLAVE_RX) || (hsai->Init.AudioMode == SAI_MODESLAVE_TX))
2428 {
2429 tmpIT |= SAI_IT_AFSDET | SAI_IT_LFSDET;
2430 }
2431 else
2432 {
2433 /* hsai has been configured in master mode */
2434 tmpIT |= SAI_IT_WCKCFG;
2435 }
2436 return tmpIT;
2437 }
2438
2439 /**
2440 * @brief Disable the SAI and wait for the disabling.
2441 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2442 * the configuration information for SAI module.
2443 * @retval None
2444 */
SAI_Disable(SAI_HandleTypeDef * hsai)2445 static HAL_StatusTypeDef SAI_Disable(SAI_HandleTypeDef *hsai)
2446 {
2447 uint32_t count = SAI_DEFAULT_TIMEOUT * (SystemCoreClock / 7U / 1000U);
2448 HAL_StatusTypeDef status = HAL_OK;
2449
2450 /* Disable the SAI instance */
2451 __HAL_SAI_DISABLE(hsai);
2452
2453 do
2454 {
2455 /* Check for the Timeout */
2456 if (count == 0U)
2457 {
2458 /* Update error code */
2459 hsai->ErrorCode |= HAL_SAI_ERROR_TIMEOUT;
2460 status = HAL_TIMEOUT;
2461 break;
2462 }
2463 count--;
2464 }
2465 while ((hsai->Instance->CR1 & SAI_xCR1_SAIEN) != 0U);
2466
2467 return status;
2468 }
2469
2470 /**
2471 * @brief Tx Handler for Transmit in Interrupt mode 8-Bit transfer.
2472 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2473 * the configuration information for SAI module.
2474 * @retval None
2475 */
SAI_Transmit_IT8Bit(SAI_HandleTypeDef * hsai)2476 static void SAI_Transmit_IT8Bit(SAI_HandleTypeDef *hsai)
2477 {
2478 if (hsai->XferCount == 0U)
2479 {
2480 /* Handle the end of the transmission */
2481 /* Disable FREQ and OVRUDR interrupts */
2482 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
2483 hsai->State = HAL_SAI_STATE_READY;
2484 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2485 hsai->TxCpltCallback(hsai);
2486 #else
2487 HAL_SAI_TxCpltCallback(hsai);
2488 #endif
2489 }
2490 else
2491 {
2492 /* Write data on DR register */
2493 hsai->Instance->DR = *hsai->pBuffPtr;
2494 hsai->pBuffPtr++;
2495 hsai->XferCount--;
2496 }
2497 }
2498
2499 /**
2500 * @brief Tx Handler for Transmit in Interrupt mode for 16-Bit transfer.
2501 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2502 * the configuration information for SAI module.
2503 * @retval None
2504 */
SAI_Transmit_IT16Bit(SAI_HandleTypeDef * hsai)2505 static void SAI_Transmit_IT16Bit(SAI_HandleTypeDef *hsai)
2506 {
2507 if (hsai->XferCount == 0U)
2508 {
2509 /* Handle the end of the transmission */
2510 /* Disable FREQ and OVRUDR interrupts */
2511 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
2512 hsai->State = HAL_SAI_STATE_READY;
2513 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2514 hsai->TxCpltCallback(hsai);
2515 #else
2516 HAL_SAI_TxCpltCallback(hsai);
2517 #endif
2518 }
2519 else
2520 {
2521 /* Write data on DR register */
2522 uint32_t temp;
2523 temp = (uint32_t)(*hsai->pBuffPtr);
2524 hsai->pBuffPtr++;
2525 temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
2526 hsai->pBuffPtr++;
2527 hsai->Instance->DR = temp;
2528 hsai->XferCount--;
2529 }
2530 }
2531
2532 /**
2533 * @brief Tx Handler for Transmit in Interrupt mode for 32-Bit transfer.
2534 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2535 * the configuration information for SAI module.
2536 * @retval None
2537 */
SAI_Transmit_IT32Bit(SAI_HandleTypeDef * hsai)2538 static void SAI_Transmit_IT32Bit(SAI_HandleTypeDef *hsai)
2539 {
2540 if (hsai->XferCount == 0U)
2541 {
2542 /* Handle the end of the transmission */
2543 /* Disable FREQ and OVRUDR interrupts */
2544 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
2545 hsai->State = HAL_SAI_STATE_READY;
2546 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2547 hsai->TxCpltCallback(hsai);
2548 #else
2549 HAL_SAI_TxCpltCallback(hsai);
2550 #endif
2551 }
2552 else
2553 {
2554 /* Write data on DR register */
2555 uint32_t temp;
2556 temp = (uint32_t)(*hsai->pBuffPtr);
2557 hsai->pBuffPtr++;
2558 temp |= ((uint32_t)(*hsai->pBuffPtr) << 8);
2559 hsai->pBuffPtr++;
2560 temp |= ((uint32_t)(*hsai->pBuffPtr) << 16);
2561 hsai->pBuffPtr++;
2562 temp |= ((uint32_t)(*hsai->pBuffPtr) << 24);
2563 hsai->pBuffPtr++;
2564 hsai->Instance->DR = temp;
2565 hsai->XferCount--;
2566 }
2567 }
2568
2569 /**
2570 * @brief Rx Handler for Receive in Interrupt mode 8-Bit transfer.
2571 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2572 * the configuration information for SAI module.
2573 * @retval None
2574 */
SAI_Receive_IT8Bit(SAI_HandleTypeDef * hsai)2575 static void SAI_Receive_IT8Bit(SAI_HandleTypeDef *hsai)
2576 {
2577 /* Receive data */
2578 *hsai->pBuffPtr = (uint8_t)hsai->Instance->DR;
2579 hsai->pBuffPtr++;
2580 hsai->XferCount--;
2581
2582 /* Check end of the transfer */
2583 if (hsai->XferCount == 0U)
2584 {
2585 /* Disable TXE and OVRUDR interrupts */
2586 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
2587
2588 /* Clear the SAI Overrun flag */
2589 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
2590
2591 hsai->State = HAL_SAI_STATE_READY;
2592 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2593 hsai->RxCpltCallback(hsai);
2594 #else
2595 HAL_SAI_RxCpltCallback(hsai);
2596 #endif
2597 }
2598 }
2599
2600 /**
2601 * @brief Rx Handler for Receive in Interrupt mode for 16-Bit transfer.
2602 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2603 * the configuration information for SAI module.
2604 * @retval None
2605 */
SAI_Receive_IT16Bit(SAI_HandleTypeDef * hsai)2606 static void SAI_Receive_IT16Bit(SAI_HandleTypeDef *hsai)
2607 {
2608 uint32_t temp;
2609
2610 /* Receive data */
2611 temp = hsai->Instance->DR;
2612 *hsai->pBuffPtr = (uint8_t)temp;
2613 hsai->pBuffPtr++;
2614 *hsai->pBuffPtr = (uint8_t)(temp >> 8);
2615 hsai->pBuffPtr++;
2616 hsai->XferCount--;
2617
2618 /* Check end of the transfer */
2619 if (hsai->XferCount == 0U)
2620 {
2621 /* Disable TXE and OVRUDR interrupts */
2622 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
2623
2624 /* Clear the SAI Overrun flag */
2625 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
2626
2627 hsai->State = HAL_SAI_STATE_READY;
2628 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2629 hsai->RxCpltCallback(hsai);
2630 #else
2631 HAL_SAI_RxCpltCallback(hsai);
2632 #endif
2633 }
2634 }
2635
2636 /**
2637 * @brief Rx Handler for Receive in Interrupt mode for 32-Bit transfer.
2638 * @param hsai pointer to a SAI_HandleTypeDef structure that contains
2639 * the configuration information for SAI module.
2640 * @retval None
2641 */
SAI_Receive_IT32Bit(SAI_HandleTypeDef * hsai)2642 static void SAI_Receive_IT32Bit(SAI_HandleTypeDef *hsai)
2643 {
2644 uint32_t temp;
2645
2646 /* Receive data */
2647 temp = hsai->Instance->DR;
2648 *hsai->pBuffPtr = (uint8_t)temp;
2649 hsai->pBuffPtr++;
2650 *hsai->pBuffPtr = (uint8_t)(temp >> 8);
2651 hsai->pBuffPtr++;
2652 *hsai->pBuffPtr = (uint8_t)(temp >> 16);
2653 hsai->pBuffPtr++;
2654 *hsai->pBuffPtr = (uint8_t)(temp >> 24);
2655 hsai->pBuffPtr++;
2656 hsai->XferCount--;
2657
2658 /* Check end of the transfer */
2659 if (hsai->XferCount == 0U)
2660 {
2661 /* Disable TXE and OVRUDR interrupts */
2662 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_IT));
2663
2664 /* Clear the SAI Overrun flag */
2665 __HAL_SAI_CLEAR_FLAG(hsai, SAI_FLAG_OVRUDR);
2666
2667 hsai->State = HAL_SAI_STATE_READY;
2668 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2669 hsai->RxCpltCallback(hsai);
2670 #else
2671 HAL_SAI_RxCpltCallback(hsai);
2672 #endif
2673 }
2674 }
2675
2676 /**
2677 * @brief DMA SAI transmit process complete callback.
2678 * @param hdma pointer to a DMA_HandleTypeDef structure that contains
2679 * the configuration information for the specified DMA module.
2680 * @retval None
2681 */
SAI_DMATxCplt(DMA_HandleTypeDef * hdma)2682 static void SAI_DMATxCplt(DMA_HandleTypeDef *hdma)
2683 {
2684 SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2685
2686 if (hdma->Init.Mode != DMA_CIRCULAR)
2687 {
2688 hsai->XferCount = 0;
2689
2690 /* Disable SAI Tx DMA Request */
2691 hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN);
2692
2693 /* Stop the interrupts error handling */
2694 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
2695
2696 hsai->State = HAL_SAI_STATE_READY;
2697 }
2698 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2699 hsai->TxCpltCallback(hsai);
2700 #else
2701 HAL_SAI_TxCpltCallback(hsai);
2702 #endif
2703 }
2704
2705 /**
2706 * @brief DMA SAI transmit process half complete callback.
2707 * @param hdma pointer to a DMA_HandleTypeDef structure that contains
2708 * the configuration information for the specified DMA module.
2709 * @retval None
2710 */
SAI_DMATxHalfCplt(DMA_HandleTypeDef * hdma)2711 static void SAI_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
2712 {
2713 SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2714
2715 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2716 hsai->TxHalfCpltCallback(hsai);
2717 #else
2718 HAL_SAI_TxHalfCpltCallback(hsai);
2719 #endif
2720 }
2721
2722 /**
2723 * @brief DMA SAI receive process complete callback.
2724 * @param hdma pointer to a DMA_HandleTypeDef structure that contains
2725 * the configuration information for the specified DMA module.
2726 * @retval None
2727 */
SAI_DMARxCplt(DMA_HandleTypeDef * hdma)2728 static void SAI_DMARxCplt(DMA_HandleTypeDef *hdma)
2729 {
2730 SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2731
2732 if (hdma->Init.Mode != DMA_CIRCULAR)
2733 {
2734 /* Disable Rx DMA Request */
2735 hsai->Instance->CR1 &= (uint32_t)(~SAI_xCR1_DMAEN);
2736 hsai->XferCount = 0;
2737
2738 /* Stop the interrupts error handling */
2739 __HAL_SAI_DISABLE_IT(hsai, SAI_InterruptFlag(hsai, SAI_MODE_DMA));
2740
2741 hsai->State = HAL_SAI_STATE_READY;
2742 }
2743 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2744 hsai->RxCpltCallback(hsai);
2745 #else
2746 HAL_SAI_RxCpltCallback(hsai);
2747 #endif
2748 }
2749
2750 /**
2751 * @brief DMA SAI receive process half complete callback
2752 * @param hdma pointer to a DMA_HandleTypeDef structure that contains
2753 * the configuration information for the specified DMA module.
2754 * @retval None
2755 */
SAI_DMARxHalfCplt(DMA_HandleTypeDef * hdma)2756 static void SAI_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
2757 {
2758 SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2759
2760 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2761 hsai->RxHalfCpltCallback(hsai);
2762 #else
2763 HAL_SAI_RxHalfCpltCallback(hsai);
2764 #endif
2765 }
2766
2767 /**
2768 * @brief DMA SAI communication error callback.
2769 * @param hdma pointer to a DMA_HandleTypeDef structure that contains
2770 * the configuration information for the specified DMA module.
2771 * @retval None
2772 */
SAI_DMAError(DMA_HandleTypeDef * hdma)2773 static void SAI_DMAError(DMA_HandleTypeDef *hdma)
2774 {
2775 SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2776
2777 /* Set SAI error code */
2778 hsai->ErrorCode |= HAL_SAI_ERROR_DMA;
2779
2780 /* Disable the SAI DMA request */
2781 hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
2782
2783 /* Disable SAI peripheral */
2784 /* No need to check return value because state will be updated and HAL_SAI_ErrorCallback will be called later */
2785 (void) SAI_Disable(hsai);
2786
2787 /* Set the SAI state ready to be able to start again the process */
2788 hsai->State = HAL_SAI_STATE_READY;
2789
2790 /* Initialize XferCount */
2791 hsai->XferCount = 0U;
2792
2793 /* SAI error Callback */
2794 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2795 hsai->ErrorCallback(hsai);
2796 #else
2797 HAL_SAI_ErrorCallback(hsai);
2798 #endif
2799 }
2800
2801 /**
2802 * @brief DMA SAI Abort callback.
2803 * @param hdma pointer to a DMA_HandleTypeDef structure that contains
2804 * the configuration information for the specified DMA module.
2805 * @retval None
2806 */
SAI_DMAAbort(DMA_HandleTypeDef * hdma)2807 static void SAI_DMAAbort(DMA_HandleTypeDef *hdma)
2808 {
2809 SAI_HandleTypeDef *hsai = (SAI_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2810
2811 /* Disable DMA request */
2812 hsai->Instance->CR1 &= ~SAI_xCR1_DMAEN;
2813
2814 /* Disable all interrupts and clear all flags */
2815 hsai->Instance->IMR = 0U;
2816 hsai->Instance->CLRFR = 0xFFFFFFFFU;
2817
2818 if (hsai->ErrorCode != HAL_SAI_ERROR_WCKCFG)
2819 {
2820 /* Disable SAI peripheral */
2821 /* No need to check return value because state will be updated and HAL_SAI_ErrorCallback will be called later */
2822 (void) SAI_Disable(hsai);
2823
2824 /* Flush the fifo */
2825 SET_BIT(hsai->Instance->CR2, SAI_xCR2_FFLUSH);
2826 }
2827 /* Set the SAI state to ready to be able to start again the process */
2828 hsai->State = HAL_SAI_STATE_READY;
2829
2830 /* Initialize XferCount */
2831 hsai->XferCount = 0U;
2832
2833 /* SAI error Callback */
2834 #if (USE_HAL_SAI_REGISTER_CALLBACKS == 1)
2835 hsai->ErrorCallback(hsai);
2836 #else
2837 HAL_SAI_ErrorCallback(hsai);
2838 #endif
2839 }
2840
2841 /**
2842 * @}
2843 */
2844
2845 /**
2846 * @}
2847 */
2848
2849 #endif /* !STM32L412xx && !STM32L422xx */
2850 #endif /* HAL_SAI_MODULE_ENABLED */
2851
2852 /**
2853 * @}
2854 */
2855
2856