1 /**
2 ******************************************************************************
3 * @file stm32l4xx_hal_irda.c
4 * @author MCD Application Team
5 * @brief IRDA HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the IrDA (Infrared Data Association) Peripheral
8 * (IRDA)
9 * + Initialization and de-initialization functions
10 * + IO operation functions
11 * + Peripheral State and Errors functions
12 * + Peripheral Control functions
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2017 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 @verbatim
26 ==============================================================================
27 ##### How to use this driver #####
28 ==============================================================================
29 [..]
30 The IRDA HAL driver can be used as follows:
31
32 (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda).
33 (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API
34 in setting the associated USART or UART in IRDA mode:
35 (++) Enable the USARTx/UARTx interface clock.
36 (++) USARTx/UARTx pins configuration:
37 (+++) Enable the clock for the USARTx/UARTx GPIOs.
38 (+++) Configure these USARTx/UARTx pins (TX as alternate function pull-up, RX as alternate function Input).
39 (++) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
40 and HAL_IRDA_Receive_IT() APIs):
41 (+++) Configure the USARTx/UARTx interrupt priority.
42 (+++) Enable the NVIC USARTx/UARTx IRQ handle.
43 (+++) The specific IRDA interrupts (Transmission complete interrupt,
44 RXNE interrupt and Error Interrupts) will be managed using the macros
45 __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
46
47 (++) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
48 and HAL_IRDA_Receive_DMA() APIs):
49 (+++) Declare a DMA handle structure for the Tx/Rx channel.
50 (+++) Enable the DMAx interface clock.
51 (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
52 (+++) Configure the DMA Tx/Rx channel.
53 (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle.
54 (+++) Configure the priority and enable the NVIC for the transfer
55 complete interrupt on the DMA Tx/Rx channel.
56
57 (#) Program the Baud Rate, Word Length and Parity and Mode(Receiver/Transmitter),
58 the normal or low power mode and the clock prescaler in the hirda handle Init structure.
59
60 (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
61 (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
62 by calling the customized HAL_IRDA_MspInit() API.
63
64 -@@- The specific IRDA interrupts (Transmission complete interrupt,
65 RXNE interrupt and Error Interrupts) will be managed using the macros
66 __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
67
68 (#) Three operation modes are available within this driver :
69
70 *** Polling mode IO operation ***
71 =================================
72 [..]
73 (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit()
74 (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
75
76 *** Interrupt mode IO operation ***
77 ===================================
78 [..]
79 (+) Send an amount of data in non-blocking mode using HAL_IRDA_Transmit_IT()
80 (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
81 add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
82 (+) Receive an amount of data in non-blocking mode using HAL_IRDA_Receive_IT()
83 (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
84 add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
85 (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
86 add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
87
88 *** DMA mode IO operation ***
89 ==============================
90 [..]
91 (+) Send an amount of data in non-blocking mode (DMA) using HAL_IRDA_Transmit_DMA()
92 (+) At transmission half of transfer HAL_IRDA_TxHalfCpltCallback() is executed and user can
93 add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback()
94 (+) At transmission end of transfer HAL_IRDA_TxCpltCallback() is executed and user can
95 add his own code by customization of function pointer HAL_IRDA_TxCpltCallback()
96 (+) Receive an amount of data in non-blocking mode (DMA) using HAL_IRDA_Receive_DMA()
97 (+) At reception half of transfer HAL_IRDA_RxHalfCpltCallback() is executed and user can
98 add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback()
99 (+) At reception end of transfer HAL_IRDA_RxCpltCallback() is executed and user can
100 add his own code by customization of function pointer HAL_IRDA_RxCpltCallback()
101 (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can
102 add his own code by customization of function pointer HAL_IRDA_ErrorCallback()
103
104 *** IRDA HAL driver macros list ***
105 ====================================
106 [..]
107 Below the list of most used macros in IRDA HAL driver.
108
109 (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral
110 (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral
111 (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
112 (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
113 (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
114 (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
115 (+) __HAL_IRDA_GET_IT_SOURCE: Check whether or not the specified IRDA interrupt is enabled
116
117 [..]
118 (@) You can refer to the IRDA HAL driver header file for more useful macros
119
120 ##### Callback registration #####
121 ==================================
122
123 [..]
124 The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1
125 allows the user to configure dynamically the driver callbacks.
126
127 [..]
128 Use Function HAL_IRDA_RegisterCallback() to register a user callback.
129 Function HAL_IRDA_RegisterCallback() allows to register following callbacks:
130 (+) TxHalfCpltCallback : Tx Half Complete Callback.
131 (+) TxCpltCallback : Tx Complete Callback.
132 (+) RxHalfCpltCallback : Rx Half Complete Callback.
133 (+) RxCpltCallback : Rx Complete Callback.
134 (+) ErrorCallback : Error Callback.
135 (+) AbortCpltCallback : Abort Complete Callback.
136 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
137 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
138 (+) MspInitCallback : IRDA MspInit.
139 (+) MspDeInitCallback : IRDA MspDeInit.
140 This function takes as parameters the HAL peripheral handle, the Callback ID
141 and a pointer to the user callback function.
142
143 [..]
144 Use function HAL_IRDA_UnRegisterCallback() to reset a callback to the default
145 weak function.
146 HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle,
147 and the Callback ID.
148 This function allows to reset following callbacks:
149 (+) TxHalfCpltCallback : Tx Half Complete Callback.
150 (+) TxCpltCallback : Tx Complete Callback.
151 (+) RxHalfCpltCallback : Rx Half Complete Callback.
152 (+) RxCpltCallback : Rx Complete Callback.
153 (+) ErrorCallback : Error Callback.
154 (+) AbortCpltCallback : Abort Complete Callback.
155 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
156 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
157 (+) MspInitCallback : IRDA MspInit.
158 (+) MspDeInitCallback : IRDA MspDeInit.
159
160 [..]
161 By default, after the HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET
162 all callbacks are set to the corresponding weak functions:
163 examples HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxHalfCpltCallback().
164 Exception done for MspInit and MspDeInit functions that are respectively
165 reset to the legacy weak functions in the HAL_IRDA_Init()
166 and HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand).
167 If not, MspInit or MspDeInit are not null, the HAL_IRDA_Init() and HAL_IRDA_DeInit()
168 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
169
170 [..]
171 Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only.
172 Exception done MspInit/MspDeInit that can be registered/unregistered
173 in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user)
174 MspInit/DeInit callbacks can be used during the Init/DeInit.
175 In that case first register the MspInit/MspDeInit user callbacks
176 using HAL_IRDA_RegisterCallback() before calling HAL_IRDA_DeInit()
177 or HAL_IRDA_Init() function.
178
179 [..]
180 When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or
181 not defined, the callback registration feature is not available
182 and weak callbacks are used.
183
184 @endverbatim
185 ******************************************************************************
186 */
187
188 /* Includes ------------------------------------------------------------------*/
189 #include "stm32l4xx_hal.h"
190
191 /** @addtogroup STM32L4xx_HAL_Driver
192 * @{
193 */
194
195 /** @defgroup IRDA IRDA
196 * @brief HAL IRDA module driver
197 * @{
198 */
199
200 #ifdef HAL_IRDA_MODULE_ENABLED
201
202 /* Private typedef -----------------------------------------------------------*/
203 /* Private define ------------------------------------------------------------*/
204 /** @defgroup IRDA_Private_Constants IRDA Private Constants
205 * @{
206 */
207 #define IRDA_TEACK_REACK_TIMEOUT 1000U /*!< IRDA TX or RX enable acknowledge time-out value */
208
209 #define IRDA_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE \
210 | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)) /*!< UART or USART CR1 fields of parameters set by IRDA_SetConfig API */
211
212 #define USART_BRR_MIN 0x10U /*!< USART BRR minimum authorized value */
213
214 #define USART_BRR_MAX 0x0000FFFFU /*!< USART BRR maximum authorized value */
215 /**
216 * @}
217 */
218
219 /* Private macros ------------------------------------------------------------*/
220 /** @defgroup IRDA_Private_Macros IRDA Private Macros
221 * @{
222 */
223 #if defined(USART_PRESC_PRESCALER)
224 /** @brief BRR division operation to set BRR register in 16-bit oversampling mode.
225 * @param __PCLK__ IRDA clock source.
226 * @param __BAUD__ Baud rate set by the user.
227 * @param __PRESCALER__ IRDA clock prescaler value.
228 * @retval Division result
229 */
230 #define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__, __PRESCALER__) ((((__PCLK__)/IRDAPrescTable[(__PRESCALER__)])\
231 + ((__BAUD__)/2U)) / (__BAUD__))
232 #else
233 /** @brief BRR division operation to set BRR register in 16-bit oversampling mode.
234 * @param __PCLK__ IRDA clock source.
235 * @param __BAUD__ Baud rate set by the user.
236 * @retval Division result
237 */
238 #define IRDA_DIV_SAMPLING16(__PCLK__, __BAUD__) (((__PCLK__) + ((__BAUD__)/2U)) / (__BAUD__))
239 #endif /* USART_PRESC_PRESCALER */
240 /**
241 * @}
242 */
243
244 /* Private variables ---------------------------------------------------------*/
245 /* Private function prototypes -----------------------------------------------*/
246 /** @addtogroup IRDA_Private_Functions
247 * @{
248 */
249 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
250 void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda);
251 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
252 static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda);
253 static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda);
254 static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
255 uint32_t Tickstart, uint32_t Timeout);
256 static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda);
257 static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda);
258 static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
259 static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
260 static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
261 static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
262 static void IRDA_DMAError(DMA_HandleTypeDef *hdma);
263 static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma);
264 static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
265 static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
266 static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
267 static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
268 static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
269 static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
270 static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
271 /**
272 * @}
273 */
274
275 /* Exported functions --------------------------------------------------------*/
276
277 /** @defgroup IRDA_Exported_Functions IRDA Exported Functions
278 * @{
279 */
280
281 /** @defgroup IRDA_Exported_Functions_Group1 Initialization and de-initialization functions
282 * @brief Initialization and Configuration functions
283 *
284 @verbatim
285 ==============================================================================
286 ##### Initialization and Configuration functions #####
287 ==============================================================================
288 [..]
289 This subsection provides a set of functions allowing to initialize the USARTx
290 in asynchronous IRDA mode.
291 (+) For the asynchronous mode only these parameters can be configured:
292 (++) Baud Rate
293 (++) Word Length
294 (++) Parity: If the parity is enabled, then the MSB bit of the data written
295 in the data register is transmitted but is changed by the parity bit.
296 (++) Power mode
297 (++) Prescaler setting
298 (++) Receiver/transmitter modes
299
300 [..]
301 The HAL_IRDA_Init() API follows the USART asynchronous configuration procedures
302 (details for the procedures are available in reference manual).
303
304 @endverbatim
305
306 Depending on the frame length defined by the M1 and M0 bits (7-bit,
307 8-bit or 9-bit), the possible IRDA frame formats are listed in the
308 following table.
309
310 Table 1. IRDA frame format.
311 +-----------------------------------------------------------------------+
312 | M1 bit | M0 bit | PCE bit | IRDA frame |
313 |---------|---------|-----------|---------------------------------------|
314 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
315 |---------|---------|-----------|---------------------------------------|
316 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
317 |---------|---------|-----------|---------------------------------------|
318 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
319 |---------|---------|-----------|---------------------------------------|
320 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
321 |---------|---------|-----------|---------------------------------------|
322 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
323 |---------|---------|-----------|---------------------------------------|
324 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
325 +-----------------------------------------------------------------------+
326
327 * @{
328 */
329
330 /**
331 * @brief Initialize the IRDA mode according to the specified
332 * parameters in the IRDA_InitTypeDef and initialize the associated handle.
333 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
334 * the configuration information for the specified IRDA module.
335 * @retval HAL status
336 */
HAL_IRDA_Init(IRDA_HandleTypeDef * hirda)337 HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
338 {
339 /* Check the IRDA handle allocation */
340 if (hirda == NULL)
341 {
342 return HAL_ERROR;
343 }
344
345 /* Check the USART/UART associated to the IRDA handle */
346 assert_param(IS_IRDA_INSTANCE(hirda->Instance));
347
348 if (hirda->gState == HAL_IRDA_STATE_RESET)
349 {
350 /* Allocate lock resource and initialize it */
351 hirda->Lock = HAL_UNLOCKED;
352
353 #if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
354 IRDA_InitCallbacksToDefault(hirda);
355
356 if (hirda->MspInitCallback == NULL)
357 {
358 hirda->MspInitCallback = HAL_IRDA_MspInit;
359 }
360
361 /* Init the low level hardware */
362 hirda->MspInitCallback(hirda);
363 #else
364 /* Init the low level hardware : GPIO, CLOCK */
365 HAL_IRDA_MspInit(hirda);
366 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
367 }
368
369 hirda->gState = HAL_IRDA_STATE_BUSY;
370
371 /* Disable the Peripheral to update the configuration registers */
372 __HAL_IRDA_DISABLE(hirda);
373
374 /* Set the IRDA Communication parameters */
375 if (IRDA_SetConfig(hirda) == HAL_ERROR)
376 {
377 return HAL_ERROR;
378 }
379
380 /* In IRDA mode, the following bits must be kept cleared:
381 - LINEN, STOP and CLKEN bits in the USART_CR2 register,
382 - SCEN and HDSEL bits in the USART_CR3 register.*/
383 CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN | USART_CR2_STOP));
384 CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
385
386 /* set the UART/USART in IRDA mode */
387 hirda->Instance->CR3 |= USART_CR3_IREN;
388
389 /* Enable the Peripheral */
390 __HAL_IRDA_ENABLE(hirda);
391
392 /* TEACK and/or REACK to check before moving hirda->gState and hirda->RxState to Ready */
393 return (IRDA_CheckIdleState(hirda));
394 }
395
396 /**
397 * @brief DeInitialize the IRDA peripheral.
398 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
399 * the configuration information for the specified IRDA module.
400 * @retval HAL status
401 */
HAL_IRDA_DeInit(IRDA_HandleTypeDef * hirda)402 HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
403 {
404 /* Check the IRDA handle allocation */
405 if (hirda == NULL)
406 {
407 return HAL_ERROR;
408 }
409
410 /* Check the USART/UART associated to the IRDA handle */
411 assert_param(IS_IRDA_INSTANCE(hirda->Instance));
412
413 hirda->gState = HAL_IRDA_STATE_BUSY;
414
415 /* DeInit the low level hardware */
416 #if USE_HAL_IRDA_REGISTER_CALLBACKS == 1
417 if (hirda->MspDeInitCallback == NULL)
418 {
419 hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
420 }
421 /* DeInit the low level hardware */
422 hirda->MspDeInitCallback(hirda);
423 #else
424 HAL_IRDA_MspDeInit(hirda);
425 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
426 /* Disable the Peripheral */
427 __HAL_IRDA_DISABLE(hirda);
428
429 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
430 hirda->gState = HAL_IRDA_STATE_RESET;
431 hirda->RxState = HAL_IRDA_STATE_RESET;
432
433 /* Process Unlock */
434 __HAL_UNLOCK(hirda);
435
436 return HAL_OK;
437 }
438
439 /**
440 * @brief Initialize the IRDA MSP.
441 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
442 * the configuration information for the specified IRDA module.
443 * @retval None
444 */
HAL_IRDA_MspInit(IRDA_HandleTypeDef * hirda)445 __weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
446 {
447 /* Prevent unused argument(s) compilation warning */
448 UNUSED(hirda);
449
450 /* NOTE: This function should not be modified, when the callback is needed,
451 the HAL_IRDA_MspInit can be implemented in the user file
452 */
453 }
454
455 /**
456 * @brief DeInitialize the IRDA MSP.
457 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
458 * the configuration information for the specified IRDA module.
459 * @retval None
460 */
HAL_IRDA_MspDeInit(IRDA_HandleTypeDef * hirda)461 __weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
462 {
463 /* Prevent unused argument(s) compilation warning */
464 UNUSED(hirda);
465
466 /* NOTE: This function should not be modified, when the callback is needed,
467 the HAL_IRDA_MspDeInit can be implemented in the user file
468 */
469 }
470
471 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
472 /**
473 * @brief Register a User IRDA Callback
474 * To be used to override the weak predefined callback
475 * @note The HAL_IRDA_RegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET
476 * to register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID
477 * @param hirda irda handle
478 * @param CallbackID ID of the callback to be registered
479 * This parameter can be one of the following values:
480 * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
481 * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
482 * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
483 * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
484 * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
485 * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
486 * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
487 * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
488 * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
489 * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
490 * @param pCallback pointer to the Callback function
491 * @retval HAL status
492 */
HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef * hirda,HAL_IRDA_CallbackIDTypeDef CallbackID,pIRDA_CallbackTypeDef pCallback)493 HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID,
494 pIRDA_CallbackTypeDef pCallback)
495 {
496 HAL_StatusTypeDef status = HAL_OK;
497
498 if (pCallback == NULL)
499 {
500 /* Update the error code */
501 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
502
503 return HAL_ERROR;
504 }
505
506 if (hirda->gState == HAL_IRDA_STATE_READY)
507 {
508 switch (CallbackID)
509 {
510 case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
511 hirda->TxHalfCpltCallback = pCallback;
512 break;
513
514 case HAL_IRDA_TX_COMPLETE_CB_ID :
515 hirda->TxCpltCallback = pCallback;
516 break;
517
518 case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
519 hirda->RxHalfCpltCallback = pCallback;
520 break;
521
522 case HAL_IRDA_RX_COMPLETE_CB_ID :
523 hirda->RxCpltCallback = pCallback;
524 break;
525
526 case HAL_IRDA_ERROR_CB_ID :
527 hirda->ErrorCallback = pCallback;
528 break;
529
530 case HAL_IRDA_ABORT_COMPLETE_CB_ID :
531 hirda->AbortCpltCallback = pCallback;
532 break;
533
534 case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
535 hirda->AbortTransmitCpltCallback = pCallback;
536 break;
537
538 case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
539 hirda->AbortReceiveCpltCallback = pCallback;
540 break;
541
542 case HAL_IRDA_MSPINIT_CB_ID :
543 hirda->MspInitCallback = pCallback;
544 break;
545
546 case HAL_IRDA_MSPDEINIT_CB_ID :
547 hirda->MspDeInitCallback = pCallback;
548 break;
549
550 default :
551 /* Update the error code */
552 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
553
554 /* Return error status */
555 status = HAL_ERROR;
556 break;
557 }
558 }
559 else if (hirda->gState == HAL_IRDA_STATE_RESET)
560 {
561 switch (CallbackID)
562 {
563 case HAL_IRDA_MSPINIT_CB_ID :
564 hirda->MspInitCallback = pCallback;
565 break;
566
567 case HAL_IRDA_MSPDEINIT_CB_ID :
568 hirda->MspDeInitCallback = pCallback;
569 break;
570
571 default :
572 /* Update the error code */
573 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
574
575 /* Return error status */
576 status = HAL_ERROR;
577 break;
578 }
579 }
580 else
581 {
582 /* Update the error code */
583 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
584
585 /* Return error status */
586 status = HAL_ERROR;
587 }
588
589 return status;
590 }
591
592 /**
593 * @brief Unregister an IRDA callback
594 * IRDA callback is redirected to the weak predefined callback
595 * @note The HAL_IRDA_UnRegisterCallback() may be called before HAL_IRDA_Init() in HAL_IRDA_STATE_RESET
596 * to un-register callbacks for HAL_IRDA_MSPINIT_CB_ID and HAL_IRDA_MSPDEINIT_CB_ID
597 * @param hirda irda handle
598 * @param CallbackID ID of the callback to be unregistered
599 * This parameter can be one of the following values:
600 * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
601 * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID
602 * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
603 * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID
604 * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID
605 * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
606 * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
607 * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
608 * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID
609 * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID
610 * @retval HAL status
611 */
HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef * hirda,HAL_IRDA_CallbackIDTypeDef CallbackID)612 HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID)
613 {
614 HAL_StatusTypeDef status = HAL_OK;
615
616 if (HAL_IRDA_STATE_READY == hirda->gState)
617 {
618 switch (CallbackID)
619 {
620 case HAL_IRDA_TX_HALFCOMPLETE_CB_ID :
621 hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
622 break;
623
624 case HAL_IRDA_TX_COMPLETE_CB_ID :
625 hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */
626 break;
627
628 case HAL_IRDA_RX_HALFCOMPLETE_CB_ID :
629 hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
630 break;
631
632 case HAL_IRDA_RX_COMPLETE_CB_ID :
633 hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */
634 break;
635
636 case HAL_IRDA_ERROR_CB_ID :
637 hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */
638 break;
639
640 case HAL_IRDA_ABORT_COMPLETE_CB_ID :
641 hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
642 break;
643
644 case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID :
645 hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak
646 AbortTransmitCpltCallback */
647 break;
648
649 case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID :
650 hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak
651 AbortReceiveCpltCallback */
652 break;
653
654 case HAL_IRDA_MSPINIT_CB_ID :
655 hirda->MspInitCallback = HAL_IRDA_MspInit; /* Legacy weak MspInitCallback */
656 break;
657
658 case HAL_IRDA_MSPDEINIT_CB_ID :
659 hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; /* Legacy weak MspDeInitCallback */
660 break;
661
662 default :
663 /* Update the error code */
664 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
665
666 /* Return error status */
667 status = HAL_ERROR;
668 break;
669 }
670 }
671 else if (HAL_IRDA_STATE_RESET == hirda->gState)
672 {
673 switch (CallbackID)
674 {
675 case HAL_IRDA_MSPINIT_CB_ID :
676 hirda->MspInitCallback = HAL_IRDA_MspInit;
677 break;
678
679 case HAL_IRDA_MSPDEINIT_CB_ID :
680 hirda->MspDeInitCallback = HAL_IRDA_MspDeInit;
681 break;
682
683 default :
684 /* Update the error code */
685 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
686
687 /* Return error status */
688 status = HAL_ERROR;
689 break;
690 }
691 }
692 else
693 {
694 /* Update the error code */
695 hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK;
696
697 /* Return error status */
698 status = HAL_ERROR;
699 }
700
701 return status;
702 }
703 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
704
705 /**
706 * @}
707 */
708
709 /** @defgroup IRDA_Exported_Functions_Group2 IO operation functions
710 * @brief IRDA Transmit and Receive functions
711 *
712 @verbatim
713 ===============================================================================
714 ##### IO operation functions #####
715 ===============================================================================
716 [..]
717 This subsection provides a set of functions allowing to manage the IRDA data transfers.
718
719 [..]
720 IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
721 on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver
722 is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
723 While receiving data, transmission should be avoided as the data to be transmitted
724 could be corrupted.
725
726 [..]
727 (#) There are two modes of transfer:
728 (++) Blocking mode: the communication is performed in polling mode.
729 The HAL status of all data processing is returned by the same function
730 after finishing transfer.
731 (++) Non-Blocking mode: the communication is performed using Interrupts
732 or DMA, these API's return the HAL status.
733 The end of the data processing will be indicated through the
734 dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when
735 using DMA mode.
736 The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks
737 will be executed respectively at the end of the Transmit or Receive process
738 The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected
739
740 (#) Blocking mode APIs are :
741 (++) HAL_IRDA_Transmit()
742 (++) HAL_IRDA_Receive()
743
744 (#) Non Blocking mode APIs with Interrupt are :
745 (++) HAL_IRDA_Transmit_IT()
746 (++) HAL_IRDA_Receive_IT()
747 (++) HAL_IRDA_IRQHandler()
748
749 (#) Non Blocking mode functions with DMA are :
750 (++) HAL_IRDA_Transmit_DMA()
751 (++) HAL_IRDA_Receive_DMA()
752 (++) HAL_IRDA_DMAPause()
753 (++) HAL_IRDA_DMAResume()
754 (++) HAL_IRDA_DMAStop()
755
756 (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode:
757 (++) HAL_IRDA_TxHalfCpltCallback()
758 (++) HAL_IRDA_TxCpltCallback()
759 (++) HAL_IRDA_RxHalfCpltCallback()
760 (++) HAL_IRDA_RxCpltCallback()
761 (++) HAL_IRDA_ErrorCallback()
762
763 (#) Non-Blocking mode transfers could be aborted using Abort API's :
764 (++) HAL_IRDA_Abort()
765 (++) HAL_IRDA_AbortTransmit()
766 (++) HAL_IRDA_AbortReceive()
767 (++) HAL_IRDA_Abort_IT()
768 (++) HAL_IRDA_AbortTransmit_IT()
769 (++) HAL_IRDA_AbortReceive_IT()
770
771 (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
772 (++) HAL_IRDA_AbortCpltCallback()
773 (++) HAL_IRDA_AbortTransmitCpltCallback()
774 (++) HAL_IRDA_AbortReceiveCpltCallback()
775
776 (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
777 Errors are handled as follows :
778 (++) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
779 to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
780 in Interrupt mode reception .
781 Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
782 to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed.
783 Transfer is kept ongoing on IRDA side.
784 If user wants to abort it, Abort services should be called by user.
785 (++) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
786 This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
787 Error code is set to allow user to identify error type, and
788 HAL_IRDA_ErrorCallback() user callback is executed.
789
790 @endverbatim
791 * @{
792 */
793
794 /**
795 * @brief Send an amount of data in blocking mode.
796 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
797 * the sent data is handled as a set of u16. In this case, Size must reflect the number
798 * of u16 available through pData.
799 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
800 * the configuration information for the specified IRDA module.
801 * @param pData Pointer to data buffer (u8 or u16 data elements).
802 * @param Size Amount of data elements (u8 or u16) to be sent.
803 * @param Timeout Specify timeout value.
804 * @retval HAL status
805 */
HAL_IRDA_Transmit(IRDA_HandleTypeDef * hirda,const uint8_t * pData,uint16_t Size,uint32_t Timeout)806 HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
807 {
808 const uint8_t *pdata8bits;
809 const uint16_t *pdata16bits;
810 uint32_t tickstart;
811
812 /* Check that a Tx process is not already ongoing */
813 if (hirda->gState == HAL_IRDA_STATE_READY)
814 {
815 if ((pData == NULL) || (Size == 0U))
816 {
817 return HAL_ERROR;
818 }
819
820 /* Process Locked */
821 __HAL_LOCK(hirda);
822
823 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
824 hirda->gState = HAL_IRDA_STATE_BUSY_TX;
825
826 /* Init tickstart for timeout management */
827 tickstart = HAL_GetTick();
828
829 hirda->TxXferSize = Size;
830 hirda->TxXferCount = Size;
831
832 /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
833 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
834 {
835 pdata8bits = NULL;
836 pdata16bits = (const uint16_t *) pData; /* Derogation R.11.3 */
837 }
838 else
839 {
840 pdata8bits = pData;
841 pdata16bits = NULL;
842 }
843
844 while (hirda->TxXferCount > 0U)
845 {
846 hirda->TxXferCount--;
847
848 if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
849 {
850 return HAL_TIMEOUT;
851 }
852 if (pdata8bits == NULL)
853 {
854 hirda->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
855 pdata16bits++;
856 }
857 else
858 {
859 hirda->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
860 pdata8bits++;
861 }
862 }
863
864 if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
865 {
866 return HAL_TIMEOUT;
867 }
868
869 /* At end of Tx process, restore hirda->gState to Ready */
870 hirda->gState = HAL_IRDA_STATE_READY;
871
872 /* Process Unlocked */
873 __HAL_UNLOCK(hirda);
874
875 return HAL_OK;
876 }
877 else
878 {
879 return HAL_BUSY;
880 }
881 }
882
883 /**
884 * @brief Receive an amount of data in blocking mode.
885 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
886 * the received data is handled as a set of u16. In this case, Size must reflect the number
887 * of u16 available through pData.
888 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
889 * the configuration information for the specified IRDA module.
890 * @param pData Pointer to data buffer (u8 or u16 data elements).
891 * @param Size Amount of data elements (u8 or u16) to be received.
892 * @param Timeout Specify timeout value.
893 * @retval HAL status
894 */
HAL_IRDA_Receive(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size,uint32_t Timeout)895 HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
896 {
897 uint8_t *pdata8bits;
898 uint16_t *pdata16bits;
899 uint16_t uhMask;
900 uint32_t tickstart;
901
902 /* Check that a Rx process is not already ongoing */
903 if (hirda->RxState == HAL_IRDA_STATE_READY)
904 {
905 if ((pData == NULL) || (Size == 0U))
906 {
907 return HAL_ERROR;
908 }
909
910 /* Process Locked */
911 __HAL_LOCK(hirda);
912
913 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
914 hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
915
916 /* Init tickstart for timeout management */
917 tickstart = HAL_GetTick();
918
919 hirda->RxXferSize = Size;
920 hirda->RxXferCount = Size;
921
922 /* Computation of the mask to apply to RDR register
923 of the UART associated to the IRDA */
924 IRDA_MASK_COMPUTATION(hirda);
925 uhMask = hirda->Mask;
926
927 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
928 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
929 {
930 pdata8bits = NULL;
931 pdata16bits = (uint16_t *) pData; /* Derogation R.11.3 */
932 }
933 else
934 {
935 pdata8bits = pData;
936 pdata16bits = NULL;
937 }
938
939 /* Check data remaining to be received */
940 while (hirda->RxXferCount > 0U)
941 {
942 hirda->RxXferCount--;
943
944 if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
945 {
946 return HAL_TIMEOUT;
947 }
948 if (pdata8bits == NULL)
949 {
950 *pdata16bits = (uint16_t)(hirda->Instance->RDR & uhMask);
951 pdata16bits++;
952 }
953 else
954 {
955 *pdata8bits = (uint8_t)(hirda->Instance->RDR & (uint8_t)uhMask);
956 pdata8bits++;
957 }
958 }
959
960 /* At end of Rx process, restore hirda->RxState to Ready */
961 hirda->RxState = HAL_IRDA_STATE_READY;
962
963 /* Process Unlocked */
964 __HAL_UNLOCK(hirda);
965
966 return HAL_OK;
967 }
968 else
969 {
970 return HAL_BUSY;
971 }
972 }
973
974 /**
975 * @brief Send an amount of data in interrupt mode.
976 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
977 * the sent data is handled as a set of u16. In this case, Size must reflect the number
978 * of u16 available through pData.
979 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
980 * the configuration information for the specified IRDA module.
981 * @param pData Pointer to data buffer (u8 or u16 data elements).
982 * @param Size Amount of data elements (u8 or u16) to be sent.
983 * @retval HAL status
984 */
HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef * hirda,const uint8_t * pData,uint16_t Size)985 HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size)
986 {
987 /* Check that a Tx process is not already ongoing */
988 if (hirda->gState == HAL_IRDA_STATE_READY)
989 {
990 if ((pData == NULL) || (Size == 0U))
991 {
992 return HAL_ERROR;
993 }
994
995 /* Process Locked */
996 __HAL_LOCK(hirda);
997
998 hirda->pTxBuffPtr = pData;
999 hirda->TxXferSize = Size;
1000 hirda->TxXferCount = Size;
1001
1002 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1003 hirda->gState = HAL_IRDA_STATE_BUSY_TX;
1004
1005 /* Process Unlocked */
1006 __HAL_UNLOCK(hirda);
1007
1008 /* Enable the IRDA Transmit Data Register Empty Interrupt */
1009 #if defined(USART_CR1_FIFOEN)
1010 SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
1011 #else
1012 SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);
1013 #endif /* USART_CR1_FIFOEN */
1014
1015 return HAL_OK;
1016 }
1017 else
1018 {
1019 return HAL_BUSY;
1020 }
1021 }
1022
1023 /**
1024 * @brief Receive an amount of data in interrupt mode.
1025 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1026 * the received data is handled as a set of u16. In this case, Size must reflect the number
1027 * of u16 available through pData.
1028 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1029 * the configuration information for the specified IRDA module.
1030 * @param pData Pointer to data buffer (u8 or u16 data elements).
1031 * @param Size Amount of data elements (u8 or u16) to be received.
1032 * @retval HAL status
1033 */
HAL_IRDA_Receive_IT(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size)1034 HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
1035 {
1036 /* Check that a Rx process is not already ongoing */
1037 if (hirda->RxState == HAL_IRDA_STATE_READY)
1038 {
1039 if ((pData == NULL) || (Size == 0U))
1040 {
1041 return HAL_ERROR;
1042 }
1043
1044 /* Process Locked */
1045 __HAL_LOCK(hirda);
1046
1047 hirda->pRxBuffPtr = pData;
1048 hirda->RxXferSize = Size;
1049 hirda->RxXferCount = Size;
1050
1051 /* Computation of the mask to apply to the RDR register
1052 of the UART associated to the IRDA */
1053 IRDA_MASK_COMPUTATION(hirda);
1054
1055 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1056 hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
1057
1058 /* Process Unlocked */
1059 __HAL_UNLOCK(hirda);
1060
1061 #if defined(USART_CR1_FIFOEN)
1062 if (hirda->Init.Parity != IRDA_PARITY_NONE)
1063 {
1064 /* Enable the IRDA Parity Error and Data Register not empty Interrupts */
1065 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
1066 }
1067 else
1068 {
1069 /* Enable the IRDA Data Register not empty Interrupts */
1070 SET_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
1071 }
1072 #else
1073 if (hirda->Init.Parity != IRDA_PARITY_NONE)
1074 {
1075 /* Enable the IRDA Parity Error and Data Register not empty Interrupts */
1076 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE);
1077 }
1078 else
1079 {
1080 /* Enable the IRDA Data Register not empty Interrupts */
1081 SET_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE);
1082 }
1083 #endif /* USART_CR1_FIFOEN */
1084
1085 /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
1086 SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1087
1088 return HAL_OK;
1089 }
1090 else
1091 {
1092 return HAL_BUSY;
1093 }
1094 }
1095
1096 /**
1097 * @brief Send an amount of data in DMA mode.
1098 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1099 * the sent data is handled as a set of u16. In this case, Size must reflect the number
1100 * of u16 available through pData.
1101 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1102 * the configuration information for the specified IRDA module.
1103 * @param pData pointer to data buffer (u8 or u16 data elements).
1104 * @param Size Amount of data elements (u8 or u16) to be sent.
1105 * @retval HAL status
1106 */
HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef * hirda,const uint8_t * pData,uint16_t Size)1107 HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, const uint8_t *pData, uint16_t Size)
1108 {
1109 /* Check that a Tx process is not already ongoing */
1110 if (hirda->gState == HAL_IRDA_STATE_READY)
1111 {
1112 if ((pData == NULL) || (Size == 0U))
1113 {
1114 return HAL_ERROR;
1115 }
1116
1117 /* Process Locked */
1118 __HAL_LOCK(hirda);
1119
1120 hirda->pTxBuffPtr = pData;
1121 hirda->TxXferSize = Size;
1122 hirda->TxXferCount = Size;
1123
1124 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1125 hirda->gState = HAL_IRDA_STATE_BUSY_TX;
1126
1127 /* Set the IRDA DMA transfer complete callback */
1128 hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;
1129
1130 /* Set the IRDA DMA half transfer complete callback */
1131 hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;
1132
1133 /* Set the DMA error callback */
1134 hirda->hdmatx->XferErrorCallback = IRDA_DMAError;
1135
1136 /* Set the DMA abort callback */
1137 hirda->hdmatx->XferAbortCallback = NULL;
1138
1139 /* Enable the IRDA transmit DMA channel */
1140 if (HAL_DMA_Start_IT(hirda->hdmatx, (uint32_t)hirda->pTxBuffPtr, (uint32_t)&hirda->Instance->TDR, Size) == HAL_OK)
1141 {
1142 /* Clear the TC flag in the ICR register */
1143 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_TCF);
1144
1145 /* Process Unlocked */
1146 __HAL_UNLOCK(hirda);
1147
1148 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1149 in the USART CR3 register */
1150 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1151
1152 return HAL_OK;
1153 }
1154 else
1155 {
1156 /* Set error code to DMA */
1157 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1158
1159 /* Process Unlocked */
1160 __HAL_UNLOCK(hirda);
1161
1162 /* Restore hirda->gState to ready */
1163 hirda->gState = HAL_IRDA_STATE_READY;
1164
1165 return HAL_ERROR;
1166 }
1167 }
1168 else
1169 {
1170 return HAL_BUSY;
1171 }
1172 }
1173
1174 /**
1175 * @brief Receive an amount of data in DMA mode.
1176 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1177 * the received data is handled as a set of u16. In this case, Size must reflect the number
1178 * of u16 available through pData.
1179 * @note When the IRDA parity is enabled (PCE = 1), the received data contains
1180 * the parity bit (MSB position).
1181 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1182 * the configuration information for the specified IRDA module.
1183 * @param pData Pointer to data buffer (u8 or u16 data elements).
1184 * @param Size Amount of data elements (u8 or u16) to be received.
1185 * @retval HAL status
1186 */
HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef * hirda,uint8_t * pData,uint16_t Size)1187 HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
1188 {
1189 /* Check that a Rx process is not already ongoing */
1190 if (hirda->RxState == HAL_IRDA_STATE_READY)
1191 {
1192 if ((pData == NULL) || (Size == 0U))
1193 {
1194 return HAL_ERROR;
1195 }
1196
1197 /* Process Locked */
1198 __HAL_LOCK(hirda);
1199
1200 hirda->pRxBuffPtr = pData;
1201 hirda->RxXferSize = Size;
1202
1203 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1204 hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
1205
1206 /* Set the IRDA DMA transfer complete callback */
1207 hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;
1208
1209 /* Set the IRDA DMA half transfer complete callback */
1210 hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;
1211
1212 /* Set the DMA error callback */
1213 hirda->hdmarx->XferErrorCallback = IRDA_DMAError;
1214
1215 /* Set the DMA abort callback */
1216 hirda->hdmarx->XferAbortCallback = NULL;
1217
1218 /* Enable the DMA channel */
1219 if (HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->RDR, (uint32_t)hirda->pRxBuffPtr, Size) == HAL_OK)
1220 {
1221 /* Process Unlocked */
1222 __HAL_UNLOCK(hirda);
1223
1224 if (hirda->Init.Parity != IRDA_PARITY_NONE)
1225 {
1226 /* Enable the UART Parity Error Interrupt */
1227 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
1228 }
1229
1230 /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
1231 SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1232
1233 /* Enable the DMA transfer for the receiver request by setting the DMAR bit
1234 in the USART CR3 register */
1235 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1236
1237 return HAL_OK;
1238 }
1239 else
1240 {
1241 /* Set error code to DMA */
1242 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1243
1244 /* Process Unlocked */
1245 __HAL_UNLOCK(hirda);
1246
1247 /* Restore hirda->RxState to ready */
1248 hirda->RxState = HAL_IRDA_STATE_READY;
1249
1250 return HAL_ERROR;
1251 }
1252 }
1253 else
1254 {
1255 return HAL_BUSY;
1256 }
1257 }
1258
1259
1260 /**
1261 * @brief Pause the DMA Transfer.
1262 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1263 * the configuration information for the specified IRDA module.
1264 * @retval HAL status
1265 */
HAL_IRDA_DMAPause(IRDA_HandleTypeDef * hirda)1266 HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
1267 {
1268 /* Process Locked */
1269 __HAL_LOCK(hirda);
1270
1271 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
1272 {
1273 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1274 {
1275 /* Disable the IRDA DMA Tx request */
1276 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1277 }
1278 }
1279 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
1280 {
1281 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1282 {
1283 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
1284 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
1285 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1286
1287 /* Disable the IRDA DMA Rx request */
1288 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1289 }
1290 }
1291
1292 /* Process Unlocked */
1293 __HAL_UNLOCK(hirda);
1294
1295 return HAL_OK;
1296 }
1297
1298 /**
1299 * @brief Resume the DMA Transfer.
1300 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1301 * the configuration information for the specified UART module.
1302 * @retval HAL status
1303 */
HAL_IRDA_DMAResume(IRDA_HandleTypeDef * hirda)1304 HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
1305 {
1306 /* Process Locked */
1307 __HAL_LOCK(hirda);
1308
1309 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
1310 {
1311 /* Enable the IRDA DMA Tx request */
1312 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1313 }
1314 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
1315 {
1316 /* Clear the Overrun flag before resuming the Rx transfer*/
1317 __HAL_IRDA_CLEAR_OREFLAG(hirda);
1318
1319 /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
1320 if (hirda->Init.Parity != IRDA_PARITY_NONE)
1321 {
1322 SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
1323 }
1324 SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1325
1326 /* Enable the IRDA DMA Rx request */
1327 SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1328 }
1329
1330 /* Process Unlocked */
1331 __HAL_UNLOCK(hirda);
1332
1333 return HAL_OK;
1334 }
1335
1336 /**
1337 * @brief Stop the DMA Transfer.
1338 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1339 * the configuration information for the specified UART module.
1340 * @retval HAL status
1341 */
HAL_IRDA_DMAStop(IRDA_HandleTypeDef * hirda)1342 HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
1343 {
1344 /* The Lock is not implemented on this API to allow the user application
1345 to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() /
1346 HAL_IRDA_TxHalfCpltCallback / HAL_IRDA_RxHalfCpltCallback:
1347 indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
1348 interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
1349 the stream and the corresponding call back is executed. */
1350
1351 /* Stop IRDA DMA Tx request if ongoing */
1352 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
1353 {
1354 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1355 {
1356 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1357
1358 /* Abort the IRDA DMA Tx channel */
1359 if (hirda->hdmatx != NULL)
1360 {
1361 if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
1362 {
1363 if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1364 {
1365 /* Set error code to DMA */
1366 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1367
1368 return HAL_TIMEOUT;
1369 }
1370 }
1371 }
1372
1373 IRDA_EndTxTransfer(hirda);
1374 }
1375 }
1376
1377 /* Stop IRDA DMA Rx request if ongoing */
1378 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
1379 {
1380 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1381 {
1382 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1383
1384 /* Abort the IRDA DMA Rx channel */
1385 if (hirda->hdmarx != NULL)
1386 {
1387 if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
1388 {
1389 if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1390 {
1391 /* Set error code to DMA */
1392 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1393
1394 return HAL_TIMEOUT;
1395 }
1396 }
1397 }
1398
1399 IRDA_EndRxTransfer(hirda);
1400 }
1401 }
1402
1403 return HAL_OK;
1404 }
1405
1406 /**
1407 * @brief Abort ongoing transfers (blocking mode).
1408 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1409 * the configuration information for the specified UART module.
1410 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1411 * This procedure performs following operations :
1412 * - Disable IRDA Interrupts (Tx and Rx)
1413 * - Disable the DMA transfer in the peripheral register (if enabled)
1414 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1415 * - Set handle State to READY
1416 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1417 * @retval HAL status
1418 */
HAL_IRDA_Abort(IRDA_HandleTypeDef * hirda)1419 HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda)
1420 {
1421 /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1422 #if defined(USART_CR1_FIFOEN)
1423 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | \
1424 USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1425 #else
1426 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1427 #endif /* USART_CR1_FIFOEN */
1428 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1429
1430 /* Disable the IRDA DMA Tx request if enabled */
1431 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1432 {
1433 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1434
1435 /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
1436 if (hirda->hdmatx != NULL)
1437 {
1438 /* Set the IRDA DMA Abort callback to Null.
1439 No call back execution at end of DMA abort procedure */
1440 hirda->hdmatx->XferAbortCallback = NULL;
1441
1442 if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
1443 {
1444 if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1445 {
1446 /* Set error code to DMA */
1447 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1448
1449 return HAL_TIMEOUT;
1450 }
1451 }
1452 }
1453 }
1454
1455 /* Disable the IRDA DMA Rx request if enabled */
1456 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1457 {
1458 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1459
1460 /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
1461 if (hirda->hdmarx != NULL)
1462 {
1463 /* Set the IRDA DMA Abort callback to Null.
1464 No call back execution at end of DMA abort procedure */
1465 hirda->hdmarx->XferAbortCallback = NULL;
1466
1467 if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
1468 {
1469 if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1470 {
1471 /* Set error code to DMA */
1472 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1473
1474 return HAL_TIMEOUT;
1475 }
1476 }
1477 }
1478 }
1479
1480 /* Reset Tx and Rx transfer counters */
1481 hirda->TxXferCount = 0U;
1482 hirda->RxXferCount = 0U;
1483
1484 /* Clear the Error flags in the ICR register */
1485 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1486
1487 /* Restore hirda->gState and hirda->RxState to Ready */
1488 hirda->gState = HAL_IRDA_STATE_READY;
1489 hirda->RxState = HAL_IRDA_STATE_READY;
1490
1491 /* Reset Handle ErrorCode to No Error */
1492 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1493
1494 return HAL_OK;
1495 }
1496
1497 /**
1498 * @brief Abort ongoing Transmit transfer (blocking mode).
1499 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1500 * the configuration information for the specified UART module.
1501 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1502 * This procedure performs following operations :
1503 * - Disable IRDA Interrupts (Tx)
1504 * - Disable the DMA transfer in the peripheral register (if enabled)
1505 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1506 * - Set handle State to READY
1507 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1508 * @retval HAL status
1509 */
HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef * hirda)1510 HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda)
1511 {
1512 /* Disable TXEIE and TCIE interrupts */
1513 #if defined(USART_CR1_FIFOEN)
1514 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1515 #else
1516 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1517 #endif /* USART_CR1_FIFOEN */
1518
1519 /* Disable the IRDA DMA Tx request if enabled */
1520 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1521 {
1522 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1523
1524 /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
1525 if (hirda->hdmatx != NULL)
1526 {
1527 /* Set the IRDA DMA Abort callback to Null.
1528 No call back execution at end of DMA abort procedure */
1529 hirda->hdmatx->XferAbortCallback = NULL;
1530
1531 if (HAL_DMA_Abort(hirda->hdmatx) != HAL_OK)
1532 {
1533 if (HAL_DMA_GetError(hirda->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1534 {
1535 /* Set error code to DMA */
1536 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1537
1538 return HAL_TIMEOUT;
1539 }
1540 }
1541 }
1542 }
1543
1544 /* Reset Tx transfer counter */
1545 hirda->TxXferCount = 0U;
1546
1547 /* Restore hirda->gState to Ready */
1548 hirda->gState = HAL_IRDA_STATE_READY;
1549
1550 return HAL_OK;
1551 }
1552
1553 /**
1554 * @brief Abort ongoing Receive transfer (blocking mode).
1555 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1556 * the configuration information for the specified UART module.
1557 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1558 * This procedure performs following operations :
1559 * - Disable IRDA Interrupts (Rx)
1560 * - Disable the DMA transfer in the peripheral register (if enabled)
1561 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1562 * - Set handle State to READY
1563 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1564 * @retval HAL status
1565 */
HAL_IRDA_AbortReceive(IRDA_HandleTypeDef * hirda)1566 HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda)
1567 {
1568 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1569 #if defined(USART_CR1_FIFOEN)
1570 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
1571 #else
1572 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1573 #endif /* USART_CR1_FIFOEN */
1574 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1575
1576 /* Disable the IRDA DMA Rx request if enabled */
1577 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1578 {
1579 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1580
1581 /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
1582 if (hirda->hdmarx != NULL)
1583 {
1584 /* Set the IRDA DMA Abort callback to Null.
1585 No call back execution at end of DMA abort procedure */
1586 hirda->hdmarx->XferAbortCallback = NULL;
1587
1588 if (HAL_DMA_Abort(hirda->hdmarx) != HAL_OK)
1589 {
1590 if (HAL_DMA_GetError(hirda->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1591 {
1592 /* Set error code to DMA */
1593 hirda->ErrorCode = HAL_IRDA_ERROR_DMA;
1594
1595 return HAL_TIMEOUT;
1596 }
1597 }
1598 }
1599 }
1600
1601 /* Reset Rx transfer counter */
1602 hirda->RxXferCount = 0U;
1603
1604 /* Clear the Error flags in the ICR register */
1605 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1606
1607 /* Restore hirda->RxState to Ready */
1608 hirda->RxState = HAL_IRDA_STATE_READY;
1609
1610 return HAL_OK;
1611 }
1612
1613 /**
1614 * @brief Abort ongoing transfers (Interrupt mode).
1615 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1616 * the configuration information for the specified UART module.
1617 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1618 * This procedure performs following operations :
1619 * - Disable IRDA Interrupts (Tx and Rx)
1620 * - Disable the DMA transfer in the peripheral register (if enabled)
1621 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1622 * - Set handle State to READY
1623 * - At abort completion, call user abort complete callback
1624 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1625 * considered as completed only when user abort complete callback is executed (not when exiting function).
1626 * @retval HAL status
1627 */
HAL_IRDA_Abort_IT(IRDA_HandleTypeDef * hirda)1628 HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda)
1629 {
1630 uint32_t abortcplt = 1U;
1631
1632 /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1633 #if defined(USART_CR1_FIFOEN)
1634 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | \
1635 USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1636 #else
1637 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
1638 #endif /* USART_CR1_FIFOEN */
1639 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1640
1641 /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised
1642 before any call to DMA Abort functions */
1643 /* DMA Tx Handle is valid */
1644 if (hirda->hdmatx != NULL)
1645 {
1646 /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled.
1647 Otherwise, set it to NULL */
1648 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1649 {
1650 hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback;
1651 }
1652 else
1653 {
1654 hirda->hdmatx->XferAbortCallback = NULL;
1655 }
1656 }
1657 /* DMA Rx Handle is valid */
1658 if (hirda->hdmarx != NULL)
1659 {
1660 /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled.
1661 Otherwise, set it to NULL */
1662 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1663 {
1664 hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback;
1665 }
1666 else
1667 {
1668 hirda->hdmarx->XferAbortCallback = NULL;
1669 }
1670 }
1671
1672 /* Disable the IRDA DMA Tx request if enabled */
1673 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1674 {
1675 /* Disable DMA Tx at UART level */
1676 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1677
1678 /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
1679 if (hirda->hdmatx != NULL)
1680 {
1681 /* IRDA Tx DMA Abort callback has already been initialised :
1682 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1683
1684 /* Abort DMA TX */
1685 if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
1686 {
1687 hirda->hdmatx->XferAbortCallback = NULL;
1688 }
1689 else
1690 {
1691 abortcplt = 0U;
1692 }
1693 }
1694 }
1695
1696 /* Disable the IRDA DMA Rx request if enabled */
1697 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1698 {
1699 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1700
1701 /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
1702 if (hirda->hdmarx != NULL)
1703 {
1704 /* IRDA Rx DMA Abort callback has already been initialised :
1705 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1706
1707 /* Abort DMA RX */
1708 if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
1709 {
1710 hirda->hdmarx->XferAbortCallback = NULL;
1711 abortcplt = 1U;
1712 }
1713 else
1714 {
1715 abortcplt = 0U;
1716 }
1717 }
1718 }
1719
1720 /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
1721 if (abortcplt == 1U)
1722 {
1723 /* Reset Tx and Rx transfer counters */
1724 hirda->TxXferCount = 0U;
1725 hirda->RxXferCount = 0U;
1726
1727 /* Reset errorCode */
1728 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
1729
1730 /* Clear the Error flags in the ICR register */
1731 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1732
1733 /* Restore hirda->gState and hirda->RxState to Ready */
1734 hirda->gState = HAL_IRDA_STATE_READY;
1735 hirda->RxState = HAL_IRDA_STATE_READY;
1736
1737 /* As no DMA to be aborted, call directly user Abort complete callback */
1738 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1739 /* Call registered Abort complete callback */
1740 hirda->AbortCpltCallback(hirda);
1741 #else
1742 /* Call legacy weak Abort complete callback */
1743 HAL_IRDA_AbortCpltCallback(hirda);
1744 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1745 }
1746
1747 return HAL_OK;
1748 }
1749
1750 /**
1751 * @brief Abort ongoing Transmit transfer (Interrupt mode).
1752 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1753 * the configuration information for the specified UART module.
1754 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1755 * This procedure performs following operations :
1756 * - Disable IRDA Interrupts (Tx)
1757 * - Disable the DMA transfer in the peripheral register (if enabled)
1758 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1759 * - Set handle State to READY
1760 * - At abort completion, call user abort complete callback
1761 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1762 * considered as completed only when user abort complete callback is executed (not when exiting function).
1763 * @retval HAL status
1764 */
HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef * hirda)1765 HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda)
1766 {
1767 /* Disable TXEIE and TCIE interrupts */
1768 #if defined(USART_CR1_FIFOEN)
1769 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1770 #else
1771 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
1772 #endif /* USART_CR1_FIFOEN */
1773
1774 /* Disable the IRDA DMA Tx request if enabled */
1775 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
1776 {
1777 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
1778
1779 /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
1780 if (hirda->hdmatx != NULL)
1781 {
1782 /* Set the IRDA DMA Abort callback :
1783 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1784 hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback;
1785
1786 /* Abort DMA TX */
1787 if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
1788 {
1789 /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */
1790 hirda->hdmatx->XferAbortCallback(hirda->hdmatx);
1791 }
1792 }
1793 else
1794 {
1795 /* Reset Tx transfer counter */
1796 hirda->TxXferCount = 0U;
1797
1798 /* Restore hirda->gState to Ready */
1799 hirda->gState = HAL_IRDA_STATE_READY;
1800
1801 /* As no DMA to be aborted, call directly user Abort complete callback */
1802 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1803 /* Call registered Abort Transmit Complete Callback */
1804 hirda->AbortTransmitCpltCallback(hirda);
1805 #else
1806 /* Call legacy weak Abort Transmit Complete Callback */
1807 HAL_IRDA_AbortTransmitCpltCallback(hirda);
1808 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1809 }
1810 }
1811 else
1812 {
1813 /* Reset Tx transfer counter */
1814 hirda->TxXferCount = 0U;
1815
1816 /* Restore hirda->gState to Ready */
1817 hirda->gState = HAL_IRDA_STATE_READY;
1818
1819 /* As no DMA to be aborted, call directly user Abort complete callback */
1820 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1821 /* Call registered Abort Transmit Complete Callback */
1822 hirda->AbortTransmitCpltCallback(hirda);
1823 #else
1824 /* Call legacy weak Abort Transmit Complete Callback */
1825 HAL_IRDA_AbortTransmitCpltCallback(hirda);
1826 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1827 }
1828
1829 return HAL_OK;
1830 }
1831
1832 /**
1833 * @brief Abort ongoing Receive transfer (Interrupt mode).
1834 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1835 * the configuration information for the specified UART module.
1836 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1837 * This procedure performs following operations :
1838 * - Disable IRDA Interrupts (Rx)
1839 * - Disable the DMA transfer in the peripheral register (if enabled)
1840 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1841 * - Set handle State to READY
1842 * - At abort completion, call user abort complete callback
1843 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1844 * considered as completed only when user abort complete callback is executed (not when exiting function).
1845 * @retval HAL status
1846 */
HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef * hirda)1847 HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda)
1848 {
1849 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
1850 #if defined(USART_CR1_FIFOEN)
1851 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
1852 #else
1853 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
1854 #endif /* USART_CR1_FIFOEN */
1855 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
1856
1857 /* Disable the IRDA DMA Rx request if enabled */
1858 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
1859 {
1860 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
1861
1862 /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
1863 if (hirda->hdmarx != NULL)
1864 {
1865 /* Set the IRDA DMA Abort callback :
1866 will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
1867 hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback;
1868
1869 /* Abort DMA RX */
1870 if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
1871 {
1872 /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
1873 hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
1874 }
1875 }
1876 else
1877 {
1878 /* Reset Rx transfer counter */
1879 hirda->RxXferCount = 0U;
1880
1881 /* Clear the Error flags in the ICR register */
1882 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1883
1884 /* Restore hirda->RxState to Ready */
1885 hirda->RxState = HAL_IRDA_STATE_READY;
1886
1887 /* As no DMA to be aborted, call directly user Abort complete callback */
1888 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1889 /* Call registered Abort Receive Complete Callback */
1890 hirda->AbortReceiveCpltCallback(hirda);
1891 #else
1892 /* Call legacy weak Abort Receive Complete Callback */
1893 HAL_IRDA_AbortReceiveCpltCallback(hirda);
1894 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1895 }
1896 }
1897 else
1898 {
1899 /* Reset Rx transfer counter */
1900 hirda->RxXferCount = 0U;
1901
1902 /* Clear the Error flags in the ICR register */
1903 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
1904
1905 /* Restore hirda->RxState to Ready */
1906 hirda->RxState = HAL_IRDA_STATE_READY;
1907
1908 /* As no DMA to be aborted, call directly user Abort complete callback */
1909 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
1910 /* Call registered Abort Receive Complete Callback */
1911 hirda->AbortReceiveCpltCallback(hirda);
1912 #else
1913 /* Call legacy weak Abort Receive Complete Callback */
1914 HAL_IRDA_AbortReceiveCpltCallback(hirda);
1915 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
1916 }
1917
1918 return HAL_OK;
1919 }
1920
1921 /**
1922 * @brief Handle IRDA interrupt request.
1923 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
1924 * the configuration information for the specified IRDA module.
1925 * @retval None
1926 */
HAL_IRDA_IRQHandler(IRDA_HandleTypeDef * hirda)1927 void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
1928 {
1929 uint32_t isrflags = READ_REG(hirda->Instance->ISR);
1930 uint32_t cr1its = READ_REG(hirda->Instance->CR1);
1931 uint32_t cr3its;
1932 uint32_t errorflags;
1933 uint32_t errorcode;
1934
1935 /* If no error occurs */
1936 errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE));
1937 if (errorflags == 0U)
1938 {
1939 /* IRDA in mode Receiver ---------------------------------------------------*/
1940 #if defined(USART_CR1_FIFOEN)
1941 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U))
1942 #else
1943 if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U))
1944 #endif /* USART_CR1_FIFOEN */
1945 {
1946 IRDA_Receive_IT(hirda);
1947 return;
1948 }
1949 }
1950
1951 /* If some errors occur */
1952 cr3its = READ_REG(hirda->Instance->CR3);
1953 if ((errorflags != 0U)
1954 && (((cr3its & USART_CR3_EIE) != 0U)
1955 #if defined(USART_CR1_FIFOEN)
1956 || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)) != 0U)))
1957 #else
1958 || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != 0U)))
1959 #endif /* USART_CR1_FIFOEN */
1960 {
1961 /* IRDA parity error interrupt occurred -------------------------------------*/
1962 if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
1963 {
1964 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_PEF);
1965
1966 hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
1967 }
1968
1969 /* IRDA frame error interrupt occurred --------------------------------------*/
1970 if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
1971 {
1972 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_FEF);
1973
1974 hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
1975 }
1976
1977 /* IRDA noise error interrupt occurred --------------------------------------*/
1978 if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
1979 {
1980 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_NEF);
1981
1982 hirda->ErrorCode |= HAL_IRDA_ERROR_NE;
1983 }
1984
1985 /* IRDA Over-Run interrupt occurred -----------------------------------------*/
1986 if (((isrflags & USART_ISR_ORE) != 0U) &&
1987 #if defined(USART_CR1_FIFOEN)
1988 (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U)))
1989 #else
1990 (((cr1its & USART_CR1_RXNEIE) != 0U) || ((cr3its & USART_CR3_EIE) != 0U)))
1991 #endif /* USART_CR1_FIFOEN */
1992 {
1993 __HAL_IRDA_CLEAR_IT(hirda, IRDA_CLEAR_OREF);
1994
1995 hirda->ErrorCode |= HAL_IRDA_ERROR_ORE;
1996 }
1997
1998 /* Call IRDA Error Call back function if need be --------------------------*/
1999 if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
2000 {
2001 /* IRDA in mode Receiver ---------------------------------------------------*/
2002 #if defined(USART_CR1_FIFOEN)
2003 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) && ((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U))
2004 #else
2005 if (((isrflags & USART_ISR_RXNE) != 0U) && ((cr1its & USART_CR1_RXNEIE) != 0U))
2006 #endif /* USART_CR1_FIFOEN */
2007 {
2008 IRDA_Receive_IT(hirda);
2009 }
2010
2011 /* If Overrun error occurs, or if any error occurs in DMA mode reception,
2012 consider error as blocking */
2013 errorcode = hirda->ErrorCode;
2014 if ((HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) ||
2015 ((errorcode & HAL_IRDA_ERROR_ORE) != 0U))
2016 {
2017 /* Blocking error : transfer is aborted
2018 Set the IRDA state ready to be able to start again the process,
2019 Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
2020 IRDA_EndRxTransfer(hirda);
2021
2022 /* Disable the IRDA DMA Rx request if enabled */
2023 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
2024 {
2025 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
2026
2027 /* Abort the IRDA DMA Rx channel */
2028 if (hirda->hdmarx != NULL)
2029 {
2030 /* Set the IRDA DMA Abort callback :
2031 will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */
2032 hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError;
2033
2034 /* Abort DMA RX */
2035 if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
2036 {
2037 /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
2038 hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
2039 }
2040 }
2041 else
2042 {
2043 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2044 /* Call registered user error callback */
2045 hirda->ErrorCallback(hirda);
2046 #else
2047 /* Call legacy weak user error callback */
2048 HAL_IRDA_ErrorCallback(hirda);
2049 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2050 }
2051 }
2052 else
2053 {
2054 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2055 /* Call registered user error callback */
2056 hirda->ErrorCallback(hirda);
2057 #else
2058 /* Call legacy weak user error callback */
2059 HAL_IRDA_ErrorCallback(hirda);
2060 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2061 }
2062 }
2063 else
2064 {
2065 /* Non Blocking error : transfer could go on.
2066 Error is notified to user through user error callback */
2067 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2068 /* Call registered user error callback */
2069 hirda->ErrorCallback(hirda);
2070 #else
2071 /* Call legacy weak user error callback */
2072 HAL_IRDA_ErrorCallback(hirda);
2073 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2074 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2075 }
2076 }
2077 return;
2078
2079 } /* End if some error occurs */
2080
2081 /* IRDA in mode Transmitter ------------------------------------------------*/
2082 #if defined(USART_CR1_FIFOEN)
2083 if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) && ((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U))
2084 #else
2085 if (((isrflags & USART_ISR_TXE) != 0U) && ((cr1its & USART_CR1_TXEIE) != 0U))
2086 #endif /* USART_CR1_FIFOEN */
2087 {
2088 IRDA_Transmit_IT(hirda);
2089 return;
2090 }
2091
2092 /* IRDA in mode Transmitter (transmission end) -----------------------------*/
2093 if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
2094 {
2095 IRDA_EndTransmit_IT(hirda);
2096 return;
2097 }
2098
2099 }
2100
2101 /**
2102 * @brief Tx Transfer completed callback.
2103 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2104 * the configuration information for the specified IRDA module.
2105 * @retval None
2106 */
HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef * hirda)2107 __weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
2108 {
2109 /* Prevent unused argument(s) compilation warning */
2110 UNUSED(hirda);
2111
2112 /* NOTE : This function should not be modified, when the callback is needed,
2113 the HAL_IRDA_TxCpltCallback can be implemented in the user file.
2114 */
2115 }
2116
2117 /**
2118 * @brief Tx Half Transfer completed callback.
2119 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2120 * the configuration information for the specified USART module.
2121 * @retval None
2122 */
HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef * hirda)2123 __weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
2124 {
2125 /* Prevent unused argument(s) compilation warning */
2126 UNUSED(hirda);
2127
2128 /* NOTE : This function should not be modified, when the callback is needed,
2129 the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file.
2130 */
2131 }
2132
2133 /**
2134 * @brief Rx Transfer completed callback.
2135 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2136 * the configuration information for the specified IRDA module.
2137 * @retval None
2138 */
HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef * hirda)2139 __weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
2140 {
2141 /* Prevent unused argument(s) compilation warning */
2142 UNUSED(hirda);
2143
2144 /* NOTE : This function should not be modified, when the callback is needed,
2145 the HAL_IRDA_RxCpltCallback can be implemented in the user file.
2146 */
2147 }
2148
2149 /**
2150 * @brief Rx Half Transfer complete callback.
2151 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2152 * the configuration information for the specified IRDA module.
2153 * @retval None
2154 */
HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef * hirda)2155 __weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
2156 {
2157 /* Prevent unused argument(s) compilation warning */
2158 UNUSED(hirda);
2159
2160 /* NOTE : This function should not be modified, when the callback is needed,
2161 the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file.
2162 */
2163 }
2164
2165 /**
2166 * @brief IRDA error callback.
2167 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2168 * the configuration information for the specified IRDA module.
2169 * @retval None
2170 */
HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef * hirda)2171 __weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
2172 {
2173 /* Prevent unused argument(s) compilation warning */
2174 UNUSED(hirda);
2175
2176 /* NOTE : This function should not be modified, when the callback is needed,
2177 the HAL_IRDA_ErrorCallback can be implemented in the user file.
2178 */
2179 }
2180
2181 /**
2182 * @brief IRDA Abort Complete callback.
2183 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2184 * the configuration information for the specified IRDA module.
2185 * @retval None
2186 */
HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef * hirda)2187 __weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda)
2188 {
2189 /* Prevent unused argument(s) compilation warning */
2190 UNUSED(hirda);
2191
2192 /* NOTE : This function should not be modified, when the callback is needed,
2193 the HAL_IRDA_AbortCpltCallback can be implemented in the user file.
2194 */
2195 }
2196
2197 /**
2198 * @brief IRDA Abort Complete callback.
2199 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2200 * the configuration information for the specified IRDA module.
2201 * @retval None
2202 */
HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef * hirda)2203 __weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda)
2204 {
2205 /* Prevent unused argument(s) compilation warning */
2206 UNUSED(hirda);
2207
2208 /* NOTE : This function should not be modified, when the callback is needed,
2209 the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file.
2210 */
2211 }
2212
2213 /**
2214 * @brief IRDA Abort Receive Complete callback.
2215 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2216 * the configuration information for the specified IRDA module.
2217 * @retval None
2218 */
HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef * hirda)2219 __weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda)
2220 {
2221 /* Prevent unused argument(s) compilation warning */
2222 UNUSED(hirda);
2223
2224 /* NOTE : This function should not be modified, when the callback is needed,
2225 the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file.
2226 */
2227 }
2228
2229 /**
2230 * @}
2231 */
2232
2233 /** @defgroup IRDA_Exported_Functions_Group4 Peripheral State and Error functions
2234 * @brief IRDA State and Errors functions
2235 *
2236 @verbatim
2237 ==============================================================================
2238 ##### Peripheral State and Error functions #####
2239 ==============================================================================
2240 [..]
2241 This subsection provides a set of functions allowing to return the State of IrDA
2242 communication process and also return Peripheral Errors occurred during communication process
2243 (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state
2244 of the IRDA peripheral handle.
2245 (+) HAL_IRDA_GetError() checks in run-time errors that could occur during
2246 communication.
2247
2248 @endverbatim
2249 * @{
2250 */
2251
2252 /**
2253 * @brief Return the IRDA handle state.
2254 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2255 * the configuration information for the specified IRDA module.
2256 * @retval HAL state
2257 */
HAL_IRDA_GetState(const IRDA_HandleTypeDef * hirda)2258 HAL_IRDA_StateTypeDef HAL_IRDA_GetState(const IRDA_HandleTypeDef *hirda)
2259 {
2260 /* Return IRDA handle state */
2261 uint32_t temp1;
2262 uint32_t temp2;
2263 temp1 = (uint32_t)hirda->gState;
2264 temp2 = (uint32_t)hirda->RxState;
2265
2266 return (HAL_IRDA_StateTypeDef)(temp1 | temp2);
2267 }
2268
2269 /**
2270 * @brief Return the IRDA handle error code.
2271 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2272 * the configuration information for the specified IRDA module.
2273 * @retval IRDA Error Code
2274 */
HAL_IRDA_GetError(const IRDA_HandleTypeDef * hirda)2275 uint32_t HAL_IRDA_GetError(const IRDA_HandleTypeDef *hirda)
2276 {
2277 return hirda->ErrorCode;
2278 }
2279
2280 /**
2281 * @}
2282 */
2283
2284 /**
2285 * @}
2286 */
2287
2288 /** @defgroup IRDA_Private_Functions IRDA Private Functions
2289 * @{
2290 */
2291
2292 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2293 /**
2294 * @brief Initialize the callbacks to their default values.
2295 * @param hirda IRDA handle.
2296 * @retval none
2297 */
IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef * hirda)2298 void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda)
2299 {
2300 /* Init the IRDA Callback settings */
2301 hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
2302 hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */
2303 hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
2304 hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */
2305 hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */
2306 hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
2307 hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2308 hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
2309
2310 }
2311 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
2312
2313 /**
2314 * @brief Configure the IRDA peripheral.
2315 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2316 * the configuration information for the specified IRDA module.
2317 * @retval HAL status
2318 */
IRDA_SetConfig(IRDA_HandleTypeDef * hirda)2319 static HAL_StatusTypeDef IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
2320 {
2321 uint32_t tmpreg;
2322 IRDA_ClockSourceTypeDef clocksource;
2323 HAL_StatusTypeDef ret = HAL_OK;
2324 #if defined(USART_PRESC_PRESCALER)
2325 static const uint16_t IRDAPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
2326 #endif /* USART_PRESC_PRESCALER */
2327 uint32_t pclk;
2328
2329 /* Check the communication parameters */
2330 assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));
2331 assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
2332 assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
2333 assert_param(IS_IRDA_TX_RX_MODE(hirda->Init.Mode));
2334 assert_param(IS_IRDA_PRESCALER(hirda->Init.Prescaler));
2335 assert_param(IS_IRDA_POWERMODE(hirda->Init.PowerMode));
2336 #if defined(USART_PRESC_PRESCALER)
2337 assert_param(IS_IRDA_CLOCKPRESCALER(hirda->Init.ClockPrescaler));
2338 #endif /* USART_PRESC_PRESCALER */
2339
2340 /*-------------------------- USART CR1 Configuration -----------------------*/
2341 /* Configure the IRDA Word Length, Parity and transfer Mode:
2342 Set the M bits according to hirda->Init.WordLength value
2343 Set PCE and PS bits according to hirda->Init.Parity value
2344 Set TE and RE bits according to hirda->Init.Mode value */
2345 tmpreg = (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode ;
2346
2347 MODIFY_REG(hirda->Instance->CR1, IRDA_CR1_FIELDS, tmpreg);
2348
2349 /*-------------------------- USART CR3 Configuration -----------------------*/
2350 MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.PowerMode);
2351
2352 #if defined(USART_PRESC_PRESCALER)
2353 /*--------------------- USART clock PRESC Configuration ----------------*/
2354 /* Configure
2355 * - IRDA Clock Prescaler: set PRESCALER according to hirda->Init.ClockPrescaler value */
2356 MODIFY_REG(hirda->Instance->PRESC, USART_PRESC_PRESCALER, hirda->Init.ClockPrescaler);
2357 #endif /* USART_PRESC_PRESCALER */
2358
2359 /*-------------------------- USART GTPR Configuration ----------------------*/
2360 MODIFY_REG(hirda->Instance->GTPR, (uint16_t)USART_GTPR_PSC, (uint16_t)hirda->Init.Prescaler);
2361
2362 /*-------------------------- USART BRR Configuration -----------------------*/
2363 IRDA_GETCLOCKSOURCE(hirda, clocksource);
2364 tmpreg = 0U;
2365 switch (clocksource)
2366 {
2367 case IRDA_CLOCKSOURCE_PCLK1:
2368 pclk = HAL_RCC_GetPCLK1Freq();
2369 #if defined(USART_PRESC_PRESCALER)
2370 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2371 #else
2372 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
2373 #endif /* USART_PRESC_PRESCALER */
2374 break;
2375 case IRDA_CLOCKSOURCE_PCLK2:
2376 pclk = HAL_RCC_GetPCLK2Freq();
2377 #if defined(USART_PRESC_PRESCALER)
2378 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2379 #else
2380 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
2381 #endif /* USART_PRESC_PRESCALER */
2382 break;
2383 case IRDA_CLOCKSOURCE_HSI:
2384 #if defined(USART_PRESC_PRESCALER)
2385 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2386 #else
2387 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(HSI_VALUE, hirda->Init.BaudRate));
2388 #endif /* USART_PRESC_PRESCALER */
2389 break;
2390 case IRDA_CLOCKSOURCE_SYSCLK:
2391 pclk = HAL_RCC_GetSysClockFreq();
2392 #if defined(USART_PRESC_PRESCALER)
2393 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2394 #else
2395 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16(pclk, hirda->Init.BaudRate));
2396 #endif /* USART_PRESC_PRESCALER */
2397 break;
2398 case IRDA_CLOCKSOURCE_LSE:
2399 #if defined(USART_PRESC_PRESCALER)
2400 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate, hirda->Init.ClockPrescaler));
2401 #else
2402 tmpreg = (uint32_t)(IRDA_DIV_SAMPLING16((uint32_t)LSE_VALUE, hirda->Init.BaudRate));
2403 #endif /* USART_PRESC_PRESCALER */
2404 break;
2405 default:
2406 ret = HAL_ERROR;
2407 break;
2408 }
2409
2410 /* USARTDIV must be greater than or equal to 0d16 */
2411 if ((tmpreg >= USART_BRR_MIN) && (tmpreg <= USART_BRR_MAX))
2412 {
2413 hirda->Instance->BRR = (uint16_t)tmpreg;
2414 }
2415 else
2416 {
2417 ret = HAL_ERROR;
2418 }
2419
2420 return ret;
2421 }
2422
2423 /**
2424 * @brief Check the IRDA Idle State.
2425 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2426 * the configuration information for the specified IRDA module.
2427 * @retval HAL status
2428 */
IRDA_CheckIdleState(IRDA_HandleTypeDef * hirda)2429 static HAL_StatusTypeDef IRDA_CheckIdleState(IRDA_HandleTypeDef *hirda)
2430 {
2431 uint32_t tickstart;
2432
2433 /* Initialize the IRDA ErrorCode */
2434 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2435
2436 /* Init tickstart for timeout management */
2437 tickstart = HAL_GetTick();
2438
2439 /* Check if the Transmitter is enabled */
2440 if ((hirda->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
2441 {
2442 /* Wait until TEACK flag is set */
2443 if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_TEACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
2444 {
2445 /* Timeout occurred */
2446 return HAL_TIMEOUT;
2447 }
2448 }
2449 /* Check if the Receiver is enabled */
2450 if ((hirda->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
2451 {
2452 /* Wait until REACK flag is set */
2453 if (IRDA_WaitOnFlagUntilTimeout(hirda, USART_ISR_REACK, RESET, tickstart, IRDA_TEACK_REACK_TIMEOUT) != HAL_OK)
2454 {
2455 /* Timeout occurred */
2456 return HAL_TIMEOUT;
2457 }
2458 }
2459
2460 /* Initialize the IRDA state*/
2461 hirda->gState = HAL_IRDA_STATE_READY;
2462 hirda->RxState = HAL_IRDA_STATE_READY;
2463
2464 /* Process Unlocked */
2465 __HAL_UNLOCK(hirda);
2466
2467 return HAL_OK;
2468 }
2469
2470 /**
2471 * @brief Handle IRDA Communication Timeout. It waits
2472 * until a flag is no longer in the specified status.
2473 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2474 * the configuration information for the specified IRDA module.
2475 * @param Flag Specifies the IRDA flag to check.
2476 * @param Status The actual Flag status (SET or RESET)
2477 * @param Tickstart Tick start value
2478 * @param Timeout Timeout duration
2479 * @retval HAL status
2480 */
IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef * hirda,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)2481 static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status,
2482 uint32_t Tickstart, uint32_t Timeout)
2483 {
2484 /* Wait until flag is set */
2485 while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status)
2486 {
2487 /* Check for the Timeout */
2488 if (Timeout != HAL_MAX_DELAY)
2489 {
2490 if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
2491 {
2492 /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error)
2493 interrupts for the interrupt process */
2494 #if defined(USART_CR1_FIFOEN)
2495 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_TXEIE_TXFNFIE));
2496 #else
2497 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
2498 #endif /* USART_CR1_FIFOEN */
2499 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2500
2501 hirda->gState = HAL_IRDA_STATE_READY;
2502 hirda->RxState = HAL_IRDA_STATE_READY;
2503
2504 /* Process Unlocked */
2505 __HAL_UNLOCK(hirda);
2506 return HAL_TIMEOUT;
2507 }
2508 }
2509 }
2510 return HAL_OK;
2511 }
2512
2513
2514 /**
2515 * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion).
2516 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2517 * the configuration information for the specified IRDA module.
2518 * @retval None
2519 */
IRDA_EndTxTransfer(IRDA_HandleTypeDef * hirda)2520 static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda)
2521 {
2522 /* Disable TXEIE and TCIE interrupts */
2523 #if defined(USART_CR1_FIFOEN)
2524 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
2525 #else
2526 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));
2527 #endif /* USART_CR1_FIFOEN */
2528
2529 /* At end of Tx process, restore hirda->gState to Ready */
2530 hirda->gState = HAL_IRDA_STATE_READY;
2531 }
2532
2533 /**
2534 * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
2535 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2536 * the configuration information for the specified IRDA module.
2537 * @retval None
2538 */
IRDA_EndRxTransfer(IRDA_HandleTypeDef * hirda)2539 static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda)
2540 {
2541 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2542 #if defined(USART_CR1_FIFOEN)
2543 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
2544 #else
2545 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2546 #endif /* USART_CR1_FIFOEN */
2547 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2548
2549 /* At end of Rx process, restore hirda->RxState to Ready */
2550 hirda->RxState = HAL_IRDA_STATE_READY;
2551 }
2552
2553
2554 /**
2555 * @brief DMA IRDA transmit process complete callback.
2556 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2557 * the configuration information for the specified DMA module.
2558 * @retval None
2559 */
IRDA_DMATransmitCplt(DMA_HandleTypeDef * hdma)2560 static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)
2561 {
2562 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2563
2564 /* DMA Normal mode */
2565 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
2566 {
2567 hirda->TxXferCount = 0U;
2568
2569 /* Disable the DMA transfer for transmit request by resetting the DMAT bit
2570 in the IRDA CR3 register */
2571 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
2572
2573 /* Enable the IRDA Transmit Complete Interrupt */
2574 SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
2575 }
2576 /* DMA Circular mode */
2577 else
2578 {
2579 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2580 /* Call registered Tx complete callback */
2581 hirda->TxCpltCallback(hirda);
2582 #else
2583 /* Call legacy weak Tx complete callback */
2584 HAL_IRDA_TxCpltCallback(hirda);
2585 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2586 }
2587
2588 }
2589
2590 /**
2591 * @brief DMA IRDA transmit process half complete callback.
2592 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2593 * the configuration information for the specified DMA module.
2594 * @retval None
2595 */
IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef * hdma)2596 static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
2597 {
2598 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2599
2600 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2601 /* Call registered Tx Half complete callback */
2602 hirda->TxHalfCpltCallback(hirda);
2603 #else
2604 /* Call legacy weak Tx complete callback */
2605 HAL_IRDA_TxHalfCpltCallback(hirda);
2606 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2607 }
2608
2609 /**
2610 * @brief DMA IRDA receive process complete callback.
2611 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2612 * the configuration information for the specified DMA module.
2613 * @retval None
2614 */
IRDA_DMAReceiveCplt(DMA_HandleTypeDef * hdma)2615 static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
2616 {
2617 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2618
2619 /* DMA Normal mode */
2620 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
2621 {
2622 hirda->RxXferCount = 0U;
2623
2624 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2625 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
2626 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2627
2628 /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
2629 in the IRDA CR3 register */
2630 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
2631
2632 /* At end of Rx process, restore hirda->RxState to Ready */
2633 hirda->RxState = HAL_IRDA_STATE_READY;
2634 }
2635
2636 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2637 /* Call registered Rx complete callback */
2638 hirda->RxCpltCallback(hirda);
2639 #else
2640 /* Call legacy weak Rx complete callback */
2641 HAL_IRDA_RxCpltCallback(hirda);
2642 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
2643 }
2644
2645 /**
2646 * @brief DMA IRDA receive process half complete callback.
2647 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2648 * the configuration information for the specified DMA module.
2649 * @retval None
2650 */
IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef * hdma)2651 static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
2652 {
2653 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2654
2655 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2656 /*Call registered Rx Half complete callback*/
2657 hirda->RxHalfCpltCallback(hirda);
2658 #else
2659 /* Call legacy weak Rx Half complete callback */
2660 HAL_IRDA_RxHalfCpltCallback(hirda);
2661 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2662 }
2663
2664 /**
2665 * @brief DMA IRDA communication error callback.
2666 * @param hdma Pointer to a DMA_HandleTypeDef structure that contains
2667 * the configuration information for the specified DMA module.
2668 * @retval None
2669 */
IRDA_DMAError(DMA_HandleTypeDef * hdma)2670 static void IRDA_DMAError(DMA_HandleTypeDef *hdma)
2671 {
2672 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2673
2674 /* Stop IRDA DMA Tx request if ongoing */
2675 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
2676 {
2677 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
2678 {
2679 hirda->TxXferCount = 0U;
2680 IRDA_EndTxTransfer(hirda);
2681 }
2682 }
2683
2684 /* Stop IRDA DMA Rx request if ongoing */
2685 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
2686 {
2687 if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
2688 {
2689 hirda->RxXferCount = 0U;
2690 IRDA_EndRxTransfer(hirda);
2691 }
2692 }
2693
2694 hirda->ErrorCode |= HAL_IRDA_ERROR_DMA;
2695 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2696 /* Call registered user error callback */
2697 hirda->ErrorCallback(hirda);
2698 #else
2699 /* Call legacy weak user error callback */
2700 HAL_IRDA_ErrorCallback(hirda);
2701 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2702 }
2703
2704 /**
2705 * @brief DMA IRDA communication abort callback, when initiated by HAL services on Error
2706 * (To be called at end of DMA Abort procedure following error occurrence).
2707 * @param hdma DMA handle.
2708 * @retval None
2709 */
IRDA_DMAAbortOnError(DMA_HandleTypeDef * hdma)2710 static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma)
2711 {
2712 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2713 hirda->RxXferCount = 0U;
2714 hirda->TxXferCount = 0U;
2715
2716 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2717 /* Call registered user error callback */
2718 hirda->ErrorCallback(hirda);
2719 #else
2720 /* Call legacy weak user error callback */
2721 HAL_IRDA_ErrorCallback(hirda);
2722 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2723 }
2724
2725 /**
2726 * @brief DMA IRDA Tx communication abort callback, when initiated by user
2727 * (To be called at end of DMA Tx Abort procedure following user abort request).
2728 * @note When this callback is executed, User Abort complete call back is called only if no
2729 * Abort still ongoing for Rx DMA Handle.
2730 * @param hdma DMA handle.
2731 * @retval None
2732 */
IRDA_DMATxAbortCallback(DMA_HandleTypeDef * hdma)2733 static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
2734 {
2735 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2736
2737 hirda->hdmatx->XferAbortCallback = NULL;
2738
2739 /* Check if an Abort process is still ongoing */
2740 if (hirda->hdmarx != NULL)
2741 {
2742 if (hirda->hdmarx->XferAbortCallback != NULL)
2743 {
2744 return;
2745 }
2746 }
2747
2748 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2749 hirda->TxXferCount = 0U;
2750 hirda->RxXferCount = 0U;
2751
2752 /* Reset errorCode */
2753 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2754
2755 /* Clear the Error flags in the ICR register */
2756 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
2757
2758 /* Restore hirda->gState and hirda->RxState to Ready */
2759 hirda->gState = HAL_IRDA_STATE_READY;
2760 hirda->RxState = HAL_IRDA_STATE_READY;
2761
2762 /* Call user Abort complete callback */
2763 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2764 /* Call registered Abort complete callback */
2765 hirda->AbortCpltCallback(hirda);
2766 #else
2767 /* Call legacy weak Abort complete callback */
2768 HAL_IRDA_AbortCpltCallback(hirda);
2769 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2770 }
2771
2772
2773 /**
2774 * @brief DMA IRDA Rx communication abort callback, when initiated by user
2775 * (To be called at end of DMA Rx Abort procedure following user abort request).
2776 * @note When this callback is executed, User Abort complete call back is called only if no
2777 * Abort still ongoing for Tx DMA Handle.
2778 * @param hdma DMA handle.
2779 * @retval None
2780 */
IRDA_DMARxAbortCallback(DMA_HandleTypeDef * hdma)2781 static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
2782 {
2783 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2784
2785 hirda->hdmarx->XferAbortCallback = NULL;
2786
2787 /* Check if an Abort process is still ongoing */
2788 if (hirda->hdmatx != NULL)
2789 {
2790 if (hirda->hdmatx->XferAbortCallback != NULL)
2791 {
2792 return;
2793 }
2794 }
2795
2796 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
2797 hirda->TxXferCount = 0U;
2798 hirda->RxXferCount = 0U;
2799
2800 /* Reset errorCode */
2801 hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
2802
2803 /* Clear the Error flags in the ICR register */
2804 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
2805
2806 /* Restore hirda->gState and hirda->RxState to Ready */
2807 hirda->gState = HAL_IRDA_STATE_READY;
2808 hirda->RxState = HAL_IRDA_STATE_READY;
2809
2810 /* Call user Abort complete callback */
2811 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2812 /* Call registered Abort complete callback */
2813 hirda->AbortCpltCallback(hirda);
2814 #else
2815 /* Call legacy weak Abort complete callback */
2816 HAL_IRDA_AbortCpltCallback(hirda);
2817 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2818 }
2819
2820
2821 /**
2822 * @brief DMA IRDA Tx communication abort callback, when initiated by user by a call to
2823 * HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer)
2824 * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
2825 * and leads to user Tx Abort Complete callback execution).
2826 * @param hdma DMA handle.
2827 * @retval None
2828 */
IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef * hdma)2829 static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
2830 {
2831 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)(hdma->Parent);
2832
2833 hirda->TxXferCount = 0U;
2834
2835 /* Restore hirda->gState to Ready */
2836 hirda->gState = HAL_IRDA_STATE_READY;
2837
2838 /* Call user Abort complete callback */
2839 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2840 /* Call registered Abort Transmit Complete Callback */
2841 hirda->AbortTransmitCpltCallback(hirda);
2842 #else
2843 /* Call legacy weak Abort Transmit Complete Callback */
2844 HAL_IRDA_AbortTransmitCpltCallback(hirda);
2845 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2846 }
2847
2848 /**
2849 * @brief DMA IRDA Rx communication abort callback, when initiated by user by a call to
2850 * HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer)
2851 * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
2852 * and leads to user Rx Abort Complete callback execution).
2853 * @param hdma DMA handle.
2854 * @retval None
2855 */
IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef * hdma)2856 static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
2857 {
2858 IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2859
2860 hirda->RxXferCount = 0U;
2861
2862 /* Clear the Error flags in the ICR register */
2863 __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_CLEAR_OREF | IRDA_CLEAR_NEF | IRDA_CLEAR_PEF | IRDA_CLEAR_FEF);
2864
2865 /* Restore hirda->RxState to Ready */
2866 hirda->RxState = HAL_IRDA_STATE_READY;
2867
2868 /* Call user Abort complete callback */
2869 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2870 /* Call registered Abort Receive Complete Callback */
2871 hirda->AbortReceiveCpltCallback(hirda);
2872 #else
2873 /* Call legacy weak Abort Receive Complete Callback */
2874 HAL_IRDA_AbortReceiveCpltCallback(hirda);
2875 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2876 }
2877
2878 /**
2879 * @brief Send an amount of data in interrupt mode.
2880 * @note Function is called under interruption only, once
2881 * interruptions have been enabled by HAL_IRDA_Transmit_IT().
2882 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2883 * the configuration information for the specified IRDA module.
2884 * @retval None
2885 */
IRDA_Transmit_IT(IRDA_HandleTypeDef * hirda)2886 static void IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
2887 {
2888 const uint16_t *tmp;
2889
2890 /* Check that a Tx process is ongoing */
2891 if (hirda->gState == HAL_IRDA_STATE_BUSY_TX)
2892 {
2893 if (hirda->TxXferCount == 0U)
2894 {
2895 /* Disable the IRDA Transmit Data Register Empty Interrupt */
2896 #if defined(USART_CR1_FIFOEN)
2897 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
2898 #else
2899 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);
2900 #endif /* USART_CR1_FIFOEN */
2901
2902 /* Enable the IRDA Transmit Complete Interrupt */
2903 SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
2904 }
2905 else
2906 {
2907 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
2908 {
2909 tmp = (const uint16_t *) hirda->pTxBuffPtr; /* Derogation R.11.3 */
2910 hirda->Instance->TDR = (uint16_t)(*tmp & 0x01FFU);
2911 hirda->pTxBuffPtr += 2U;
2912 }
2913 else
2914 {
2915 hirda->Instance->TDR = (uint8_t)(*hirda->pTxBuffPtr & 0xFFU);
2916 hirda->pTxBuffPtr++;
2917 }
2918 hirda->TxXferCount--;
2919 }
2920 }
2921 }
2922
2923 /**
2924 * @brief Wrap up transmission in non-blocking mode.
2925 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2926 * the configuration information for the specified IRDA module.
2927 * @retval None
2928 */
IRDA_EndTransmit_IT(IRDA_HandleTypeDef * hirda)2929 static void IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
2930 {
2931 /* Disable the IRDA Transmit Complete Interrupt */
2932 CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
2933
2934 /* Tx process is ended, restore hirda->gState to Ready */
2935 hirda->gState = HAL_IRDA_STATE_READY;
2936
2937 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2938 /* Call registered Tx complete callback */
2939 hirda->TxCpltCallback(hirda);
2940 #else
2941 /* Call legacy weak Tx complete callback */
2942 HAL_IRDA_TxCpltCallback(hirda);
2943 #endif /* USE_HAL_IRDA_REGISTER_CALLBACK */
2944 }
2945
2946 /**
2947 * @brief Receive an amount of data in interrupt mode.
2948 * @note Function is called under interruption only, once
2949 * interruptions have been enabled by HAL_IRDA_Receive_IT()
2950 * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains
2951 * the configuration information for the specified IRDA module.
2952 * @retval None
2953 */
IRDA_Receive_IT(IRDA_HandleTypeDef * hirda)2954 static void IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
2955 {
2956 uint16_t *tmp;
2957 uint16_t uhMask = hirda->Mask;
2958 uint16_t uhdata;
2959
2960 /* Check that a Rx process is ongoing */
2961 if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
2962 {
2963 uhdata = (uint16_t) READ_REG(hirda->Instance->RDR);
2964 if ((hirda->Init.WordLength == IRDA_WORDLENGTH_9B) && (hirda->Init.Parity == IRDA_PARITY_NONE))
2965 {
2966 tmp = (uint16_t *) hirda->pRxBuffPtr; /* Derogation R.11.3 */
2967 *tmp = (uint16_t)(uhdata & uhMask);
2968 hirda->pRxBuffPtr += 2U;
2969 }
2970 else
2971 {
2972 *hirda->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
2973 hirda->pRxBuffPtr++;
2974 }
2975
2976 hirda->RxXferCount--;
2977 if (hirda->RxXferCount == 0U)
2978 {
2979 /* Disable the IRDA Parity Error Interrupt and RXNE interrupt */
2980 #if defined(USART_CR1_FIFOEN)
2981 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
2982 #else
2983 CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
2984 #endif /* USART_CR1_FIFOEN */
2985
2986 /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
2987 CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
2988
2989 /* Rx process is completed, restore hirda->RxState to Ready */
2990 hirda->RxState = HAL_IRDA_STATE_READY;
2991
2992 #if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1)
2993 /* Call registered Rx complete callback */
2994 hirda->RxCpltCallback(hirda);
2995 #else
2996 /* Call legacy weak Rx complete callback */
2997 HAL_IRDA_RxCpltCallback(hirda);
2998 #endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */
2999 }
3000 }
3001 else
3002 {
3003 /* Clear RXNE interrupt flag */
3004 __HAL_IRDA_SEND_REQ(hirda, IRDA_RXDATA_FLUSH_REQUEST);
3005 }
3006 }
3007
3008 /**
3009 * @}
3010 */
3011
3012 #endif /* HAL_IRDA_MODULE_ENABLED */
3013 /**
3014 * @}
3015 */
3016
3017 /**
3018 * @}
3019 */
3020
3021