1 /**
2 ******************************************************************************
3 * @file stm32l4xx_hal_adc.c
4 * @author MCD Application Team
5 * @brief This file provides firmware functions to manage the following
6 * functionalities of the Analog to Digital Converter (ADC)
7 * peripheral:
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 * + Peripheral State functions
11 * Other functions (extended functions) are available in file
12 * "stm32l4xx_hal_adc_ex.c".
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2017 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 @verbatim
26 ==============================================================================
27 ##### ADC peripheral features #####
28 ==============================================================================
29 [..]
30 (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution.
31
32 (+) Interrupt generation at the end of regular conversion and in case of
33 analog watchdog or overrun events.
34
35 (+) Single and continuous conversion modes.
36
37 (+) Scan mode for conversion of several channels sequentially.
38
39 (+) Data alignment with in-built data coherency.
40
41 (+) Programmable sampling time (channel wise)
42
43 (+) External trigger (timer or EXTI) with configurable polarity
44
45 (+) DMA request generation for transfer of conversions data of regular group.
46
47 (+) Configurable delay between conversions in Dual interleaved mode.
48
49 (+) ADC channels selectable single/differential input.
50
51 (+) ADC offset shared on 4 offset instances.
52 (+) ADC calibration
53
54 (+) ADC conversion of regular group.
55
56 (+) ADC supply requirements: 1.62 V to 3.6 V.
57
58 (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to
59 Vdda or to an external voltage reference).
60
61
62 ##### How to use this driver #####
63 ==============================================================================
64 [..]
65
66 *** Configuration of top level parameters related to ADC ***
67 ============================================================
68 [..]
69
70 (#) Enable the ADC interface
71 (++) As prerequisite, ADC clock must be configured at RCC top level.
72
73 (++) Two clock settings are mandatory:
74 (+++) ADC clock (core clock, also possibly conversion clock).
75
76 (+++) ADC clock (conversions clock).
77 Two possible clock sources: synchronous clock derived from APB clock
78 or asynchronous clock derived from system clock, PLLSAI1 or the PLLSAI2
79 running up to 80MHz.
80
81 (+++) Example:
82 Into HAL_ADC_MspInit() (recommended code location) or with
83 other device clock parameters configuration:
84 (+++) __HAL_RCC_ADC_CLK_ENABLE(); (mandatory)
85
86 RCC_ADCCLKSOURCE_PLL enable: (optional: if asynchronous clock selected)
87 (+++) RCC_PeriphClkInitTypeDef RCC_PeriphClkInit;
88 (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
89 (+++) PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLL;
90 (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);
91
92 (++) ADC clock source and clock prescaler are configured at ADC level with
93 parameter "ClockPrescaler" using function HAL_ADC_Init().
94
95 (#) ADC pins configuration
96 (++) Enable the clock for the ADC GPIOs
97 using macro __HAL_RCC_GPIOx_CLK_ENABLE()
98 (++) Configure these ADC pins in analog mode
99 using function HAL_GPIO_Init()
100
101 (#) Optionally, in case of usage of ADC with interruptions:
102 (++) Configure the NVIC for ADC
103 using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
104 (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
105 into the function of corresponding ADC interruption vector
106 ADCx_IRQHandler().
107
108 (#) Optionally, in case of usage of DMA:
109 (++) Configure the DMA (DMA channel, mode normal or circular, ...)
110 using function HAL_DMA_Init().
111 (++) Configure the NVIC for DMA
112 using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
113 (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
114 into the function of corresponding DMA interruption vector
115 DMAx_Channelx_IRQHandler().
116
117 *** Configuration of ADC, group regular, channels parameters ***
118 ================================================================
119 [..]
120
121 (#) Configure the ADC parameters (resolution, data alignment, ...)
122 and regular group parameters (conversion trigger, sequencer, ...)
123 using function HAL_ADC_Init().
124
125 (#) Configure the channels for regular group parameters (channel number,
126 channel rank into sequencer, ..., into regular group)
127 using function HAL_ADC_ConfigChannel().
128
129 (#) Optionally, configure the analog watchdog parameters (channels
130 monitored, thresholds, ...)
131 using function HAL_ADC_AnalogWDGConfig().
132
133 *** Execution of ADC conversions ***
134 ====================================
135 [..]
136
137 (#) Optionally, perform an automatic ADC calibration to improve the
138 conversion accuracy
139 using function HAL_ADCEx_Calibration_Start().
140
141 (#) ADC driver can be used among three modes: polling, interruption,
142 transfer by DMA.
143
144 (++) ADC conversion by polling:
145 (+++) Activate the ADC peripheral and start conversions
146 using function HAL_ADC_Start()
147 (+++) Wait for ADC conversion completion
148 using function HAL_ADC_PollForConversion()
149 (+++) Retrieve conversion results
150 using function HAL_ADC_GetValue()
151 (+++) Stop conversion and disable the ADC peripheral
152 using function HAL_ADC_Stop()
153
154 (++) ADC conversion by interruption:
155 (+++) Activate the ADC peripheral and start conversions
156 using function HAL_ADC_Start_IT()
157 (+++) Wait for ADC conversion completion by call of function
158 HAL_ADC_ConvCpltCallback()
159 (this function must be implemented in user program)
160 (+++) Retrieve conversion results
161 using function HAL_ADC_GetValue()
162 (+++) Stop conversion and disable the ADC peripheral
163 using function HAL_ADC_Stop_IT()
164
165 (++) ADC conversion with transfer by DMA:
166 (+++) Activate the ADC peripheral and start conversions
167 using function HAL_ADC_Start_DMA()
168 (+++) Wait for ADC conversion completion by call of function
169 HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
170 (these functions must be implemented in user program)
171 (+++) Conversion results are automatically transferred by DMA into
172 destination variable address.
173 (+++) Stop conversion and disable the ADC peripheral
174 using function HAL_ADC_Stop_DMA()
175
176 [..]
177
178 (@) Callback functions must be implemented in user program:
179 (+@) HAL_ADC_ErrorCallback()
180 (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
181 (+@) HAL_ADC_ConvCpltCallback()
182 (+@) HAL_ADC_ConvHalfCpltCallback
183
184 *** Deinitialization of ADC ***
185 ============================================================
186 [..]
187
188 (#) Disable the ADC interface
189 (++) ADC clock can be hard reset and disabled at RCC top level.
190 (++) Hard reset of ADC peripherals
191 using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET().
192 (++) ADC clock disable
193 using the equivalent macro/functions as configuration step.
194 (+++) Example:
195 Into HAL_ADC_MspDeInit() (recommended code location) or with
196 other device clock parameters configuration:
197 (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
198 (+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock)
199 (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);
200
201 (#) ADC pins configuration
202 (++) Disable the clock for the ADC GPIOs
203 using macro __HAL_RCC_GPIOx_CLK_DISABLE()
204
205 (#) Optionally, in case of usage of ADC with interruptions:
206 (++) Disable the NVIC for ADC
207 using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
208
209 (#) Optionally, in case of usage of DMA:
210 (++) Deinitialize the DMA
211 using function HAL_DMA_Init().
212 (++) Disable the NVIC for DMA
213 using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
214
215 [..]
216
217 *** Callback registration ***
218 =============================================
219 [..]
220
221 The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1,
222 allows the user to configure dynamically the driver callbacks.
223 Use Functions @ref HAL_ADC_RegisterCallback()
224 to register an interrupt callback.
225 [..]
226
227 Function @ref HAL_ADC_RegisterCallback() allows to register following callbacks:
228 (+) ConvCpltCallback : ADC conversion complete callback
229 (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
230 (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
231 (+) ErrorCallback : ADC error callback
232 (+) InjectedConvCpltCallback : ADC group injected conversion complete callback
233 (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
234 (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
235 (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
236 (+) EndOfSamplingCallback : ADC end of sampling callback
237 (+) MspInitCallback : ADC Msp Init callback
238 (+) MspDeInitCallback : ADC Msp DeInit callback
239 This function takes as parameters the HAL peripheral handle, the Callback ID
240 and a pointer to the user callback function.
241 [..]
242
243 Use function @ref HAL_ADC_UnRegisterCallback to reset a callback to the default
244 weak function.
245 [..]
246
247 @ref HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle,
248 and the Callback ID.
249 This function allows to reset following callbacks:
250 (+) ConvCpltCallback : ADC conversion complete callback
251 (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback
252 (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback
253 (+) ErrorCallback : ADC error callback
254 (+) InjectedConvCpltCallback : ADC group injected conversion complete callback
255 (+) InjectedQueueOverflowCallback : ADC group injected context queue overflow callback
256 (+) LevelOutOfWindow2Callback : ADC analog watchdog 2 callback
257 (+) LevelOutOfWindow3Callback : ADC analog watchdog 3 callback
258 (+) EndOfSamplingCallback : ADC end of sampling callback
259 (+) MspInitCallback : ADC Msp Init callback
260 (+) MspDeInitCallback : ADC Msp DeInit callback
261 [..]
262
263 By default, after the @ref HAL_ADC_Init() and when the state is @ref HAL_ADC_STATE_RESET
264 all callbacks are set to the corresponding weak functions:
265 examples @ref HAL_ADC_ConvCpltCallback(), @ref HAL_ADC_ErrorCallback().
266 Exception done for MspInit and MspDeInit functions that are
267 reset to the legacy weak functions in the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit() only when
268 these callbacks are null (not registered beforehand).
269 [..]
270
271 If MspInit or MspDeInit are not null, the @ref HAL_ADC_Init()/ @ref HAL_ADC_DeInit()
272 keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
273 [..]
274
275 Callbacks can be registered/unregistered in @ref HAL_ADC_STATE_READY state only.
276 Exception done MspInit/MspDeInit functions that can be registered/unregistered
277 in @ref HAL_ADC_STATE_READY or @ref HAL_ADC_STATE_RESET state,
278 thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
279 [..]
280
281 Then, the user first registers the MspInit/MspDeInit user callbacks
282 using @ref HAL_ADC_RegisterCallback() before calling @ref HAL_ADC_DeInit()
283 or @ref HAL_ADC_Init() function.
284 [..]
285
286 When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or
287 not defined, the callback registration feature is not available and all callbacks
288 are set to the corresponding weak functions.
289
290 @endverbatim
291 ******************************************************************************
292 */
293
294 /* Includes ------------------------------------------------------------------*/
295 #include "stm32l4xx_hal.h"
296
297 /** @addtogroup STM32L4xx_HAL_Driver
298 * @{
299 */
300
301 /** @defgroup ADC ADC
302 * @brief ADC HAL module driver
303 * @{
304 */
305
306 #ifdef HAL_ADC_MODULE_ENABLED
307
308 /* Private typedef -----------------------------------------------------------*/
309 /* Private define ------------------------------------------------------------*/
310
311 /** @defgroup ADC_Private_Constants ADC Private Constants
312 * @{
313 */
314
315 #define ADC_CFGR_FIELDS_1 (ADC_CFGR_RES | ADC_CFGR_ALIGN |\
316 ADC_CFGR_CONT | ADC_CFGR_OVRMOD |\
317 ADC_CFGR_DISCEN | ADC_CFGR_DISCNUM |\
318 ADC_CFGR_EXTEN | ADC_CFGR_EXTSEL) /*!< ADC_CFGR fields of parameters that can
319 be updated when no regular conversion is on-going */
320
321 /* Timeout values for ADC operations (enable settling time, */
322 /* disable settling time, ...). */
323 /* Values defined to be higher than worst cases: low clock frequency, */
324 /* maximum prescalers. */
325 #define ADC_ENABLE_TIMEOUT (2UL) /*!< ADC enable time-out value */
326 #define ADC_DISABLE_TIMEOUT (2UL) /*!< ADC disable time-out value */
327
328 /* Timeout to wait for current conversion on going to be completed. */
329 /* Timeout fixed to longest ADC conversion possible, for 1 channel: */
330 /* - maximum sampling time (640.5 adc_clk) */
331 /* - ADC resolution (Tsar 12 bits= 12.5 adc_clk) */
332 /* - System clock / ADC clock <= 4096 (hypothesis of maximum clock ratio) */
333 /* - ADC oversampling ratio 256 */
334 /* Calculation: 653 * 4096 * 256 CPU clock cycles max */
335 /* Unit: cycles of CPU clock. */
336 #define ADC_CONVERSION_TIME_MAX_CPU_CYCLES (653UL * 4096UL * 256UL) /*!< ADC conversion completion time-out value */
337
338
339 /**
340 * @}
341 */
342
343 /* Private macro -------------------------------------------------------------*/
344 /* Private variables ---------------------------------------------------------*/
345 /* Private function prototypes -----------------------------------------------*/
346 /* Exported functions --------------------------------------------------------*/
347
348 /** @defgroup ADC_Exported_Functions ADC Exported Functions
349 * @{
350 */
351
352 /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions
353 * @brief ADC Initialization and Configuration functions
354 *
355 @verbatim
356 ===============================================================================
357 ##### Initialization and de-initialization functions #####
358 ===============================================================================
359 [..] This section provides functions allowing to:
360 (+) Initialize and configure the ADC.
361 (+) De-initialize the ADC.
362 @endverbatim
363 * @{
364 */
365
366 /**
367 * @brief Initialize the ADC peripheral and regular group according to
368 * parameters specified in structure "ADC_InitTypeDef".
369 * @note As prerequisite, ADC clock must be configured at RCC top level
370 * (refer to description of RCC configuration for ADC
371 * in header of this file).
372 * @note Possibility to update parameters on the fly:
373 * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
374 * coming from ADC state reset. Following calls to this function can
375 * be used to reconfigure some parameters of ADC_InitTypeDef
376 * structure on the fly, without modifying MSP configuration. If ADC
377 * MSP has to be modified again, HAL_ADC_DeInit() must be called
378 * before HAL_ADC_Init().
379 * The setting of these parameters is conditioned to ADC state.
380 * For parameters constraints, see comments of structure
381 * "ADC_InitTypeDef".
382 * @note This function configures the ADC within 2 scopes: scope of entire
383 * ADC and scope of regular group. For parameters details, see comments
384 * of structure "ADC_InitTypeDef".
385 * @note Parameters related to common ADC registers (ADC clock mode) are set
386 * only if all ADCs are disabled.
387 * If this is not the case, these common parameters setting are
388 * bypassed without error reporting: it can be the intended behaviour in
389 * case of update of a parameter of ADC_InitTypeDef on the fly,
390 * without disabling the other ADCs.
391 * @param hadc ADC handle
392 * @retval HAL status
393 */
HAL_ADC_Init(ADC_HandleTypeDef * hadc)394 HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc)
395 {
396 HAL_StatusTypeDef tmp_hal_status = HAL_OK;
397 uint32_t tmp_cfgr;
398 uint32_t tmp_adc_is_conversion_on_going_regular;
399 uint32_t tmp_adc_is_conversion_on_going_injected;
400 __IO uint32_t wait_loop_index = 0UL;
401
402 /* Check ADC handle */
403 if (hadc == NULL)
404 {
405 return HAL_ERROR;
406 }
407
408 /* Check the parameters */
409 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
410 assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
411 assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
412 #if defined(ADC_CFGR_DFSDMCFG) &&defined(DFSDM1_Channel0)
413 assert_param(IS_ADC_DFSDMCFG_MODE(hadc));
414 #endif /* DFSDM */
415 assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
416 assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
417 assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
418 assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
419 assert_param(IS_ADC_EXTTRIG(hadc, hadc->Init.ExternalTrigConv));
420 assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
421 assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
422 assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
423 assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
424 assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode));
425
426 if (hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
427 {
428 assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
429 assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
430
431 if (hadc->Init.DiscontinuousConvMode == ENABLE)
432 {
433 assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
434 }
435 }
436
437 /* DISCEN and CONT bits cannot be set at the same time */
438 assert_param(!((hadc->Init.DiscontinuousConvMode == ENABLE) && (hadc->Init.ContinuousConvMode == ENABLE)));
439
440 /* Actions performed only if ADC is coming from state reset: */
441 /* - Initialization of ADC MSP */
442 if (hadc->State == HAL_ADC_STATE_RESET)
443 {
444 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
445 /* Init the ADC Callback settings */
446 hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */
447 hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */
448 hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */
449 hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */
450 hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback; /* Legacy weak callback */
451 hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback; /* Legacy weak callback */
452 hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback; /* Legacy weak callback */
453 hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback; /* Legacy weak callback */
454 hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback; /* Legacy weak callback */
455
456 if (hadc->MspInitCallback == NULL)
457 {
458 hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
459 }
460
461 /* Init the low level hardware */
462 hadc->MspInitCallback(hadc);
463 #else
464 /* Init the low level hardware */
465 HAL_ADC_MspInit(hadc);
466 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
467
468 /* Set ADC error code to none */
469 ADC_CLEAR_ERRORCODE(hadc);
470
471 /* Initialize Lock */
472 hadc->Lock = HAL_UNLOCKED;
473 }
474
475 /* - Exit from deep-power-down mode and ADC voltage regulator enable */
476 if (LL_ADC_IsDeepPowerDownEnabled(hadc->Instance) != 0UL)
477 {
478 /* Disable ADC deep power down mode */
479 LL_ADC_DisableDeepPowerDown(hadc->Instance);
480
481 /* System was in deep power down mode, calibration must
482 be relaunched or a previously saved calibration factor
483 re-applied once the ADC voltage regulator is enabled */
484 }
485
486 if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
487 {
488 /* Enable ADC internal voltage regulator */
489 LL_ADC_EnableInternalRegulator(hadc->Instance);
490
491 /* Note: Variable divided by 2 to compensate partially */
492 /* CPU processing cycles, scaling in us split to not */
493 /* exceed 32 bits register capacity and handle low frequency. */
494 wait_loop_index = ((LL_ADC_DELAY_INTERNAL_REGUL_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
495 while (wait_loop_index != 0UL)
496 {
497 wait_loop_index--;
498 }
499 }
500
501 /* Verification that ADC voltage regulator is correctly enabled, whether */
502 /* or not ADC is coming from state reset (if any potential problem of */
503 /* clocking, voltage regulator would not be enabled). */
504 if (LL_ADC_IsInternalRegulatorEnabled(hadc->Instance) == 0UL)
505 {
506 /* Update ADC state machine to error */
507 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
508
509 /* Set ADC error code to ADC peripheral internal error */
510 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
511
512 tmp_hal_status = HAL_ERROR;
513 }
514
515 /* Configuration of ADC parameters if previous preliminary actions are */
516 /* correctly completed and if there is no conversion on going on regular */
517 /* group (ADC may already be enabled at this point if HAL_ADC_Init() is */
518 /* called to update a parameter on the fly). */
519 tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
520
521 if (((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
522 && (tmp_adc_is_conversion_on_going_regular == 0UL)
523 )
524 {
525 /* Set ADC state */
526 ADC_STATE_CLR_SET(hadc->State,
527 HAL_ADC_STATE_REG_BUSY,
528 HAL_ADC_STATE_BUSY_INTERNAL);
529
530 /* Configuration of common ADC parameters */
531
532 /* Parameters update conditioned to ADC state: */
533 /* Parameters that can be updated only when ADC is disabled: */
534 /* - clock configuration */
535 if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
536 {
537 if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
538 {
539 /* Reset configuration of ADC common register CCR: */
540 /* */
541 /* - ADC clock mode and ACC prescaler (CKMODE and PRESC bits)are set */
542 /* according to adc->Init.ClockPrescaler. It selects the clock */
543 /* source and sets the clock division factor. */
544 /* */
545 /* Some parameters of this register are not reset, since they are set */
546 /* by other functions and must be kept in case of usage of this */
547 /* function on the fly (update of a parameter of ADC_InitTypeDef */
548 /* without needing to reconfigure all other ADC groups/channels */
549 /* parameters): */
550 /* - when multimode feature is available, multimode-related */
551 /* parameters: MDMA, DMACFG, DELAY, DUAL (set by API */
552 /* HAL_ADCEx_MultiModeConfigChannel() ) */
553 /* - internal measurement paths: Vbat, temperature sensor, Vref */
554 /* (set into HAL_ADC_ConfigChannel() or */
555 /* HAL_ADCEx_InjectedConfigChannel() ) */
556 LL_ADC_SetCommonClock(__LL_ADC_COMMON_INSTANCE(hadc->Instance), hadc->Init.ClockPrescaler);
557 }
558 }
559
560 /* Configuration of ADC: */
561 /* - resolution Init.Resolution */
562 /* - data alignment Init.DataAlign */
563 /* - external trigger to start conversion Init.ExternalTrigConv */
564 /* - external trigger polarity Init.ExternalTrigConvEdge */
565 /* - continuous conversion mode Init.ContinuousConvMode */
566 /* - overrun Init.Overrun */
567 /* - discontinuous mode Init.DiscontinuousConvMode */
568 /* - discontinuous mode channel count Init.NbrOfDiscConversion */
569 tmp_cfgr = (ADC_CFGR_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) |
570 hadc->Init.Overrun |
571 hadc->Init.DataAlign |
572 hadc->Init.Resolution |
573 ADC_CFGR_REG_DISCONTINUOUS((uint32_t)hadc->Init.DiscontinuousConvMode));
574
575 if (hadc->Init.DiscontinuousConvMode == ENABLE)
576 {
577 tmp_cfgr |= ADC_CFGR_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion);
578 }
579
580 /* Enable external trigger if trigger selection is different of software */
581 /* start. */
582 /* Note: This configuration keeps the hardware feature of parameter */
583 /* ExternalTrigConvEdge "trigger edge none" equivalent to */
584 /* software start. */
585 if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
586 {
587 tmp_cfgr |= ((hadc->Init.ExternalTrigConv & ADC_CFGR_EXTSEL)
588 | hadc->Init.ExternalTrigConvEdge
589 );
590 }
591
592 /* Update Configuration Register CFGR */
593 MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_1, tmp_cfgr);
594
595 /* Parameters update conditioned to ADC state: */
596 /* Parameters that can be updated when ADC is disabled or enabled without */
597 /* conversion on going on regular and injected groups: */
598 /* - DMA continuous request Init.DMAContinuousRequests */
599 /* - LowPowerAutoWait feature Init.LowPowerAutoWait */
600 /* - Oversampling parameters Init.Oversampling */
601 tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
602 if ((tmp_adc_is_conversion_on_going_regular == 0UL)
603 && (tmp_adc_is_conversion_on_going_injected == 0UL)
604 )
605 {
606 tmp_cfgr = (ADC_CFGR_DFSDM(hadc) |
607 ADC_CFGR_AUTOWAIT((uint32_t)hadc->Init.LowPowerAutoWait) |
608 ADC_CFGR_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests));
609
610 MODIFY_REG(hadc->Instance->CFGR, ADC_CFGR_FIELDS_2, tmp_cfgr);
611
612 if (hadc->Init.OversamplingMode == ENABLE)
613 {
614 assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversampling.Ratio));
615 assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversampling.RightBitShift));
616 assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversampling.TriggeredMode));
617 assert_param(IS_ADC_REGOVERSAMPLING_MODE(hadc->Init.Oversampling.OversamplingStopReset));
618
619 /* Configuration of Oversampler: */
620 /* - Oversampling Ratio */
621 /* - Right bit shift */
622 /* - Triggered mode */
623 /* - Oversampling mode (continued/resumed) */
624 MODIFY_REG(hadc->Instance->CFGR2,
625 ADC_CFGR2_OVSR |
626 ADC_CFGR2_OVSS |
627 ADC_CFGR2_TROVS |
628 ADC_CFGR2_ROVSM,
629 ADC_CFGR2_ROVSE |
630 hadc->Init.Oversampling.Ratio |
631 hadc->Init.Oversampling.RightBitShift |
632 hadc->Init.Oversampling.TriggeredMode |
633 hadc->Init.Oversampling.OversamplingStopReset
634 );
635 }
636 else
637 {
638 /* Disable ADC oversampling scope on ADC group regular */
639 CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSE);
640 }
641
642 }
643
644 /* Configuration of regular group sequencer: */
645 /* - if scan mode is disabled, regular channels sequence length is set to */
646 /* 0x00: 1 channel converted (channel on regular rank 1) */
647 /* Parameter "NbrOfConversion" is discarded. */
648 /* Note: Scan mode is not present by hardware on this device, but */
649 /* emulated by software for alignment over all STM32 devices. */
650 /* - if scan mode is enabled, regular channels sequence length is set to */
651 /* parameter "NbrOfConversion". */
652
653 if (hadc->Init.ScanConvMode == ADC_SCAN_ENABLE)
654 {
655 /* Set number of ranks in regular group sequencer */
656 MODIFY_REG(hadc->Instance->SQR1, ADC_SQR1_L, (hadc->Init.NbrOfConversion - (uint8_t)1));
657 }
658 else
659 {
660 CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L);
661 }
662
663 /* Initialize the ADC state */
664 /* Clear HAL_ADC_STATE_BUSY_INTERNAL bit, set HAL_ADC_STATE_READY bit */
665 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL, HAL_ADC_STATE_READY);
666 }
667 else
668 {
669 /* Update ADC state machine to error */
670 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
671
672 tmp_hal_status = HAL_ERROR;
673 }
674
675 /* Return function status */
676 return tmp_hal_status;
677 }
678
679 /**
680 * @brief Deinitialize the ADC peripheral registers to their default reset
681 * values, with deinitialization of the ADC MSP.
682 * @note For devices with several ADCs: reset of ADC common registers is done
683 * only if all ADCs sharing the same common group are disabled.
684 * (function "HAL_ADC_MspDeInit()" is also called under the same conditions:
685 * all ADC instances use the same core clock at RCC level, disabling
686 * the core clock reset all ADC instances).
687 * If this is not the case, reset of these common parameters reset is
688 * bypassed without error reporting: it can be the intended behavior in
689 * case of reset of a single ADC while the other ADCs sharing the same
690 * common group is still running.
691 * @note By default, HAL_ADC_DeInit() set ADC in mode deep power-down:
692 * this saves more power by reducing leakage currents
693 * and is particularly interesting before entering MCU low-power modes.
694 * @param hadc ADC handle
695 * @retval HAL status
696 */
HAL_ADC_DeInit(ADC_HandleTypeDef * hadc)697 HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc)
698 {
699 HAL_StatusTypeDef tmp_hal_status;
700
701 /* Check ADC handle */
702 if (hadc == NULL)
703 {
704 return HAL_ERROR;
705 }
706
707 /* Check the parameters */
708 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
709
710 /* Set ADC state */
711 SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
712
713 /* Stop potential conversion on going */
714 tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
715
716 /* Disable ADC peripheral if conversions are effectively stopped */
717 /* Flush register JSQR: reset the queue sequencer when injected */
718 /* queue sequencer is enabled and ADC disabled. */
719 /* The software and hardware triggers of the injected sequence are both */
720 /* internally disabled just after the completion of the last valid */
721 /* injected sequence. */
722 SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQM);
723
724 /* Disable ADC peripheral if conversions are effectively stopped */
725 if (tmp_hal_status == HAL_OK)
726 {
727 /* Disable the ADC peripheral */
728 tmp_hal_status = ADC_Disable(hadc);
729
730 /* Check if ADC is effectively disabled */
731 if (tmp_hal_status == HAL_OK)
732 {
733 /* Change ADC state */
734 hadc->State = HAL_ADC_STATE_READY;
735 }
736 }
737
738 /* Note: HAL ADC deInit is done independently of ADC conversion stop */
739 /* and disable return status. In case of status fail, attempt to */
740 /* perform deinitialization anyway and it is up user code in */
741 /* in HAL_ADC_MspDeInit() to reset the ADC peripheral using */
742 /* system RCC hard reset. */
743
744 /* ========== Reset ADC registers ========== */
745 /* Reset register IER */
746 __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD3 | ADC_IT_AWD2 | ADC_IT_AWD1 |
747 ADC_IT_JQOVF | ADC_IT_OVR |
748 ADC_IT_JEOS | ADC_IT_JEOC |
749 ADC_IT_EOS | ADC_IT_EOC |
750 ADC_IT_EOSMP | ADC_IT_RDY));
751
752 /* Reset register ISR */
753 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD3 | ADC_FLAG_AWD2 | ADC_FLAG_AWD1 |
754 ADC_FLAG_JQOVF | ADC_FLAG_OVR |
755 ADC_FLAG_JEOS | ADC_FLAG_JEOC |
756 ADC_FLAG_EOS | ADC_FLAG_EOC |
757 ADC_FLAG_EOSMP | ADC_FLAG_RDY));
758
759 /* Reset register CR */
760 /* Bits ADC_CR_JADSTP, ADC_CR_ADSTP, ADC_CR_JADSTART, ADC_CR_ADSTART,
761 ADC_CR_ADCAL, ADC_CR_ADDIS and ADC_CR_ADEN are in access mode "read-set":
762 no direct reset applicable.
763 Update CR register to reset value where doable by software */
764 CLEAR_BIT(hadc->Instance->CR, ADC_CR_ADVREGEN | ADC_CR_ADCALDIF);
765 SET_BIT(hadc->Instance->CR, ADC_CR_DEEPPWD);
766
767 /* Reset register CFGR */
768 CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_FIELDS);
769 SET_BIT(hadc->Instance->CFGR, ADC_CFGR_JQDIS);
770
771 /* Reset register CFGR2 */
772 CLEAR_BIT(hadc->Instance->CFGR2, ADC_CFGR2_ROVSM | ADC_CFGR2_TROVS | ADC_CFGR2_OVSS |
773 ADC_CFGR2_OVSR | ADC_CFGR2_JOVSE | ADC_CFGR2_ROVSE);
774
775 /* Reset register SMPR1 */
776 CLEAR_BIT(hadc->Instance->SMPR1, ADC_SMPR1_FIELDS);
777
778 /* Reset register SMPR2 */
779 CLEAR_BIT(hadc->Instance->SMPR2, ADC_SMPR2_SMP18 | ADC_SMPR2_SMP17 | ADC_SMPR2_SMP16 |
780 ADC_SMPR2_SMP15 | ADC_SMPR2_SMP14 | ADC_SMPR2_SMP13 |
781 ADC_SMPR2_SMP12 | ADC_SMPR2_SMP11 | ADC_SMPR2_SMP10);
782
783 /* Reset register TR1 */
784 CLEAR_BIT(hadc->Instance->TR1, ADC_TR1_HT1 | ADC_TR1_LT1);
785
786 /* Reset register TR2 */
787 CLEAR_BIT(hadc->Instance->TR2, ADC_TR2_HT2 | ADC_TR2_LT2);
788
789 /* Reset register TR3 */
790 CLEAR_BIT(hadc->Instance->TR3, ADC_TR3_HT3 | ADC_TR3_LT3);
791
792 /* Reset register SQR1 */
793 CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_SQ4 | ADC_SQR1_SQ3 | ADC_SQR1_SQ2 |
794 ADC_SQR1_SQ1 | ADC_SQR1_L);
795
796 /* Reset register SQR2 */
797 CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ9 | ADC_SQR2_SQ8 | ADC_SQR2_SQ7 |
798 ADC_SQR2_SQ6 | ADC_SQR2_SQ5);
799
800 /* Reset register SQR3 */
801 CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ14 | ADC_SQR3_SQ13 | ADC_SQR3_SQ12 |
802 ADC_SQR3_SQ11 | ADC_SQR3_SQ10);
803
804 /* Reset register SQR4 */
805 CLEAR_BIT(hadc->Instance->SQR4, ADC_SQR4_SQ16 | ADC_SQR4_SQ15);
806
807 /* Register JSQR was reset when the ADC was disabled */
808
809 /* Reset register DR */
810 /* bits in access mode read only, no direct reset applicable*/
811
812 /* Reset register OFR1 */
813 CLEAR_BIT(hadc->Instance->OFR1, ADC_OFR1_OFFSET1_EN | ADC_OFR1_OFFSET1_CH | ADC_OFR1_OFFSET1);
814 /* Reset register OFR2 */
815 CLEAR_BIT(hadc->Instance->OFR2, ADC_OFR2_OFFSET2_EN | ADC_OFR2_OFFSET2_CH | ADC_OFR2_OFFSET2);
816 /* Reset register OFR3 */
817 CLEAR_BIT(hadc->Instance->OFR3, ADC_OFR3_OFFSET3_EN | ADC_OFR3_OFFSET3_CH | ADC_OFR3_OFFSET3);
818 /* Reset register OFR4 */
819 CLEAR_BIT(hadc->Instance->OFR4, ADC_OFR4_OFFSET4_EN | ADC_OFR4_OFFSET4_CH | ADC_OFR4_OFFSET4);
820
821 /* Reset registers JDR1, JDR2, JDR3, JDR4 */
822 /* bits in access mode read only, no direct reset applicable*/
823
824 /* Reset register AWD2CR */
825 CLEAR_BIT(hadc->Instance->AWD2CR, ADC_AWD2CR_AWD2CH);
826
827 /* Reset register AWD3CR */
828 CLEAR_BIT(hadc->Instance->AWD3CR, ADC_AWD3CR_AWD3CH);
829
830 /* Reset register DIFSEL */
831 CLEAR_BIT(hadc->Instance->DIFSEL, ADC_DIFSEL_DIFSEL);
832
833 /* Reset register CALFACT */
834 CLEAR_BIT(hadc->Instance->CALFACT, ADC_CALFACT_CALFACT_D | ADC_CALFACT_CALFACT_S);
835
836
837 /* ========== Reset common ADC registers ========== */
838
839 /* Software is allowed to change common parameters only when all the other
840 ADCs are disabled. */
841 if (__LL_ADC_IS_ENABLED_ALL_COMMON_INSTANCE(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) == 0UL)
842 {
843 /* Reset configuration of ADC common register CCR:
844 - clock mode: CKMODE, PRESCEN
845 - multimode related parameters (when this feature is available): MDMA,
846 DMACFG, DELAY, DUAL (set by HAL_ADCEx_MultiModeConfigChannel() API)
847 - internal measurement paths: Vbat, temperature sensor, Vref (set into
848 HAL_ADC_ConfigChannel() or HAL_ADCEx_InjectedConfigChannel() )
849 */
850 ADC_CLEAR_COMMON_CONTROL_REGISTER(hadc);
851
852 /* ========== Hard reset ADC peripheral ========== */
853 /* Performs a global reset of the entire ADC peripherals instances */
854 /* sharing the same common ADC instance: ADC state is forced to */
855 /* a similar state as after device power-on. */
856 /* Note: A possible implementation is to add RCC bus reset of ADC */
857 /* (for example, using macro */
858 /* __HAL_RCC_ADC..._FORCE_RESET()/..._RELEASE_RESET()/..._CLK_DISABLE()) */
859 /* in function "void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)": */
860 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
861 if (hadc->MspDeInitCallback == NULL)
862 {
863 hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
864 }
865
866 /* DeInit the low level hardware */
867 hadc->MspDeInitCallback(hadc);
868 #else
869 /* DeInit the low level hardware */
870 HAL_ADC_MspDeInit(hadc);
871 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
872 }
873
874 /* Set ADC error code to none */
875 ADC_CLEAR_ERRORCODE(hadc);
876
877 /* Reset injected channel configuration parameters */
878 hadc->InjectionConfig.ContextQueue = 0;
879 hadc->InjectionConfig.ChannelCount = 0;
880
881 /* Set ADC state */
882 hadc->State = HAL_ADC_STATE_RESET;
883
884 /* Process unlocked */
885 __HAL_UNLOCK(hadc);
886
887 /* Return function status */
888 return tmp_hal_status;
889 }
890
891 /**
892 * @brief Initialize the ADC MSP.
893 * @param hadc ADC handle
894 * @retval None
895 */
HAL_ADC_MspInit(ADC_HandleTypeDef * hadc)896 __weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc)
897 {
898 /* Prevent unused argument(s) compilation warning */
899 UNUSED(hadc);
900
901 /* NOTE : This function should not be modified. When the callback is needed,
902 function HAL_ADC_MspInit must be implemented in the user file.
903 */
904 }
905
906 /**
907 * @brief DeInitialize the ADC MSP.
908 * @param hadc ADC handle
909 * @note All ADC instances use the same core clock at RCC level, disabling
910 * the core clock reset all ADC instances).
911 * @retval None
912 */
HAL_ADC_MspDeInit(ADC_HandleTypeDef * hadc)913 __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc)
914 {
915 /* Prevent unused argument(s) compilation warning */
916 UNUSED(hadc);
917
918 /* NOTE : This function should not be modified. When the callback is needed,
919 function HAL_ADC_MspDeInit must be implemented in the user file.
920 */
921 }
922
923 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
924 /**
925 * @brief Register a User ADC Callback
926 * To be used instead of the weak predefined callback
927 * @param hadc Pointer to a ADC_HandleTypeDef structure that contains
928 * the configuration information for the specified ADC.
929 * @param CallbackID ID of the callback to be registered
930 * This parameter can be one of the following values:
931 * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
932 * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
933 * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
934 * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
935 * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
936 * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
937 * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID
938 * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID
939 * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID
940 * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
941 * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
942 * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID
943 * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID
944 * @param pCallback pointer to the Callback function
945 * @retval HAL status
946 */
HAL_ADC_RegisterCallback(ADC_HandleTypeDef * hadc,HAL_ADC_CallbackIDTypeDef CallbackID,pADC_CallbackTypeDef pCallback)947 HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID,
948 pADC_CallbackTypeDef pCallback)
949 {
950 HAL_StatusTypeDef status = HAL_OK;
951
952 if (pCallback == NULL)
953 {
954 /* Update the error code */
955 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
956
957 return HAL_ERROR;
958 }
959
960 if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
961 {
962 switch (CallbackID)
963 {
964 case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
965 hadc->ConvCpltCallback = pCallback;
966 break;
967
968 case HAL_ADC_CONVERSION_HALF_CB_ID :
969 hadc->ConvHalfCpltCallback = pCallback;
970 break;
971
972 case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
973 hadc->LevelOutOfWindowCallback = pCallback;
974 break;
975
976 case HAL_ADC_ERROR_CB_ID :
977 hadc->ErrorCallback = pCallback;
978 break;
979
980 case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
981 hadc->InjectedConvCpltCallback = pCallback;
982 break;
983
984 case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
985 hadc->InjectedQueueOverflowCallback = pCallback;
986 break;
987
988 case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
989 hadc->LevelOutOfWindow2Callback = pCallback;
990 break;
991
992 case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
993 hadc->LevelOutOfWindow3Callback = pCallback;
994 break;
995
996 case HAL_ADC_END_OF_SAMPLING_CB_ID :
997 hadc->EndOfSamplingCallback = pCallback;
998 break;
999
1000 case HAL_ADC_MSPINIT_CB_ID :
1001 hadc->MspInitCallback = pCallback;
1002 break;
1003
1004 case HAL_ADC_MSPDEINIT_CB_ID :
1005 hadc->MspDeInitCallback = pCallback;
1006 break;
1007
1008 default :
1009 /* Update the error code */
1010 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
1011
1012 /* Return error status */
1013 status = HAL_ERROR;
1014 break;
1015 }
1016 }
1017 else if (HAL_ADC_STATE_RESET == hadc->State)
1018 {
1019 switch (CallbackID)
1020 {
1021 case HAL_ADC_MSPINIT_CB_ID :
1022 hadc->MspInitCallback = pCallback;
1023 break;
1024
1025 case HAL_ADC_MSPDEINIT_CB_ID :
1026 hadc->MspDeInitCallback = pCallback;
1027 break;
1028
1029 default :
1030 /* Update the error code */
1031 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
1032
1033 /* Return error status */
1034 status = HAL_ERROR;
1035 break;
1036 }
1037 }
1038 else
1039 {
1040 /* Update the error code */
1041 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
1042
1043 /* Return error status */
1044 status = HAL_ERROR;
1045 }
1046
1047 return status;
1048 }
1049
1050 /**
1051 * @brief Unregister a ADC Callback
1052 * ADC callback is redirected to the weak predefined callback
1053 * @param hadc Pointer to a ADC_HandleTypeDef structure that contains
1054 * the configuration information for the specified ADC.
1055 * @param CallbackID ID of the callback to be unregistered
1056 * This parameter can be one of the following values:
1057 * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID
1058 * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion DMA half-transfer callback ID
1059 * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID
1060 * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID
1061 * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID
1062 * @arg @ref HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID ADC group injected context queue overflow callback ID
1063 * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID ADC analog watchdog 2 callback ID
1064 * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID ADC analog watchdog 3 callback ID
1065 * @arg @ref HAL_ADC_END_OF_SAMPLING_CB_ID ADC end of sampling callback ID
1066 * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID
1067 * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID
1068 * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID
1069 * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID
1070 * @retval HAL status
1071 */
HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef * hadc,HAL_ADC_CallbackIDTypeDef CallbackID)1072 HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID)
1073 {
1074 HAL_StatusTypeDef status = HAL_OK;
1075
1076 if ((hadc->State & HAL_ADC_STATE_READY) != 0UL)
1077 {
1078 switch (CallbackID)
1079 {
1080 case HAL_ADC_CONVERSION_COMPLETE_CB_ID :
1081 hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback;
1082 break;
1083
1084 case HAL_ADC_CONVERSION_HALF_CB_ID :
1085 hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback;
1086 break;
1087
1088 case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID :
1089 hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback;
1090 break;
1091
1092 case HAL_ADC_ERROR_CB_ID :
1093 hadc->ErrorCallback = HAL_ADC_ErrorCallback;
1094 break;
1095
1096 case HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID :
1097 hadc->InjectedConvCpltCallback = HAL_ADCEx_InjectedConvCpltCallback;
1098 break;
1099
1100 case HAL_ADC_INJ_QUEUE_OVEFLOW_CB_ID :
1101 hadc->InjectedQueueOverflowCallback = HAL_ADCEx_InjectedQueueOverflowCallback;
1102 break;
1103
1104 case HAL_ADC_LEVEL_OUT_OF_WINDOW_2_CB_ID :
1105 hadc->LevelOutOfWindow2Callback = HAL_ADCEx_LevelOutOfWindow2Callback;
1106 break;
1107
1108 case HAL_ADC_LEVEL_OUT_OF_WINDOW_3_CB_ID :
1109 hadc->LevelOutOfWindow3Callback = HAL_ADCEx_LevelOutOfWindow3Callback;
1110 break;
1111
1112 case HAL_ADC_END_OF_SAMPLING_CB_ID :
1113 hadc->EndOfSamplingCallback = HAL_ADCEx_EndOfSamplingCallback;
1114 break;
1115
1116 case HAL_ADC_MSPINIT_CB_ID :
1117 hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
1118 break;
1119
1120 case HAL_ADC_MSPDEINIT_CB_ID :
1121 hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
1122 break;
1123
1124 default :
1125 /* Update the error code */
1126 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
1127
1128 /* Return error status */
1129 status = HAL_ERROR;
1130 break;
1131 }
1132 }
1133 else if (HAL_ADC_STATE_RESET == hadc->State)
1134 {
1135 switch (CallbackID)
1136 {
1137 case HAL_ADC_MSPINIT_CB_ID :
1138 hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */
1139 break;
1140
1141 case HAL_ADC_MSPDEINIT_CB_ID :
1142 hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */
1143 break;
1144
1145 default :
1146 /* Update the error code */
1147 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
1148
1149 /* Return error status */
1150 status = HAL_ERROR;
1151 break;
1152 }
1153 }
1154 else
1155 {
1156 /* Update the error code */
1157 hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK;
1158
1159 /* Return error status */
1160 status = HAL_ERROR;
1161 }
1162
1163 return status;
1164 }
1165
1166 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
1167
1168 /**
1169 * @}
1170 */
1171
1172 /** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions
1173 * @brief ADC IO operation functions
1174 *
1175 @verbatim
1176 ===============================================================================
1177 ##### IO operation functions #####
1178 ===============================================================================
1179 [..] This section provides functions allowing to:
1180 (+) Start conversion of regular group.
1181 (+) Stop conversion of regular group.
1182 (+) Poll for conversion complete on regular group.
1183 (+) Poll for conversion event.
1184 (+) Get result of regular channel conversion.
1185 (+) Start conversion of regular group and enable interruptions.
1186 (+) Stop conversion of regular group and disable interruptions.
1187 (+) Handle ADC interrupt request
1188 (+) Start conversion of regular group and enable DMA transfer.
1189 (+) Stop conversion of regular group and disable ADC DMA transfer.
1190 @endverbatim
1191 * @{
1192 */
1193
1194 /**
1195 * @brief Enable ADC, start conversion of regular group.
1196 * @note Interruptions enabled in this function: None.
1197 * @note Case of multimode enabled (when multimode feature is available):
1198 * if ADC is Slave, ADC is enabled but conversion is not started,
1199 * if ADC is master, ADC is enabled and multimode conversion is started.
1200 * @param hadc ADC handle
1201 * @retval HAL status
1202 */
HAL_ADC_Start(ADC_HandleTypeDef * hadc)1203 HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
1204 {
1205 HAL_StatusTypeDef tmp_hal_status;
1206 #if defined(ADC_MULTIMODE_SUPPORT)
1207 const ADC_TypeDef *tmpADC_Master;
1208 uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
1209 #endif /* ADC_MULTIMODE_SUPPORT */
1210
1211 /* Check the parameters */
1212 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1213
1214 /* Perform ADC enable and conversion start if no conversion is on going */
1215 if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
1216 {
1217 /* Process locked */
1218 __HAL_LOCK(hadc);
1219
1220 /* Enable the ADC peripheral */
1221 tmp_hal_status = ADC_Enable(hadc);
1222
1223 /* Start conversion if ADC is effectively enabled */
1224 if (tmp_hal_status == HAL_OK)
1225 {
1226 /* Set ADC state */
1227 /* - Clear state bitfield related to regular group conversion results */
1228 /* - Set state bitfield related to regular operation */
1229 ADC_STATE_CLR_SET(hadc->State,
1230 HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
1231 HAL_ADC_STATE_REG_BUSY);
1232
1233 #if defined(ADC_MULTIMODE_SUPPORT)
1234 /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
1235 - if ADC instance is master or if multimode feature is not available
1236 - if multimode setting is disabled (ADC instance slave in independent mode) */
1237 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
1238 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
1239 )
1240 {
1241 CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
1242 }
1243 #endif /* ADC_MULTIMODE_SUPPORT */
1244
1245 /* Set ADC error code */
1246 /* Check if a conversion is on going on ADC group injected */
1247 if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
1248 {
1249 /* Reset ADC error code fields related to regular conversions only */
1250 CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
1251 }
1252 else
1253 {
1254 /* Reset all ADC error code fields */
1255 ADC_CLEAR_ERRORCODE(hadc);
1256 }
1257
1258 /* Clear ADC group regular conversion flag and overrun flag */
1259 /* (To ensure of no unknown state from potential previous ADC operations) */
1260 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
1261
1262 /* Process unlocked */
1263 /* Unlock before starting ADC conversions: in case of potential */
1264 /* interruption, to let the process to ADC IRQ Handler. */
1265 __HAL_UNLOCK(hadc);
1266
1267 /* Enable conversion of regular group. */
1268 /* If software start has been selected, conversion starts immediately. */
1269 /* If external trigger has been selected, conversion will start at next */
1270 /* trigger event. */
1271 /* Case of multimode enabled (when multimode feature is available): */
1272 /* - if ADC is slave and dual regular conversions are enabled, ADC is */
1273 /* enabled only (conversion is not started), */
1274 /* - if ADC is master, ADC is enabled and conversion is started. */
1275 #if defined(ADC_MULTIMODE_SUPPORT)
1276 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
1277 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
1278 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
1279 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
1280 )
1281 {
1282 /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
1283 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
1284 {
1285 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1286 }
1287
1288 /* Start ADC group regular conversion */
1289 LL_ADC_REG_StartConversion(hadc->Instance);
1290 }
1291 else
1292 {
1293 /* ADC instance is a multimode slave instance with multimode regular conversions enabled */
1294 SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
1295 /* if Master ADC JAUTO bit is set, update Slave State in setting
1296 HAL_ADC_STATE_INJ_BUSY bit and in resetting HAL_ADC_STATE_INJ_EOC bit */
1297 tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
1298 if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
1299 {
1300 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1301 }
1302
1303 }
1304 #else
1305 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
1306 {
1307 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1308 }
1309
1310 /* Start ADC group regular conversion */
1311 LL_ADC_REG_StartConversion(hadc->Instance);
1312 #endif /* ADC_MULTIMODE_SUPPORT */
1313 }
1314 else
1315 {
1316 /* Process unlocked */
1317 __HAL_UNLOCK(hadc);
1318 }
1319 }
1320 else
1321 {
1322 tmp_hal_status = HAL_BUSY;
1323 }
1324
1325 /* Return function status */
1326 return tmp_hal_status;
1327 }
1328
1329 /**
1330 * @brief Stop ADC conversion of regular group (and injected channels in
1331 * case of auto_injection mode), disable ADC peripheral.
1332 * @note: ADC peripheral disable is forcing stop of potential
1333 * conversion on injected group. If injected group is under use, it
1334 * should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
1335 * @param hadc ADC handle
1336 * @retval HAL status.
1337 */
HAL_ADC_Stop(ADC_HandleTypeDef * hadc)1338 HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc)
1339 {
1340 HAL_StatusTypeDef tmp_hal_status;
1341
1342 /* Check the parameters */
1343 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1344
1345 /* Process locked */
1346 __HAL_LOCK(hadc);
1347
1348 /* 1. Stop potential conversion on going, on ADC groups regular and injected */
1349 tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
1350
1351 /* Disable ADC peripheral if conversions are effectively stopped */
1352 if (tmp_hal_status == HAL_OK)
1353 {
1354 /* 2. Disable the ADC peripheral */
1355 tmp_hal_status = ADC_Disable(hadc);
1356
1357 /* Check if ADC is effectively disabled */
1358 if (tmp_hal_status == HAL_OK)
1359 {
1360 /* Set ADC state */
1361 ADC_STATE_CLR_SET(hadc->State,
1362 HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
1363 HAL_ADC_STATE_READY);
1364 }
1365 }
1366
1367 /* Process unlocked */
1368 __HAL_UNLOCK(hadc);
1369
1370 /* Return function status */
1371 return tmp_hal_status;
1372 }
1373
1374 /**
1375 * @brief Wait for regular group conversion to be completed.
1376 * @note ADC conversion flags EOS (end of sequence) and EOC (end of
1377 * conversion) are cleared by this function, with an exception:
1378 * if low power feature "LowPowerAutoWait" is enabled, flags are
1379 * not cleared to not interfere with this feature until data register
1380 * is read using function HAL_ADC_GetValue().
1381 * @note This function cannot be used in a particular setup: ADC configured
1382 * in DMA mode and polling for end of each conversion (ADC init
1383 * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
1384 * In this case, DMA resets the flag EOC and polling cannot be
1385 * performed on each conversion. Nevertheless, polling can still
1386 * be performed on the complete sequence (ADC init
1387 * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
1388 * @param hadc ADC handle
1389 * @param Timeout Timeout value in millisecond.
1390 * @retval HAL status
1391 */
HAL_ADC_PollForConversion(ADC_HandleTypeDef * hadc,uint32_t Timeout)1392 HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout)
1393 {
1394 uint32_t tickstart;
1395 uint32_t tmp_Flag_End;
1396 uint32_t tmp_cfgr;
1397 #if defined(ADC_MULTIMODE_SUPPORT)
1398 const ADC_TypeDef *tmpADC_Master;
1399 uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
1400 #endif /* ADC_MULTIMODE_SUPPORT */
1401
1402 /* Check the parameters */
1403 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1404
1405 /* If end of conversion selected to end of sequence conversions */
1406 if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
1407 {
1408 tmp_Flag_End = ADC_FLAG_EOS;
1409 }
1410 /* If end of conversion selected to end of unitary conversion */
1411 else /* ADC_EOC_SINGLE_CONV */
1412 {
1413 /* Verification that ADC configuration is compliant with polling for */
1414 /* each conversion: */
1415 /* Particular case is ADC configured in DMA mode and ADC sequencer with */
1416 /* several ranks and polling for end of each conversion. */
1417 /* For code simplicity sake, this particular case is generalized to */
1418 /* ADC configured in DMA mode and and polling for end of each conversion. */
1419 #if defined(ADC_MULTIMODE_SUPPORT)
1420 if ((tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
1421 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
1422 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
1423 )
1424 {
1425 /* Check ADC DMA mode in independent mode on ADC group regular */
1426 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN) != 0UL)
1427 {
1428 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
1429 return HAL_ERROR;
1430 }
1431 else
1432 {
1433 tmp_Flag_End = (ADC_FLAG_EOC);
1434 }
1435 }
1436 else
1437 {
1438 /* Check ADC DMA mode in multimode on ADC group regular */
1439 if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
1440 {
1441 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
1442 return HAL_ERROR;
1443 }
1444 else
1445 {
1446 tmp_Flag_End = (ADC_FLAG_EOC);
1447 }
1448 }
1449 #else
1450 /* Check ADC DMA mode */
1451 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN) != 0UL)
1452 {
1453 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
1454 return HAL_ERROR;
1455 }
1456 else
1457 {
1458 tmp_Flag_End = (ADC_FLAG_EOC);
1459 }
1460 #endif /* ADC_MULTIMODE_SUPPORT */
1461 }
1462
1463 /* Get tick count */
1464 tickstart = HAL_GetTick();
1465
1466 /* Wait until End of unitary conversion or sequence conversions flag is raised */
1467 while ((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
1468 {
1469 /* Check if timeout is disabled (set to infinite wait) */
1470 if (Timeout != HAL_MAX_DELAY)
1471 {
1472 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
1473 {
1474 /* New check to avoid false timeout detection in case of preemption */
1475 if ((hadc->Instance->ISR & tmp_Flag_End) == 0UL)
1476 {
1477 /* Update ADC state machine to timeout */
1478 SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
1479
1480 /* Process unlocked */
1481 __HAL_UNLOCK(hadc);
1482
1483 return HAL_TIMEOUT;
1484 }
1485 }
1486 }
1487 }
1488
1489 /* Update ADC state machine */
1490 SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
1491
1492 /* Determine whether any further conversion upcoming on group regular */
1493 /* by external trigger, continuous mode or scan sequence on going. */
1494 if ((LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
1495 && (hadc->Init.ContinuousConvMode == DISABLE)
1496 )
1497 {
1498 /* Check whether end of sequence is reached */
1499 if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
1500 {
1501 /* Set ADC state */
1502 CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
1503
1504 if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
1505 {
1506 SET_BIT(hadc->State, HAL_ADC_STATE_READY);
1507 }
1508 }
1509 }
1510
1511 /* Get relevant register CFGR in ADC instance of ADC master or slave */
1512 /* in function of multimode state (for devices with multimode */
1513 /* available). */
1514 #if defined(ADC_MULTIMODE_SUPPORT)
1515 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
1516 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
1517 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
1518 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
1519 )
1520 {
1521 /* Retrieve handle ADC CFGR register */
1522 tmp_cfgr = READ_REG(hadc->Instance->CFGR);
1523 }
1524 else
1525 {
1526 /* Retrieve Master ADC CFGR register */
1527 tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
1528 tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
1529 }
1530 #else
1531 /* Retrieve handle ADC CFGR register */
1532 tmp_cfgr = READ_REG(hadc->Instance->CFGR);
1533 #endif /* ADC_MULTIMODE_SUPPORT */
1534
1535 /* Clear polled flag */
1536 if (tmp_Flag_End == ADC_FLAG_EOS)
1537 {
1538 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOS);
1539 }
1540 else
1541 {
1542 /* Clear end of conversion EOC flag of regular group if low power feature */
1543 /* "LowPowerAutoWait " is disabled, to not interfere with this feature */
1544 /* until data register is read using function HAL_ADC_GetValue(). */
1545 if (READ_BIT(tmp_cfgr, ADC_CFGR_AUTDLY) == 0UL)
1546 {
1547 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
1548 }
1549 }
1550
1551 /* Return function status */
1552 return HAL_OK;
1553 }
1554
1555 /**
1556 * @brief Poll for ADC event.
1557 * @param hadc ADC handle
1558 * @param EventType the ADC event type.
1559 * This parameter can be one of the following values:
1560 * @arg @ref ADC_EOSMP_EVENT ADC End of Sampling event
1561 * @arg @ref ADC_AWD1_EVENT ADC Analog watchdog 1 event (main analog watchdog, present on
1562 * all STM32 series)
1563 * @arg @ref ADC_AWD2_EVENT ADC Analog watchdog 2 event (additional analog watchdog, not present on
1564 * all STM32 series)
1565 * @arg @ref ADC_AWD3_EVENT ADC Analog watchdog 3 event (additional analog watchdog, not present on
1566 * all STM32 series)
1567 * @arg @ref ADC_OVR_EVENT ADC Overrun event
1568 * @arg @ref ADC_JQOVF_EVENT ADC Injected context queue overflow event
1569 * @param Timeout Timeout value in millisecond.
1570 * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR.
1571 * Indeed, the latter is reset only if hadc->Init.Overrun field is set
1572 * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten
1573 * by a new converted data as soon as OVR is cleared.
1574 * To reset OVR flag once the preserved data is retrieved, the user can resort
1575 * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
1576 * @retval HAL status
1577 */
HAL_ADC_PollForEvent(ADC_HandleTypeDef * hadc,uint32_t EventType,uint32_t Timeout)1578 HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout)
1579 {
1580 uint32_t tickstart;
1581
1582 /* Check the parameters */
1583 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1584 assert_param(IS_ADC_EVENT_TYPE(EventType));
1585
1586 /* Get tick count */
1587 tickstart = HAL_GetTick();
1588
1589 /* Check selected event flag */
1590 while (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
1591 {
1592 /* Check if timeout is disabled (set to infinite wait) */
1593 if (Timeout != HAL_MAX_DELAY)
1594 {
1595 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0UL))
1596 {
1597 /* New check to avoid false timeout detection in case of preemption */
1598 if (__HAL_ADC_GET_FLAG(hadc, EventType) == 0UL)
1599 {
1600 /* Update ADC state machine to timeout */
1601 SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
1602
1603 /* Process unlocked */
1604 __HAL_UNLOCK(hadc);
1605
1606 return HAL_TIMEOUT;
1607 }
1608 }
1609 }
1610 }
1611
1612 switch (EventType)
1613 {
1614 /* End Of Sampling event */
1615 case ADC_EOSMP_EVENT:
1616 /* Set ADC state */
1617 SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
1618
1619 /* Clear the End Of Sampling flag */
1620 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
1621
1622 break;
1623
1624 /* Analog watchdog (level out of window) event */
1625 /* Note: In case of several analog watchdog enabled, if needed to know */
1626 /* which one triggered and on which ADCx, test ADC state of analog watchdog */
1627 /* flags HAL_ADC_STATE_AWD1/2/3 using function "HAL_ADC_GetState()". */
1628 /* For example: */
1629 /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) " */
1630 /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD2) != 0UL) " */
1631 /* " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD3) != 0UL) " */
1632
1633 /* Check analog watchdog 1 flag */
1634 case ADC_AWD_EVENT:
1635 /* Set ADC state */
1636 SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
1637
1638 /* Clear ADC analog watchdog flag */
1639 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
1640
1641 break;
1642
1643 /* Check analog watchdog 2 flag */
1644 case ADC_AWD2_EVENT:
1645 /* Set ADC state */
1646 SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
1647
1648 /* Clear ADC analog watchdog flag */
1649 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
1650
1651 break;
1652
1653 /* Check analog watchdog 3 flag */
1654 case ADC_AWD3_EVENT:
1655 /* Set ADC state */
1656 SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
1657
1658 /* Clear ADC analog watchdog flag */
1659 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
1660
1661 break;
1662
1663 /* Injected context queue overflow event */
1664 case ADC_JQOVF_EVENT:
1665 /* Set ADC state */
1666 SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
1667
1668 /* Set ADC error code to Injected context queue overflow */
1669 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
1670
1671 /* Clear ADC Injected context queue overflow flag */
1672 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
1673
1674 break;
1675
1676 /* Overrun event */
1677 default: /* Case ADC_OVR_EVENT */
1678 /* If overrun is set to overwrite previous data, overrun event is not */
1679 /* considered as an error. */
1680 /* (cf ref manual "Managing conversions without using the DMA and without */
1681 /* overrun ") */
1682 if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
1683 {
1684 /* Set ADC state */
1685 SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
1686
1687 /* Set ADC error code to overrun */
1688 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
1689 }
1690 else
1691 {
1692 /* Clear ADC Overrun flag only if Overrun is set to ADC_OVR_DATA_OVERWRITTEN
1693 otherwise, data register is potentially overwritten by new converted data as soon
1694 as OVR is cleared. */
1695 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
1696 }
1697 break;
1698 }
1699
1700 /* Return function status */
1701 return HAL_OK;
1702 }
1703
1704 /**
1705 * @brief Enable ADC, start conversion of regular group with interruption.
1706 * @note Interruptions enabled in this function according to initialization
1707 * setting : EOC (end of conversion), EOS (end of sequence),
1708 * OVR overrun.
1709 * Each of these interruptions has its dedicated callback function.
1710 * @note Case of multimode enabled (when multimode feature is available):
1711 * HAL_ADC_Start_IT() must be called for ADC Slave first, then for
1712 * ADC Master.
1713 * For ADC Slave, ADC is enabled only (conversion is not started).
1714 * For ADC Master, ADC is enabled and multimode conversion is started.
1715 * @note To guarantee a proper reset of all interruptions once all the needed
1716 * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure
1717 * a correct stop of the IT-based conversions.
1718 * @note By default, HAL_ADC_Start_IT() does not enable the End Of Sampling
1719 * interruption. If required (e.g. in case of oversampling with trigger
1720 * mode), the user must:
1721 * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP)
1722 * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP)
1723 * before calling HAL_ADC_Start_IT().
1724 * @param hadc ADC handle
1725 * @retval HAL status
1726 */
HAL_ADC_Start_IT(ADC_HandleTypeDef * hadc)1727 HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)
1728 {
1729 HAL_StatusTypeDef tmp_hal_status;
1730 #if defined(ADC_MULTIMODE_SUPPORT)
1731 const ADC_TypeDef *tmpADC_Master;
1732 uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
1733 #endif /* ADC_MULTIMODE_SUPPORT */
1734
1735 /* Check the parameters */
1736 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1737
1738 /* Perform ADC enable and conversion start if no conversion is on going */
1739 if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
1740 {
1741 /* Process locked */
1742 __HAL_LOCK(hadc);
1743
1744 /* Enable the ADC peripheral */
1745 tmp_hal_status = ADC_Enable(hadc);
1746
1747 /* Start conversion if ADC is effectively enabled */
1748 if (tmp_hal_status == HAL_OK)
1749 {
1750 /* Set ADC state */
1751 /* - Clear state bitfield related to regular group conversion results */
1752 /* - Set state bitfield related to regular operation */
1753 ADC_STATE_CLR_SET(hadc->State,
1754 HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
1755 HAL_ADC_STATE_REG_BUSY);
1756
1757 #if defined(ADC_MULTIMODE_SUPPORT)
1758 /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
1759 - if ADC instance is master or if multimode feature is not available
1760 - if multimode setting is disabled (ADC instance slave in independent mode) */
1761 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
1762 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
1763 )
1764 {
1765 CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
1766 }
1767 #endif /* ADC_MULTIMODE_SUPPORT */
1768
1769 /* Set ADC error code */
1770 /* Check if a conversion is on going on ADC group injected */
1771 if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
1772 {
1773 /* Reset ADC error code fields related to regular conversions only */
1774 CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
1775 }
1776 else
1777 {
1778 /* Reset all ADC error code fields */
1779 ADC_CLEAR_ERRORCODE(hadc);
1780 }
1781
1782 /* Clear ADC group regular conversion flag and overrun flag */
1783 /* (To ensure of no unknown state from potential previous ADC operations) */
1784 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
1785
1786 /* Process unlocked */
1787 /* Unlock before starting ADC conversions: in case of potential */
1788 /* interruption, to let the process to ADC IRQ Handler. */
1789 __HAL_UNLOCK(hadc);
1790
1791 /* Disable all interruptions before enabling the desired ones */
1792 __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
1793
1794 /* Enable ADC end of conversion interrupt */
1795 switch (hadc->Init.EOCSelection)
1796 {
1797 case ADC_EOC_SEQ_CONV:
1798 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOS);
1799 break;
1800 /* case ADC_EOC_SINGLE_CONV */
1801 default:
1802 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
1803 break;
1804 }
1805
1806 /* Enable ADC overrun interrupt */
1807 /* If hadc->Init.Overrun is set to ADC_OVR_DATA_PRESERVED, only then is
1808 ADC_IT_OVR enabled; otherwise data overwrite is considered as normal
1809 behavior and no CPU time is lost for a non-processed interruption */
1810 if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
1811 {
1812 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
1813 }
1814
1815 /* Enable conversion of regular group. */
1816 /* If software start has been selected, conversion starts immediately. */
1817 /* If external trigger has been selected, conversion will start at next */
1818 /* trigger event. */
1819 /* Case of multimode enabled (when multimode feature is available): */
1820 /* - if ADC is slave and dual regular conversions are enabled, ADC is */
1821 /* enabled only (conversion is not started), */
1822 /* - if ADC is master, ADC is enabled and conversion is started. */
1823 #if defined(ADC_MULTIMODE_SUPPORT)
1824 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
1825 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
1826 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
1827 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
1828 )
1829 {
1830 /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
1831 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
1832 {
1833 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1834
1835 /* Enable as well injected interruptions in case
1836 HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This
1837 allows to start regular and injected conversions when JAUTO is
1838 set with a single call to HAL_ADC_Start_IT() */
1839 switch (hadc->Init.EOCSelection)
1840 {
1841 case ADC_EOC_SEQ_CONV:
1842 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
1843 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
1844 break;
1845 /* case ADC_EOC_SINGLE_CONV */
1846 default:
1847 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
1848 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
1849 break;
1850 }
1851 }
1852
1853 /* Start ADC group regular conversion */
1854 LL_ADC_REG_StartConversion(hadc->Instance);
1855 }
1856 else
1857 {
1858 /* ADC instance is a multimode slave instance with multimode regular conversions enabled */
1859 SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
1860 /* if Master ADC JAUTO bit is set, Slave injected interruptions
1861 are enabled nevertheless (for same reason as above) */
1862 tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
1863 if (READ_BIT(tmpADC_Master->CFGR, ADC_CFGR_JAUTO) != 0UL)
1864 {
1865 /* First, update Slave State in setting HAL_ADC_STATE_INJ_BUSY bit
1866 and in resetting HAL_ADC_STATE_INJ_EOC bit */
1867 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1868 /* Next, set Slave injected interruptions */
1869 switch (hadc->Init.EOCSelection)
1870 {
1871 case ADC_EOC_SEQ_CONV:
1872 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
1873 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
1874 break;
1875 /* case ADC_EOC_SINGLE_CONV */
1876 default:
1877 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
1878 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
1879 break;
1880 }
1881 }
1882 }
1883 #else
1884 /* ADC instance is not a multimode slave instance with multimode regular conversions enabled */
1885 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_JAUTO) != 0UL)
1886 {
1887 ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
1888
1889 /* Enable as well injected interruptions in case
1890 HAL_ADCEx_InjectedStart_IT() has not been called beforehand. This
1891 allows to start regular and injected conversions when JAUTO is
1892 set with a single call to HAL_ADC_Start_IT() */
1893 switch (hadc->Init.EOCSelection)
1894 {
1895 case ADC_EOC_SEQ_CONV:
1896 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
1897 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOS);
1898 break;
1899 /* case ADC_EOC_SINGLE_CONV */
1900 default:
1901 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOS);
1902 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
1903 break;
1904 }
1905 }
1906
1907 /* Start ADC group regular conversion */
1908 LL_ADC_REG_StartConversion(hadc->Instance);
1909 #endif /* ADC_MULTIMODE_SUPPORT */
1910 }
1911 else
1912 {
1913 /* Process unlocked */
1914 __HAL_UNLOCK(hadc);
1915 }
1916
1917 }
1918 else
1919 {
1920 tmp_hal_status = HAL_BUSY;
1921 }
1922
1923 /* Return function status */
1924 return tmp_hal_status;
1925 }
1926
1927 /**
1928 * @brief Stop ADC conversion of regular group (and injected group in
1929 * case of auto_injection mode), disable interrution of
1930 * end-of-conversion, disable ADC peripheral.
1931 * @param hadc ADC handle
1932 * @retval HAL status.
1933 */
HAL_ADC_Stop_IT(ADC_HandleTypeDef * hadc)1934 HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc)
1935 {
1936 HAL_StatusTypeDef tmp_hal_status;
1937
1938 /* Check the parameters */
1939 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1940
1941 /* Process locked */
1942 __HAL_LOCK(hadc);
1943
1944 /* 1. Stop potential conversion on going, on ADC groups regular and injected */
1945 tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
1946
1947 /* Disable ADC peripheral if conversions are effectively stopped */
1948 if (tmp_hal_status == HAL_OK)
1949 {
1950 /* Disable ADC end of conversion interrupt for regular group */
1951 /* Disable ADC overrun interrupt */
1952 __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
1953
1954 /* 2. Disable the ADC peripheral */
1955 tmp_hal_status = ADC_Disable(hadc);
1956
1957 /* Check if ADC is effectively disabled */
1958 if (tmp_hal_status == HAL_OK)
1959 {
1960 /* Set ADC state */
1961 ADC_STATE_CLR_SET(hadc->State,
1962 HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
1963 HAL_ADC_STATE_READY);
1964 }
1965 }
1966
1967 /* Process unlocked */
1968 __HAL_UNLOCK(hadc);
1969
1970 /* Return function status */
1971 return tmp_hal_status;
1972 }
1973
1974 /**
1975 * @brief Enable ADC, start conversion of regular group and transfer result through DMA.
1976 * @note Interruptions enabled in this function:
1977 * overrun (if applicable), DMA half transfer, DMA transfer complete.
1978 * Each of these interruptions has its dedicated callback function.
1979 * @note Case of multimode enabled (when multimode feature is available): HAL_ADC_Start_DMA()
1980 * is designed for single-ADC mode only. For multimode, the dedicated
1981 * HAL_ADCEx_MultiModeStart_DMA() function must be used.
1982 * @param hadc ADC handle
1983 * @param pData Destination Buffer address.
1984 * @param Length Number of data to be transferred from ADC peripheral to memory
1985 * @retval HAL status.
1986 */
HAL_ADC_Start_DMA(ADC_HandleTypeDef * hadc,uint32_t * pData,uint32_t Length)1987 HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length)
1988 {
1989 HAL_StatusTypeDef tmp_hal_status;
1990 #if defined(ADC_MULTIMODE_SUPPORT)
1991 uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
1992 #endif /* ADC_MULTIMODE_SUPPORT */
1993
1994 /* Check the parameters */
1995 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
1996
1997 /* Perform ADC enable and conversion start if no conversion is on going */
1998 if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
1999 {
2000 /* Process locked */
2001 __HAL_LOCK(hadc);
2002
2003 #if defined(ADC_MULTIMODE_SUPPORT)
2004 /* Ensure that multimode regular conversions are not enabled. */
2005 /* Otherwise, dedicated API HAL_ADCEx_MultiModeStart_DMA() must be used. */
2006 if ((ADC_IS_INDEPENDENT(hadc) != RESET)
2007 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
2008 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
2009 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
2010 )
2011 #endif /* ADC_MULTIMODE_SUPPORT */
2012 {
2013 /* Enable the ADC peripheral */
2014 tmp_hal_status = ADC_Enable(hadc);
2015
2016 /* Start conversion if ADC is effectively enabled */
2017 if (tmp_hal_status == HAL_OK)
2018 {
2019 /* Set ADC state */
2020 /* - Clear state bitfield related to regular group conversion results */
2021 /* - Set state bitfield related to regular operation */
2022 ADC_STATE_CLR_SET(hadc->State,
2023 HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
2024 HAL_ADC_STATE_REG_BUSY);
2025
2026 #if defined(ADC_MULTIMODE_SUPPORT)
2027 /* Reset HAL_ADC_STATE_MULTIMODE_SLAVE bit
2028 - if ADC instance is master or if multimode feature is not available
2029 - if multimode setting is disabled (ADC instance slave in independent mode) */
2030 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
2031 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
2032 )
2033 {
2034 CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
2035 }
2036 #endif /* ADC_MULTIMODE_SUPPORT */
2037
2038 /* Check if a conversion is on going on ADC group injected */
2039 if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) != 0UL)
2040 {
2041 /* Reset ADC error code fields related to regular conversions only */
2042 CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));
2043 }
2044 else
2045 {
2046 /* Reset all ADC error code fields */
2047 ADC_CLEAR_ERRORCODE(hadc);
2048 }
2049
2050 /* Set the DMA transfer complete callback */
2051 hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
2052
2053 /* Set the DMA half transfer complete callback */
2054 hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
2055
2056 /* Set the DMA error callback */
2057 hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
2058
2059
2060 /* Manage ADC and DMA start: ADC overrun interruption, DMA start, */
2061 /* ADC start (in case of SW start): */
2062
2063 /* Clear regular group conversion flag and overrun flag */
2064 /* (To ensure of no unknown state from potential previous ADC */
2065 /* operations) */
2066 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
2067
2068 /* Process unlocked */
2069 /* Unlock before starting ADC conversions: in case of potential */
2070 /* interruption, to let the process to ADC IRQ Handler. */
2071 __HAL_UNLOCK(hadc);
2072
2073 /* With DMA, overrun event is always considered as an error even if
2074 hadc->Init.Overrun is set to ADC_OVR_DATA_OVERWRITTEN. Therefore,
2075 ADC_IT_OVR is enabled. */
2076 __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
2077
2078 /* Enable ADC DMA mode */
2079 SET_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN);
2080
2081 /* Start the DMA channel */
2082 tmp_hal_status = HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
2083
2084 /* Enable conversion of regular group. */
2085 /* If software start has been selected, conversion starts immediately. */
2086 /* If external trigger has been selected, conversion will start at next */
2087 /* trigger event. */
2088 /* Start ADC group regular conversion */
2089 LL_ADC_REG_StartConversion(hadc->Instance);
2090 }
2091 else
2092 {
2093 /* Process unlocked */
2094 __HAL_UNLOCK(hadc);
2095 }
2096
2097 }
2098 #if defined(ADC_MULTIMODE_SUPPORT)
2099 else
2100 {
2101 tmp_hal_status = HAL_ERROR;
2102 /* Process unlocked */
2103 __HAL_UNLOCK(hadc);
2104 }
2105 #endif /* ADC_MULTIMODE_SUPPORT */
2106 }
2107 else
2108 {
2109 tmp_hal_status = HAL_BUSY;
2110 }
2111
2112 /* Return function status */
2113 return tmp_hal_status;
2114 }
2115
2116 /**
2117 * @brief Stop ADC conversion of regular group (and injected group in
2118 * case of auto_injection mode), disable ADC DMA transfer, disable
2119 * ADC peripheral.
2120 * @note: ADC peripheral disable is forcing stop of potential
2121 * conversion on ADC group injected. If ADC group injected is under use, it
2122 * should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
2123 * @note Case of multimode enabled (when multimode feature is available):
2124 * HAL_ADC_Stop_DMA() function is dedicated to single-ADC mode only.
2125 * For multimode, the dedicated HAL_ADCEx_MultiModeStop_DMA() API must be used.
2126 * @param hadc ADC handle
2127 * @retval HAL status.
2128 */
HAL_ADC_Stop_DMA(ADC_HandleTypeDef * hadc)2129 HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc)
2130 {
2131 HAL_StatusTypeDef tmp_hal_status;
2132
2133 /* Check the parameters */
2134 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
2135
2136 /* Process locked */
2137 __HAL_LOCK(hadc);
2138
2139 /* 1. Stop potential ADC group regular conversion on going */
2140 tmp_hal_status = ADC_ConversionStop(hadc, ADC_REGULAR_INJECTED_GROUP);
2141
2142 /* Disable ADC peripheral if conversions are effectively stopped */
2143 if (tmp_hal_status == HAL_OK)
2144 {
2145 /* Disable ADC DMA (ADC DMA configuration of continuous requests is kept) */
2146 CLEAR_BIT(hadc->Instance->CFGR, ADC_CFGR_DMAEN);
2147
2148 /* Disable the DMA channel (in case of DMA in circular mode or stop */
2149 /* while DMA transfer is on going) */
2150 if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY)
2151 {
2152 tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
2153
2154 /* Check if DMA channel effectively disabled */
2155 if (tmp_hal_status != HAL_OK)
2156 {
2157 /* Update ADC state machine to error */
2158 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
2159 }
2160 }
2161
2162 /* Disable ADC overrun interrupt */
2163 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
2164
2165 /* 2. Disable the ADC peripheral */
2166 /* Update "tmp_hal_status" only if DMA channel disabling passed, */
2167 /* to keep in memory a potential failing status. */
2168 if (tmp_hal_status == HAL_OK)
2169 {
2170 tmp_hal_status = ADC_Disable(hadc);
2171 }
2172 else
2173 {
2174 (void)ADC_Disable(hadc);
2175 }
2176
2177 /* Check if ADC is effectively disabled */
2178 if (tmp_hal_status == HAL_OK)
2179 {
2180 /* Set ADC state */
2181 ADC_STATE_CLR_SET(hadc->State,
2182 HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
2183 HAL_ADC_STATE_READY);
2184 }
2185
2186 }
2187
2188 /* Process unlocked */
2189 __HAL_UNLOCK(hadc);
2190
2191 /* Return function status */
2192 return tmp_hal_status;
2193 }
2194
2195 /**
2196 * @brief Get ADC regular group conversion result.
2197 * @note Reading register DR automatically clears ADC flag EOC
2198 * (ADC group regular end of unitary conversion).
2199 * @note This function does not clear ADC flag EOS
2200 * (ADC group regular end of sequence conversion).
2201 * Occurrence of flag EOS rising:
2202 * - If sequencer is composed of 1 rank, flag EOS is equivalent
2203 * to flag EOC.
2204 * - If sequencer is composed of several ranks, during the scan
2205 * sequence flag EOC only is raised, at the end of the scan sequence
2206 * both flags EOC and EOS are raised.
2207 * To clear this flag, either use function:
2208 * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
2209 * model polling: @ref HAL_ADC_PollForConversion()
2210 * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
2211 * @param hadc ADC handle
2212 * @retval ADC group regular conversion data
2213 */
HAL_ADC_GetValue(const ADC_HandleTypeDef * hadc)2214 uint32_t HAL_ADC_GetValue(const ADC_HandleTypeDef *hadc)
2215 {
2216 /* Check the parameters */
2217 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
2218
2219 /* Note: EOC flag is not cleared here by software because automatically */
2220 /* cleared by hardware when reading register DR. */
2221
2222 /* Return ADC converted value */
2223 return hadc->Instance->DR;
2224 }
2225
2226 /**
2227 * @brief Handle ADC interrupt request.
2228 * @param hadc ADC handle
2229 * @retval None
2230 */
HAL_ADC_IRQHandler(ADC_HandleTypeDef * hadc)2231 void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc)
2232 {
2233 uint32_t overrun_error = 0UL; /* flag set if overrun occurrence has to be considered as an error */
2234 uint32_t tmp_isr = hadc->Instance->ISR;
2235 uint32_t tmp_ier = hadc->Instance->IER;
2236 uint32_t tmp_adc_inj_is_trigger_source_sw_start;
2237 uint32_t tmp_adc_reg_is_trigger_source_sw_start;
2238 uint32_t tmp_cfgr;
2239 #if defined(ADC_MULTIMODE_SUPPORT)
2240 const ADC_TypeDef *tmpADC_Master;
2241 uint32_t tmp_multimode_config = LL_ADC_GetMultimode(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
2242 #endif /* ADC_MULTIMODE_SUPPORT */
2243
2244 /* Check the parameters */
2245 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
2246 assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
2247
2248 /* ========== Check End of Sampling flag for ADC group regular ========== */
2249 if (((tmp_isr & ADC_FLAG_EOSMP) == ADC_FLAG_EOSMP) && ((tmp_ier & ADC_IT_EOSMP) == ADC_IT_EOSMP))
2250 {
2251 /* Update state machine on end of sampling status if not in error state */
2252 if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
2253 {
2254 /* Set ADC state */
2255 SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOSMP);
2256 }
2257
2258 /* End Of Sampling callback */
2259 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2260 hadc->EndOfSamplingCallback(hadc);
2261 #else
2262 HAL_ADCEx_EndOfSamplingCallback(hadc);
2263 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2264
2265 /* Clear regular group conversion flag */
2266 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP);
2267 }
2268
2269 /* ====== Check ADC group regular end of unitary conversion sequence conversions ===== */
2270 if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) ||
2271 (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS)))
2272 {
2273 /* Update state machine on conversion status if not in error state */
2274 if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
2275 {
2276 /* Set ADC state */
2277 SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
2278 }
2279
2280 /* Determine whether any further conversion upcoming on group regular */
2281 /* by external trigger, continuous mode or scan sequence on going */
2282 /* to disable interruption. */
2283 if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
2284 {
2285 /* Get relevant register CFGR in ADC instance of ADC master or slave */
2286 /* in function of multimode state (for devices with multimode */
2287 /* available). */
2288 #if defined(ADC_MULTIMODE_SUPPORT)
2289 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
2290 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
2291 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_SIMULT)
2292 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_INJ_ALTERN)
2293 )
2294 {
2295 /* check CONT bit directly in handle ADC CFGR register */
2296 tmp_cfgr = READ_REG(hadc->Instance->CFGR);
2297 }
2298 else
2299 {
2300 /* else need to check Master ADC CONT bit */
2301 tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
2302 tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
2303 }
2304 #else
2305 tmp_cfgr = READ_REG(hadc->Instance->CFGR);
2306 #endif /* ADC_MULTIMODE_SUPPORT */
2307
2308 /* Carry on if continuous mode is disabled */
2309 if (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) != ADC_CFGR_CONT)
2310 {
2311 /* If End of Sequence is reached, disable interrupts */
2312 if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS))
2313 {
2314 /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
2315 /* ADSTART==0 (no conversion on going) */
2316 if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
2317 {
2318 /* Disable ADC end of sequence conversion interrupt */
2319 /* Note: Overrun interrupt was enabled with EOC interrupt in */
2320 /* HAL_Start_IT(), but is not disabled here because can be used */
2321 /* by overrun IRQ process below. */
2322 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
2323
2324 /* Set ADC state */
2325 CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
2326
2327 if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
2328 {
2329 SET_BIT(hadc->State, HAL_ADC_STATE_READY);
2330 }
2331 }
2332 else
2333 {
2334 /* Change ADC state to error state */
2335 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
2336
2337 /* Set ADC error code to ADC peripheral internal error */
2338 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
2339 }
2340 }
2341 }
2342 }
2343
2344 /* Conversion complete callback */
2345 /* Note: Into callback function "HAL_ADC_ConvCpltCallback()", */
2346 /* to determine if conversion has been triggered from EOC or EOS, */
2347 /* possibility to use: */
2348 /* " if ( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */
2349 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2350 hadc->ConvCpltCallback(hadc);
2351 #else
2352 HAL_ADC_ConvCpltCallback(hadc);
2353 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2354
2355 /* Clear regular group conversion flag */
2356 /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */
2357 /* conversion flags clear induces the release of the preserved data.*/
2358 /* Therefore, if the preserved data value is needed, it must be */
2359 /* read preliminarily into HAL_ADC_ConvCpltCallback(). */
2360 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
2361 }
2362
2363 /* ====== Check ADC group injected end of unitary conversion sequence conversions ===== */
2364 if ((((tmp_isr & ADC_FLAG_JEOC) == ADC_FLAG_JEOC) && ((tmp_ier & ADC_IT_JEOC) == ADC_IT_JEOC)) ||
2365 (((tmp_isr & ADC_FLAG_JEOS) == ADC_FLAG_JEOS) && ((tmp_ier & ADC_IT_JEOS) == ADC_IT_JEOS)))
2366 {
2367 /* Update state machine on conversion status if not in error state */
2368 if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) == 0UL)
2369 {
2370 /* Set ADC state */
2371 SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
2372 }
2373
2374 /* Retrieve ADC configuration */
2375 tmp_adc_inj_is_trigger_source_sw_start = LL_ADC_INJ_IsTriggerSourceSWStart(hadc->Instance);
2376 tmp_adc_reg_is_trigger_source_sw_start = LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance);
2377 /* Get relevant register CFGR in ADC instance of ADC master or slave */
2378 /* in function of multimode state (for devices with multimode */
2379 /* available). */
2380 #if defined(ADC_MULTIMODE_SUPPORT)
2381 if ((__LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance) == hadc->Instance)
2382 || (tmp_multimode_config == LL_ADC_MULTI_INDEPENDENT)
2383 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_SIMULT)
2384 || (tmp_multimode_config == LL_ADC_MULTI_DUAL_REG_INTERL)
2385 )
2386 {
2387 tmp_cfgr = READ_REG(hadc->Instance->CFGR);
2388 }
2389 else
2390 {
2391 tmpADC_Master = __LL_ADC_MULTI_INSTANCE_MASTER(hadc->Instance);
2392 tmp_cfgr = READ_REG(tmpADC_Master->CFGR);
2393 }
2394 #else
2395 tmp_cfgr = READ_REG(hadc->Instance->CFGR);
2396 #endif /* ADC_MULTIMODE_SUPPORT */
2397
2398 /* Disable interruption if no further conversion upcoming by injected */
2399 /* external trigger or by automatic injected conversion with regular */
2400 /* group having no further conversion upcoming (same conditions as */
2401 /* regular group interruption disabling above), */
2402 /* and if injected scan sequence is completed. */
2403 if (tmp_adc_inj_is_trigger_source_sw_start != 0UL)
2404 {
2405 if ((READ_BIT(tmp_cfgr, ADC_CFGR_JAUTO) == 0UL) ||
2406 ((tmp_adc_reg_is_trigger_source_sw_start != 0UL) &&
2407 (READ_BIT(tmp_cfgr, ADC_CFGR_CONT) == 0UL)))
2408 {
2409 /* If End of Sequence is reached, disable interrupts */
2410 if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS))
2411 {
2412 /* Particular case if injected contexts queue is enabled: */
2413 /* when the last context has been fully processed, JSQR is reset */
2414 /* by the hardware. Even if no injected conversion is planned to come */
2415 /* (queue empty, triggers are ignored), it can start again */
2416 /* immediately after setting a new context (JADSTART is still set). */
2417 /* Therefore, state of HAL ADC injected group is kept to busy. */
2418 if (READ_BIT(tmp_cfgr, ADC_CFGR_JQM) == 0UL)
2419 {
2420 /* Allowed to modify bits ADC_IT_JEOC/ADC_IT_JEOS only if bit */
2421 /* JADSTART==0 (no conversion on going) */
2422 if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) == 0UL)
2423 {
2424 /* Disable ADC end of sequence conversion interrupt */
2425 __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC | ADC_IT_JEOS);
2426
2427 /* Set ADC state */
2428 CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
2429
2430 if ((hadc->State & HAL_ADC_STATE_REG_BUSY) == 0UL)
2431 {
2432 SET_BIT(hadc->State, HAL_ADC_STATE_READY);
2433 }
2434 }
2435 else
2436 {
2437 /* Update ADC state machine to error */
2438 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
2439
2440 /* Set ADC error code to ADC peripheral internal error */
2441 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
2442 }
2443 }
2444 }
2445 }
2446 }
2447
2448 /* Injected Conversion complete callback */
2449 /* Note: HAL_ADCEx_InjectedConvCpltCallback can resort to
2450 if (__HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOS)) or
2451 if (__HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_JEOC)) to determine whether
2452 interruption has been triggered by end of conversion or end of
2453 sequence. */
2454 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2455 hadc->InjectedConvCpltCallback(hadc);
2456 #else
2457 HAL_ADCEx_InjectedConvCpltCallback(hadc);
2458 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2459
2460 /* Clear injected group conversion flag */
2461 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC | ADC_FLAG_JEOS);
2462 }
2463
2464 /* ========== Check Analog watchdog 1 flag ========== */
2465 if (((tmp_isr & ADC_FLAG_AWD1) == ADC_FLAG_AWD1) && ((tmp_ier & ADC_IT_AWD1) == ADC_IT_AWD1))
2466 {
2467 /* Set ADC state */
2468 SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
2469
2470 /* Level out of window 1 callback */
2471 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2472 hadc->LevelOutOfWindowCallback(hadc);
2473 #else
2474 HAL_ADC_LevelOutOfWindowCallback(hadc);
2475 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2476
2477 /* Clear ADC analog watchdog flag */
2478 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD1);
2479 }
2480
2481 /* ========== Check analog watchdog 2 flag ========== */
2482 if (((tmp_isr & ADC_FLAG_AWD2) == ADC_FLAG_AWD2) && ((tmp_ier & ADC_IT_AWD2) == ADC_IT_AWD2))
2483 {
2484 /* Set ADC state */
2485 SET_BIT(hadc->State, HAL_ADC_STATE_AWD2);
2486
2487 /* Level out of window 2 callback */
2488 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2489 hadc->LevelOutOfWindow2Callback(hadc);
2490 #else
2491 HAL_ADCEx_LevelOutOfWindow2Callback(hadc);
2492 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2493
2494 /* Clear ADC analog watchdog flag */
2495 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD2);
2496 }
2497
2498 /* ========== Check analog watchdog 3 flag ========== */
2499 if (((tmp_isr & ADC_FLAG_AWD3) == ADC_FLAG_AWD3) && ((tmp_ier & ADC_IT_AWD3) == ADC_IT_AWD3))
2500 {
2501 /* Set ADC state */
2502 SET_BIT(hadc->State, HAL_ADC_STATE_AWD3);
2503
2504 /* Level out of window 3 callback */
2505 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2506 hadc->LevelOutOfWindow3Callback(hadc);
2507 #else
2508 HAL_ADCEx_LevelOutOfWindow3Callback(hadc);
2509 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2510
2511 /* Clear ADC analog watchdog flag */
2512 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD3);
2513 }
2514
2515 /* ========== Check Overrun flag ========== */
2516 if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR))
2517 {
2518 /* If overrun is set to overwrite previous data (default setting), */
2519 /* overrun event is not considered as an error. */
2520 /* (cf ref manual "Managing conversions without using the DMA and without */
2521 /* overrun ") */
2522 /* Exception for usage with DMA overrun event always considered as an */
2523 /* error. */
2524 if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
2525 {
2526 overrun_error = 1UL;
2527 }
2528 else
2529 {
2530 /* Check DMA configuration */
2531 #if defined(ADC_MULTIMODE_SUPPORT)
2532 if (tmp_multimode_config != LL_ADC_MULTI_INDEPENDENT)
2533 {
2534 /* Multimode (when feature is available) is enabled,
2535 Common Control Register MDMA bits must be checked. */
2536 if (LL_ADC_GetMultiDMATransfer(__LL_ADC_COMMON_INSTANCE(hadc->Instance)) != LL_ADC_MULTI_REG_DMA_EACH_ADC)
2537 {
2538 overrun_error = 1UL;
2539 }
2540 }
2541 else
2542 #endif /* ADC_MULTIMODE_SUPPORT */
2543 {
2544 /* Multimode not set or feature not available or ADC independent */
2545 if ((hadc->Instance->CFGR & ADC_CFGR_DMAEN) != 0UL)
2546 {
2547 overrun_error = 1UL;
2548 }
2549 }
2550 }
2551
2552 if (overrun_error == 1UL)
2553 {
2554 /* Change ADC state to error state */
2555 SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
2556
2557 /* Set ADC error code to overrun */
2558 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
2559
2560 /* Error callback */
2561 /* Note: In case of overrun, ADC conversion data is preserved until */
2562 /* flag OVR is reset. */
2563 /* Therefore, old ADC conversion data can be retrieved in */
2564 /* function "HAL_ADC_ErrorCallback()". */
2565 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2566 hadc->ErrorCallback(hadc);
2567 #else
2568 HAL_ADC_ErrorCallback(hadc);
2569 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2570 }
2571
2572 /* Clear ADC overrun flag */
2573 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
2574 }
2575
2576 /* ========== Check Injected context queue overflow flag ========== */
2577 if (((tmp_isr & ADC_FLAG_JQOVF) == ADC_FLAG_JQOVF) && ((tmp_ier & ADC_IT_JQOVF) == ADC_IT_JQOVF))
2578 {
2579 /* Change ADC state to overrun state */
2580 SET_BIT(hadc->State, HAL_ADC_STATE_INJ_JQOVF);
2581
2582 /* Set ADC error code to Injected context queue overflow */
2583 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_JQOVF);
2584
2585 /* Clear the Injected context queue overflow flag */
2586 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JQOVF);
2587
2588 /* Injected context queue overflow callback */
2589 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
2590 hadc->InjectedQueueOverflowCallback(hadc);
2591 #else
2592 HAL_ADCEx_InjectedQueueOverflowCallback(hadc);
2593 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
2594 }
2595
2596 }
2597
2598 /**
2599 * @brief Conversion complete callback in non-blocking mode.
2600 * @param hadc ADC handle
2601 * @retval None
2602 */
HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef * hadc)2603 __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
2604 {
2605 /* Prevent unused argument(s) compilation warning */
2606 UNUSED(hadc);
2607
2608 /* NOTE : This function should not be modified. When the callback is needed,
2609 function HAL_ADC_ConvCpltCallback must be implemented in the user file.
2610 */
2611 }
2612
2613 /**
2614 * @brief Conversion DMA half-transfer callback in non-blocking mode.
2615 * @param hadc ADC handle
2616 * @retval None
2617 */
HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef * hadc)2618 __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
2619 {
2620 /* Prevent unused argument(s) compilation warning */
2621 UNUSED(hadc);
2622
2623 /* NOTE : This function should not be modified. When the callback is needed,
2624 function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
2625 */
2626 }
2627
2628 /**
2629 * @brief Analog watchdog 1 callback in non-blocking mode.
2630 * @param hadc ADC handle
2631 * @retval None
2632 */
HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef * hadc)2633 __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc)
2634 {
2635 /* Prevent unused argument(s) compilation warning */
2636 UNUSED(hadc);
2637
2638 /* NOTE : This function should not be modified. When the callback is needed,
2639 function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
2640 */
2641 }
2642
2643 /**
2644 * @brief ADC error callback in non-blocking mode
2645 * (ADC conversion with interruption or transfer by DMA).
2646 * @note In case of error due to overrun when using ADC with DMA transfer
2647 * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"):
2648 * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()".
2649 * - If needed, restart a new ADC conversion using function
2650 * "HAL_ADC_Start_DMA()"
2651 * (this function is also clearing overrun flag)
2652 * @param hadc ADC handle
2653 * @retval None
2654 */
HAL_ADC_ErrorCallback(ADC_HandleTypeDef * hadc)2655 __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
2656 {
2657 /* Prevent unused argument(s) compilation warning */
2658 UNUSED(hadc);
2659
2660 /* NOTE : This function should not be modified. When the callback is needed,
2661 function HAL_ADC_ErrorCallback must be implemented in the user file.
2662 */
2663 }
2664
2665 /**
2666 * @}
2667 */
2668
2669 /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
2670 * @brief Peripheral Control functions
2671 *
2672 @verbatim
2673 ===============================================================================
2674 ##### Peripheral Control functions #####
2675 ===============================================================================
2676 [..] This section provides functions allowing to:
2677 (+) Configure channels on regular group
2678 (+) Configure the analog watchdog
2679
2680 @endverbatim
2681 * @{
2682 */
2683
2684 /**
2685 * @brief Configure a channel to be assigned to ADC group regular.
2686 * @note In case of usage of internal measurement channels:
2687 * Vbat/VrefInt/TempSensor.
2688 * These internal paths can be disabled using function
2689 * HAL_ADC_DeInit().
2690 * @note Possibility to update parameters on the fly:
2691 * This function initializes channel into ADC group regular,
2692 * following calls to this function can be used to reconfigure
2693 * some parameters of structure "ADC_ChannelConfTypeDef" on the fly,
2694 * without resetting the ADC.
2695 * The setting of these parameters is conditioned to ADC state:
2696 * Refer to comments of structure "ADC_ChannelConfTypeDef".
2697 * @param hadc ADC handle
2698 * @param pConfig Structure of ADC channel assigned to ADC group regular.
2699 * @retval HAL status
2700 */
HAL_ADC_ConfigChannel(ADC_HandleTypeDef * hadc,const ADC_ChannelConfTypeDef * pConfig)2701 HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, const ADC_ChannelConfTypeDef *pConfig)
2702 {
2703 HAL_StatusTypeDef tmp_hal_status = HAL_OK;
2704 uint32_t tmpOffsetShifted;
2705 uint32_t tmp_config_internal_channel;
2706 __IO uint32_t wait_loop_index = 0UL;
2707 uint32_t tmp_adc_is_conversion_on_going_regular;
2708 uint32_t tmp_adc_is_conversion_on_going_injected;
2709
2710 /* Check the parameters */
2711 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
2712 assert_param(IS_ADC_REGULAR_RANK(pConfig->Rank));
2713 assert_param(IS_ADC_SAMPLE_TIME(pConfig->SamplingTime));
2714 assert_param(IS_ADC_SINGLE_DIFFERENTIAL(pConfig->SingleDiff));
2715 assert_param(IS_ADC_OFFSET_NUMBER(pConfig->OffsetNumber));
2716 assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), pConfig->Offset));
2717
2718 /* if ROVSE is set, the value of the OFFSETy_EN bit in ADCx_OFRy register is
2719 ignored (considered as reset) */
2720 assert_param(!((pConfig->OffsetNumber != ADC_OFFSET_NONE) && (hadc->Init.OversamplingMode == ENABLE)));
2721
2722 /* Verification of channel number */
2723 if (pConfig->SingleDiff != ADC_DIFFERENTIAL_ENDED)
2724 {
2725 assert_param(IS_ADC_CHANNEL(hadc, pConfig->Channel));
2726 }
2727 else
2728 {
2729 assert_param(IS_ADC_DIFF_CHANNEL(hadc, pConfig->Channel));
2730 }
2731
2732 /* Process locked */
2733 __HAL_LOCK(hadc);
2734
2735 /* Parameters update conditioned to ADC state: */
2736 /* Parameters that can be updated when ADC is disabled or enabled without */
2737 /* conversion on going on regular group: */
2738 /* - Channel number */
2739 /* - Channel rank */
2740 if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) == 0UL)
2741 {
2742 #if !defined (USE_FULL_ASSERT)
2743 uint32_t config_rank = pConfig->Rank;
2744 /* Correspondence for compatibility with legacy definition of */
2745 /* sequencer ranks in direct number format. This correspondence can */
2746 /* be done only on ranks 1 to 5 due to literal values. */
2747 /* Note: Sequencer ranks in direct number format are no more used */
2748 /* and are detected by activating USE_FULL_ASSERT feature. */
2749 if (pConfig->Rank <= 5U)
2750 {
2751 switch (pConfig->Rank)
2752 {
2753 case 2U:
2754 config_rank = ADC_REGULAR_RANK_2;
2755 break;
2756 case 3U:
2757 config_rank = ADC_REGULAR_RANK_3;
2758 break;
2759 case 4U:
2760 config_rank = ADC_REGULAR_RANK_4;
2761 break;
2762 case 5U:
2763 config_rank = ADC_REGULAR_RANK_5;
2764 break;
2765 /* case 1U */
2766 default:
2767 config_rank = ADC_REGULAR_RANK_1;
2768 break;
2769 }
2770 }
2771 /* Set ADC group regular sequence: channel on the selected scan sequence rank */
2772 LL_ADC_REG_SetSequencerRanks(hadc->Instance, config_rank, pConfig->Channel);
2773 #else
2774 /* Set ADC group regular sequence: channel on the selected scan sequence rank */
2775 LL_ADC_REG_SetSequencerRanks(hadc->Instance, pConfig->Rank, pConfig->Channel);
2776 #endif/* USE_FULL_ASSERT */
2777
2778 /* Parameters update conditioned to ADC state: */
2779 /* Parameters that can be updated when ADC is disabled or enabled without */
2780 /* conversion on going on regular group: */
2781 /* - Channel sampling time */
2782 /* - Channel offset */
2783 tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
2784 tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
2785 if ((tmp_adc_is_conversion_on_going_regular == 0UL)
2786 && (tmp_adc_is_conversion_on_going_injected == 0UL)
2787 )
2788 {
2789 #if defined(ADC_SMPR1_SMPPLUS)
2790 /* Manage specific case of sampling time 3.5 cycles replacing 2.5 cyles */
2791 if (pConfig->SamplingTime == ADC_SAMPLETIME_3CYCLES_5)
2792 {
2793 /* Set sampling time of the selected ADC channel */
2794 LL_ADC_SetChannelSamplingTime(hadc->Instance, pConfig->Channel, LL_ADC_SAMPLINGTIME_2CYCLES_5);
2795
2796 /* Set ADC sampling time common configuration */
2797 LL_ADC_SetSamplingTimeCommonConfig(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_3C5_REPL_2C5);
2798 }
2799 else
2800 {
2801 /* Set sampling time of the selected ADC channel */
2802 LL_ADC_SetChannelSamplingTime(hadc->Instance, pConfig->Channel, pConfig->SamplingTime);
2803
2804 /* Set ADC sampling time common configuration */
2805 LL_ADC_SetSamplingTimeCommonConfig(hadc->Instance, LL_ADC_SAMPLINGTIME_COMMON_DEFAULT);
2806 }
2807 #else
2808 /* Set sampling time of the selected ADC channel */
2809 LL_ADC_SetChannelSamplingTime(hadc->Instance, pConfig->Channel, pConfig->SamplingTime);
2810 #endif /* ADC_SMPR1_SMPPLUS */
2811
2812 /* Configure the offset: offset enable/disable, channel, offset value */
2813
2814 /* Shift the offset with respect to the selected ADC resolution. */
2815 /* Offset has to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
2816 tmpOffsetShifted = ADC_OFFSET_SHIFT_RESOLUTION(hadc, (uint32_t)pConfig->Offset);
2817
2818 if (pConfig->OffsetNumber != ADC_OFFSET_NONE)
2819 {
2820 /* Set ADC selected offset number */
2821 LL_ADC_SetOffset(hadc->Instance, pConfig->OffsetNumber, pConfig->Channel, tmpOffsetShifted);
2822
2823 }
2824 else
2825 {
2826 /* Scan each offset register to check if the selected channel is targeted. */
2827 /* If this is the case, the corresponding offset number is disabled. */
2828 if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_1))
2829 == __LL_ADC_CHANNEL_TO_DECIMAL_NB(pConfig->Channel))
2830 {
2831 LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_1, LL_ADC_OFFSET_DISABLE);
2832 }
2833 if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_2))
2834 == __LL_ADC_CHANNEL_TO_DECIMAL_NB(pConfig->Channel))
2835 {
2836 LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_2, LL_ADC_OFFSET_DISABLE);
2837 }
2838 if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_3))
2839 == __LL_ADC_CHANNEL_TO_DECIMAL_NB(pConfig->Channel))
2840 {
2841 LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_3, LL_ADC_OFFSET_DISABLE);
2842 }
2843 if (__LL_ADC_CHANNEL_TO_DECIMAL_NB(LL_ADC_GetOffsetChannel(hadc->Instance, LL_ADC_OFFSET_4))
2844 == __LL_ADC_CHANNEL_TO_DECIMAL_NB(pConfig->Channel))
2845 {
2846 LL_ADC_SetOffsetState(hadc->Instance, LL_ADC_OFFSET_4, LL_ADC_OFFSET_DISABLE);
2847 }
2848 }
2849 }
2850
2851 /* Parameters update conditioned to ADC state: */
2852 /* Parameters that can be updated only when ADC is disabled: */
2853 /* - Single or differential mode */
2854 if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
2855 {
2856 /* Set mode single-ended or differential input of the selected ADC channel */
2857 LL_ADC_SetChannelSingleDiff(hadc->Instance, pConfig->Channel, pConfig->SingleDiff);
2858
2859 /* Configuration of differential mode */
2860 if (pConfig->SingleDiff == ADC_DIFFERENTIAL_ENDED)
2861 {
2862 /* Set sampling time of the selected ADC channel */
2863 /* Note: ADC channel number masked with value "0x1F" to ensure shift value within 32 bits range */
2864 LL_ADC_SetChannelSamplingTime(hadc->Instance,
2865 (uint32_t)(__LL_ADC_DECIMAL_NB_TO_CHANNEL(
2866 (__LL_ADC_CHANNEL_TO_DECIMAL_NB((uint32_t)pConfig->Channel)
2867 + 1UL) & 0x1FUL)),
2868 pConfig->SamplingTime);
2869 }
2870
2871 }
2872
2873 /* Management of internal measurement channels: Vbat/VrefInt/TempSensor. */
2874 /* If internal channel selected, enable dedicated internal buffers and */
2875 /* paths. */
2876 /* Note: these internal measurement paths can be disabled using */
2877 /* HAL_ADC_DeInit(). */
2878
2879 if (__LL_ADC_IS_CHANNEL_INTERNAL(pConfig->Channel))
2880 {
2881 tmp_config_internal_channel = LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance));
2882
2883 /* If the requested internal measurement path has already been enabled, */
2884 /* bypass the configuration processing. */
2885 if ((pConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
2886 && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_TEMPSENSOR) == 0UL))
2887 {
2888 if (ADC_TEMPERATURE_SENSOR_INSTANCE(hadc))
2889 {
2890 LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance),
2891 LL_ADC_PATH_INTERNAL_TEMPSENSOR | tmp_config_internal_channel);
2892
2893 /* Delay for temperature sensor stabilization time */
2894 /* Wait loop initialization and execution */
2895 /* Note: Variable divided by 2 to compensate partially */
2896 /* CPU processing cycles, scaling in us split to not */
2897 /* exceed 32 bits register capacity and handle low frequency. */
2898 wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
2899 while (wait_loop_index != 0UL)
2900 {
2901 wait_loop_index--;
2902 }
2903 }
2904 }
2905 else if ((pConfig->Channel == ADC_CHANNEL_VBAT)
2906 && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VBAT) == 0UL))
2907 {
2908 if (ADC_BATTERY_VOLTAGE_INSTANCE(hadc))
2909 {
2910 LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance),
2911 LL_ADC_PATH_INTERNAL_VBAT | tmp_config_internal_channel);
2912 }
2913 }
2914 else if ((pConfig->Channel == ADC_CHANNEL_VREFINT)
2915 && ((tmp_config_internal_channel & LL_ADC_PATH_INTERNAL_VREFINT) == 0UL))
2916 {
2917 if (ADC_VREFINT_INSTANCE(hadc))
2918 {
2919 LL_ADC_SetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance),
2920 LL_ADC_PATH_INTERNAL_VREFINT | tmp_config_internal_channel);
2921 }
2922 }
2923 else
2924 {
2925 /* nothing to do */
2926 }
2927 }
2928 }
2929
2930 /* If a conversion is on going on regular group, no update on regular */
2931 /* channel could be done on neither of the channel configuration structure */
2932 /* parameters. */
2933 else
2934 {
2935 /* Update ADC state machine to error */
2936 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
2937
2938 tmp_hal_status = HAL_ERROR;
2939 }
2940
2941 /* Process unlocked */
2942 __HAL_UNLOCK(hadc);
2943
2944 /* Return function status */
2945 return tmp_hal_status;
2946 }
2947
2948 /**
2949 * @brief Configure the analog watchdog.
2950 * @note Possibility to update parameters on the fly:
2951 * This function initializes the selected analog watchdog, successive
2952 * calls to this function can be used to reconfigure some parameters
2953 * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting
2954 * the ADC.
2955 * The setting of these parameters is conditioned to ADC state.
2956 * For parameters constraints, see comments of structure
2957 * "ADC_AnalogWDGConfTypeDef".
2958 * @note On this STM32 series, analog watchdog thresholds cannot be modified
2959 * while ADC conversion is on going.
2960 * @param hadc ADC handle
2961 * @param pAnalogWDGConfig Structure of ADC analog watchdog configuration
2962 * @retval HAL status
2963 */
HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef * hadc,const ADC_AnalogWDGConfTypeDef * pAnalogWDGConfig)2964 HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, const ADC_AnalogWDGConfTypeDef *pAnalogWDGConfig)
2965 {
2966 HAL_StatusTypeDef tmp_hal_status = HAL_OK;
2967 uint32_t tmp_awd_high_threshold_shifted;
2968 uint32_t tmp_awd_low_threshold_shifted;
2969 uint32_t tmp_adc_is_conversion_on_going_regular;
2970 uint32_t tmp_adc_is_conversion_on_going_injected;
2971
2972 /* Check the parameters */
2973 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
2974 assert_param(IS_ADC_ANALOG_WATCHDOG_NUMBER(pAnalogWDGConfig->WatchdogNumber));
2975 assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(pAnalogWDGConfig->WatchdogMode));
2976 assert_param(IS_FUNCTIONAL_STATE(pAnalogWDGConfig->ITMode));
2977
2978 if ((pAnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) ||
2979 (pAnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC) ||
2980 (pAnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC))
2981 {
2982 assert_param(IS_ADC_CHANNEL(hadc, pAnalogWDGConfig->Channel));
2983 }
2984
2985 /* Verify thresholds range */
2986 if (hadc->Init.OversamplingMode == ENABLE)
2987 {
2988 /* Case of oversampling enabled: depending on ratio and shift configuration,
2989 analog watchdog thresholds can be higher than ADC resolution.
2990 Verify if thresholds are within maximum thresholds range. */
2991 assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, pAnalogWDGConfig->HighThreshold));
2992 assert_param(IS_ADC_RANGE(ADC_RESOLUTION_12B, pAnalogWDGConfig->LowThreshold));
2993 }
2994 else
2995 {
2996 /* Verify if thresholds are within the selected ADC resolution */
2997 assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), pAnalogWDGConfig->HighThreshold));
2998 assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), pAnalogWDGConfig->LowThreshold));
2999 }
3000
3001 /* Process locked */
3002 __HAL_LOCK(hadc);
3003
3004 /* Parameters update conditioned to ADC state: */
3005 /* Parameters that can be updated when ADC is disabled or enabled without */
3006 /* conversion on going on ADC groups regular and injected: */
3007 /* - Analog watchdog channels */
3008 /* - Analog watchdog thresholds */
3009 tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
3010 tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
3011 if ((tmp_adc_is_conversion_on_going_regular == 0UL)
3012 && (tmp_adc_is_conversion_on_going_injected == 0UL)
3013 )
3014 {
3015 /* Analog watchdog configuration */
3016 if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_1)
3017 {
3018 /* Configuration of analog watchdog: */
3019 /* - Set the analog watchdog enable mode: one or overall group of */
3020 /* channels, on groups regular and-or injected. */
3021 switch (pAnalogWDGConfig->WatchdogMode)
3022 {
3023 case ADC_ANALOGWATCHDOG_SINGLE_REG:
3024 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1,
3025 __LL_ADC_ANALOGWD_CHANNEL_GROUP(pAnalogWDGConfig->Channel,
3026 LL_ADC_GROUP_REGULAR));
3027 break;
3028
3029 case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
3030 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1,
3031 __LL_ADC_ANALOGWD_CHANNEL_GROUP(pAnalogWDGConfig->Channel,
3032 LL_ADC_GROUP_INJECTED));
3033 break;
3034
3035 case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
3036 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1,
3037 __LL_ADC_ANALOGWD_CHANNEL_GROUP(pAnalogWDGConfig->Channel,
3038 LL_ADC_GROUP_REGULAR_INJECTED));
3039 break;
3040
3041 case ADC_ANALOGWATCHDOG_ALL_REG:
3042 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG);
3043 break;
3044
3045 case ADC_ANALOGWATCHDOG_ALL_INJEC:
3046 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_INJ);
3047 break;
3048
3049 case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
3050 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);
3051 break;
3052
3053 default: /* ADC_ANALOGWATCHDOG_NONE */
3054 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, LL_ADC_AWD1, LL_ADC_AWD_DISABLE);
3055 break;
3056 }
3057
3058 /* Shift the offset in function of the selected ADC resolution: */
3059 /* Thresholds have to be left-aligned on bit 11, the LSB (right bits) */
3060 /* are set to 0 */
3061 tmp_awd_high_threshold_shifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, pAnalogWDGConfig->HighThreshold);
3062 tmp_awd_low_threshold_shifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, pAnalogWDGConfig->LowThreshold);
3063
3064 /* Set ADC analog watchdog thresholds value of both thresholds high and low */
3065 LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, pAnalogWDGConfig->WatchdogNumber, tmp_awd_high_threshold_shifted,
3066 tmp_awd_low_threshold_shifted);
3067
3068 /* Update state, clear previous result related to AWD1 */
3069 CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD1);
3070
3071 /* Clear flag ADC analog watchdog */
3072 /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
3073 /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
3074 /* (in case left enabled by previous ADC operations). */
3075 LL_ADC_ClearFlag_AWD1(hadc->Instance);
3076
3077 /* Configure ADC analog watchdog interrupt */
3078 if (pAnalogWDGConfig->ITMode == ENABLE)
3079 {
3080 LL_ADC_EnableIT_AWD1(hadc->Instance);
3081 }
3082 else
3083 {
3084 LL_ADC_DisableIT_AWD1(hadc->Instance);
3085 }
3086 }
3087 /* Case of ADC_ANALOGWATCHDOG_2 or ADC_ANALOGWATCHDOG_3 */
3088 else
3089 {
3090 switch (pAnalogWDGConfig->WatchdogMode)
3091 {
3092 case ADC_ANALOGWATCHDOG_SINGLE_REG:
3093 case ADC_ANALOGWATCHDOG_SINGLE_INJEC:
3094 case ADC_ANALOGWATCHDOG_SINGLE_REGINJEC:
3095 /* Update AWD by bitfield to keep the possibility to monitor */
3096 /* several channels by successive calls of this function. */
3097 if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
3098 {
3099 SET_BIT(hadc->Instance->AWD2CR,
3100 (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(pAnalogWDGConfig->Channel) & 0x1FUL)));
3101 }
3102 else
3103 {
3104 SET_BIT(hadc->Instance->AWD3CR,
3105 (1UL << (__LL_ADC_CHANNEL_TO_DECIMAL_NB(pAnalogWDGConfig->Channel) & 0x1FUL)));
3106 }
3107 break;
3108
3109 case ADC_ANALOGWATCHDOG_ALL_REG:
3110 case ADC_ANALOGWATCHDOG_ALL_INJEC:
3111 case ADC_ANALOGWATCHDOG_ALL_REGINJEC:
3112 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance,
3113 pAnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_ALL_CHANNELS_REG_INJ);
3114 break;
3115
3116 default: /* ADC_ANALOGWATCHDOG_NONE */
3117 LL_ADC_SetAnalogWDMonitChannels(hadc->Instance, pAnalogWDGConfig->WatchdogNumber, LL_ADC_AWD_DISABLE);
3118 break;
3119 }
3120
3121 /* Shift the thresholds in function of the selected ADC resolution */
3122 /* have to be left-aligned on bit 7, the LSB (right bits) are set to 0 */
3123 tmp_awd_high_threshold_shifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, pAnalogWDGConfig->HighThreshold);
3124 tmp_awd_low_threshold_shifted = ADC_AWD23THRESHOLD_SHIFT_RESOLUTION(hadc, pAnalogWDGConfig->LowThreshold);
3125
3126 /* Set ADC analog watchdog thresholds value of both thresholds high and low */
3127 LL_ADC_ConfigAnalogWDThresholds(hadc->Instance, pAnalogWDGConfig->WatchdogNumber, tmp_awd_high_threshold_shifted,
3128 tmp_awd_low_threshold_shifted);
3129
3130 if (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_2)
3131 {
3132 /* Update state, clear previous result related to AWD2 */
3133 CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD2);
3134
3135 /* Clear flag ADC analog watchdog */
3136 /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
3137 /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
3138 /* (in case left enabled by previous ADC operations). */
3139 LL_ADC_ClearFlag_AWD2(hadc->Instance);
3140
3141 /* Configure ADC analog watchdog interrupt */
3142 if (pAnalogWDGConfig->ITMode == ENABLE)
3143 {
3144 LL_ADC_EnableIT_AWD2(hadc->Instance);
3145 }
3146 else
3147 {
3148 LL_ADC_DisableIT_AWD2(hadc->Instance);
3149 }
3150 }
3151 /* (pAnalogWDGConfig->WatchdogNumber == ADC_ANALOGWATCHDOG_3) */
3152 else
3153 {
3154 /* Update state, clear previous result related to AWD3 */
3155 CLEAR_BIT(hadc->State, HAL_ADC_STATE_AWD3);
3156
3157 /* Clear flag ADC analog watchdog */
3158 /* Note: Flag cleared Clear the ADC Analog watchdog flag to be ready */
3159 /* to use for HAL_ADC_IRQHandler() or HAL_ADC_PollForEvent() */
3160 /* (in case left enabled by previous ADC operations). */
3161 LL_ADC_ClearFlag_AWD3(hadc->Instance);
3162
3163 /* Configure ADC analog watchdog interrupt */
3164 if (pAnalogWDGConfig->ITMode == ENABLE)
3165 {
3166 LL_ADC_EnableIT_AWD3(hadc->Instance);
3167 }
3168 else
3169 {
3170 LL_ADC_DisableIT_AWD3(hadc->Instance);
3171 }
3172 }
3173 }
3174
3175 }
3176 /* If a conversion is on going on ADC group regular or injected, no update */
3177 /* could be done on neither of the AWD configuration structure parameters. */
3178 else
3179 {
3180 /* Update ADC state machine to error */
3181 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
3182
3183 tmp_hal_status = HAL_ERROR;
3184 }
3185 /* Process unlocked */
3186 __HAL_UNLOCK(hadc);
3187
3188 /* Return function status */
3189 return tmp_hal_status;
3190 }
3191
3192
3193 /**
3194 * @}
3195 */
3196
3197 /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
3198 * @brief ADC Peripheral State functions
3199 *
3200 @verbatim
3201 ===============================================================================
3202 ##### Peripheral state and errors functions #####
3203 ===============================================================================
3204 [..]
3205 This subsection provides functions to get in run-time the status of the
3206 peripheral.
3207 (+) Check the ADC state
3208 (+) Check the ADC error code
3209
3210 @endverbatim
3211 * @{
3212 */
3213
3214 /**
3215 * @brief Return the ADC handle state.
3216 * @note ADC state machine is managed by bitfields, ADC status must be
3217 * compared with states bits.
3218 * For example:
3219 * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_REG_BUSY) != 0UL) "
3220 * " if ((HAL_ADC_GetState(hadc1) & HAL_ADC_STATE_AWD1) != 0UL) "
3221 * @param hadc ADC handle
3222 * @retval ADC handle state (bitfield on 32 bits)
3223 */
HAL_ADC_GetState(const ADC_HandleTypeDef * hadc)3224 uint32_t HAL_ADC_GetState(const ADC_HandleTypeDef *hadc)
3225 {
3226 /* Check the parameters */
3227 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
3228
3229 /* Return ADC handle state */
3230 return hadc->State;
3231 }
3232
3233 /**
3234 * @brief Return the ADC error code.
3235 * @param hadc ADC handle
3236 * @retval ADC error code (bitfield on 32 bits)
3237 */
HAL_ADC_GetError(const ADC_HandleTypeDef * hadc)3238 uint32_t HAL_ADC_GetError(const ADC_HandleTypeDef *hadc)
3239 {
3240 /* Check the parameters */
3241 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
3242
3243 return hadc->ErrorCode;
3244 }
3245
3246 /**
3247 * @}
3248 */
3249
3250 /**
3251 * @}
3252 */
3253
3254 /** @defgroup ADC_Private_Functions ADC Private Functions
3255 * @{
3256 */
3257
3258 /**
3259 * @brief Stop ADC conversion.
3260 * @param hadc ADC handle
3261 * @param ConversionGroup ADC group regular and/or injected.
3262 * This parameter can be one of the following values:
3263 * @arg @ref ADC_REGULAR_GROUP ADC regular conversion type.
3264 * @arg @ref ADC_INJECTED_GROUP ADC injected conversion type.
3265 * @arg @ref ADC_REGULAR_INJECTED_GROUP ADC regular and injected conversion type.
3266 * @retval HAL status.
3267 */
ADC_ConversionStop(ADC_HandleTypeDef * hadc,uint32_t ConversionGroup)3268 HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc, uint32_t ConversionGroup)
3269 {
3270 uint32_t tickstart;
3271 uint32_t Conversion_Timeout_CPU_cycles = 0UL;
3272 uint32_t conversion_group_reassigned = ConversionGroup;
3273 uint32_t tmp_ADC_CR_ADSTART_JADSTART;
3274 uint32_t tmp_adc_is_conversion_on_going_regular;
3275 uint32_t tmp_adc_is_conversion_on_going_injected;
3276
3277 /* Check the parameters */
3278 assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
3279 assert_param(IS_ADC_CONVERSION_GROUP(ConversionGroup));
3280
3281 /* Verification if ADC is not already stopped (on regular and injected */
3282 /* groups) to bypass this function if not needed. */
3283 tmp_adc_is_conversion_on_going_regular = LL_ADC_REG_IsConversionOngoing(hadc->Instance);
3284 tmp_adc_is_conversion_on_going_injected = LL_ADC_INJ_IsConversionOngoing(hadc->Instance);
3285 if ((tmp_adc_is_conversion_on_going_regular != 0UL)
3286 || (tmp_adc_is_conversion_on_going_injected != 0UL)
3287 )
3288 {
3289 /* Particular case of continuous auto-injection mode combined with */
3290 /* auto-delay mode. */
3291 /* In auto-injection mode, regular group stop ADC_CR_ADSTP is used (not */
3292 /* injected group stop ADC_CR_JADSTP). */
3293 /* Procedure to be followed: Wait until JEOS=1, clear JEOS, set ADSTP=1 */
3294 /* (see reference manual). */
3295 if (((hadc->Instance->CFGR & ADC_CFGR_JAUTO) != 0UL)
3296 && (hadc->Init.ContinuousConvMode == ENABLE)
3297 && (hadc->Init.LowPowerAutoWait == ENABLE)
3298 )
3299 {
3300 /* Use stop of regular group */
3301 conversion_group_reassigned = ADC_REGULAR_GROUP;
3302
3303 /* Wait until JEOS=1 (maximum Timeout: 4 injected conversions) */
3304 while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOS) == 0UL)
3305 {
3306 if (Conversion_Timeout_CPU_cycles >= (ADC_CONVERSION_TIME_MAX_CPU_CYCLES * 4UL))
3307 {
3308 /* Update ADC state machine to error */
3309 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
3310
3311 /* Set ADC error code to ADC peripheral internal error */
3312 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
3313
3314 return HAL_ERROR;
3315 }
3316 Conversion_Timeout_CPU_cycles ++;
3317 }
3318
3319 /* Clear JEOS */
3320 __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOS);
3321 }
3322
3323 /* Stop potential conversion on going on ADC group regular */
3324 if (conversion_group_reassigned != ADC_INJECTED_GROUP)
3325 {
3326 /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
3327 if (LL_ADC_REG_IsConversionOngoing(hadc->Instance) != 0UL)
3328 {
3329 if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
3330 {
3331 /* Stop ADC group regular conversion */
3332 LL_ADC_REG_StopConversion(hadc->Instance);
3333 }
3334 }
3335 }
3336
3337 /* Stop potential conversion on going on ADC group injected */
3338 if (conversion_group_reassigned != ADC_REGULAR_GROUP)
3339 {
3340 /* Software is allowed to set JADSTP only when JADSTART=1 and ADDIS=0 */
3341 if (LL_ADC_INJ_IsConversionOngoing(hadc->Instance) != 0UL)
3342 {
3343 if (LL_ADC_IsDisableOngoing(hadc->Instance) == 0UL)
3344 {
3345 /* Stop ADC group injected conversion */
3346 LL_ADC_INJ_StopConversion(hadc->Instance);
3347 }
3348 }
3349 }
3350
3351 /* Selection of start and stop bits with respect to the regular or injected group */
3352 switch (conversion_group_reassigned)
3353 {
3354 case ADC_REGULAR_INJECTED_GROUP:
3355 tmp_ADC_CR_ADSTART_JADSTART = (ADC_CR_ADSTART | ADC_CR_JADSTART);
3356 break;
3357 case ADC_INJECTED_GROUP:
3358 tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_JADSTART;
3359 break;
3360 /* Case ADC_REGULAR_GROUP only*/
3361 default:
3362 tmp_ADC_CR_ADSTART_JADSTART = ADC_CR_ADSTART;
3363 break;
3364 }
3365
3366 /* Wait for conversion effectively stopped */
3367 tickstart = HAL_GetTick();
3368
3369 while ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
3370 {
3371 if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
3372 {
3373 /* New check to avoid false timeout detection in case of preemption */
3374 if ((hadc->Instance->CR & tmp_ADC_CR_ADSTART_JADSTART) != 0UL)
3375 {
3376 /* Update ADC state machine to error */
3377 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
3378
3379 /* Set ADC error code to ADC peripheral internal error */
3380 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
3381
3382 return HAL_ERROR;
3383 }
3384 }
3385 }
3386
3387 }
3388
3389 /* Return HAL status */
3390 return HAL_OK;
3391 }
3392
3393 /**
3394 * @brief Enable the selected ADC.
3395 * @note Prerequisite condition to use this function: ADC must be disabled
3396 * and voltage regulator must be enabled (done into HAL_ADC_Init()).
3397 * @param hadc ADC handle
3398 * @retval HAL status.
3399 */
ADC_Enable(ADC_HandleTypeDef * hadc)3400 HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc)
3401 {
3402 uint32_t tickstart;
3403 __IO uint32_t wait_loop_index = 0UL;
3404
3405 /* ADC enable and wait for ADC ready (in case of ADC is disabled or */
3406 /* enabling phase not yet completed: flag ADC ready not yet set). */
3407 /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
3408 /* causes: ADC clock not running, ...). */
3409 if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
3410 {
3411 /* Check if conditions to enable the ADC are fulfilled */
3412 if ((hadc->Instance->CR & (ADC_CR_ADCAL | ADC_CR_JADSTP | ADC_CR_ADSTP | ADC_CR_JADSTART | ADC_CR_ADSTART
3413 | ADC_CR_ADDIS | ADC_CR_ADEN)) != 0UL)
3414 {
3415 /* Update ADC state machine to error */
3416 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
3417
3418 /* Set ADC error code to ADC peripheral internal error */
3419 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
3420
3421 return HAL_ERROR;
3422 }
3423
3424 /* Enable the ADC peripheral */
3425 LL_ADC_Enable(hadc->Instance);
3426
3427 if ((LL_ADC_GetCommonPathInternalCh(__LL_ADC_COMMON_INSTANCE(hadc->Instance))
3428 & LL_ADC_PATH_INTERNAL_TEMPSENSOR) != 0UL)
3429 {
3430 /* Delay for temperature sensor buffer stabilization time */
3431 /* Note: Value LL_ADC_DELAY_TEMPSENSOR_STAB_US used instead of */
3432 /* LL_ADC_DELAY_TEMPSENSOR_BUFFER_STAB_US because needed */
3433 /* in case of ADC enable after a system wake up */
3434 /* from low power mode. */
3435
3436 /* Wait loop initialization and execution */
3437 /* Note: Variable divided by 2 to compensate partially */
3438 /* CPU processing cycles, scaling in us split to not */
3439 /* exceed 32 bits register capacity and handle low frequency. */
3440 wait_loop_index = ((LL_ADC_DELAY_TEMPSENSOR_STAB_US / 10UL) * ((SystemCoreClock / (100000UL * 2UL)) + 1UL));
3441 while (wait_loop_index != 0UL)
3442 {
3443 wait_loop_index--;
3444 }
3445 }
3446
3447 /* Wait for ADC effectively enabled */
3448 tickstart = HAL_GetTick();
3449
3450 while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
3451 {
3452 /* If ADEN bit is set less than 4 ADC clock cycles after the ADCAL bit
3453 has been cleared (after a calibration), ADEN bit is reset by the
3454 calibration logic.
3455 The workaround is to continue setting ADEN until ADRDY is becomes 1.
3456 Additionally, ADC_ENABLE_TIMEOUT is defined to encompass this
3457 4 ADC clock cycle duration */
3458 /* Note: Test of ADC enabled required due to hardware constraint to */
3459 /* not enable ADC if already enabled. */
3460 if (LL_ADC_IsEnabled(hadc->Instance) == 0UL)
3461 {
3462 LL_ADC_Enable(hadc->Instance);
3463 }
3464
3465 if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
3466 {
3467 /* New check to avoid false timeout detection in case of preemption */
3468 if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == 0UL)
3469 {
3470 /* Update ADC state machine to error */
3471 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
3472
3473 /* Set ADC error code to ADC peripheral internal error */
3474 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
3475
3476 return HAL_ERROR;
3477 }
3478 }
3479 }
3480 }
3481
3482 /* Return HAL status */
3483 return HAL_OK;
3484 }
3485
3486 /**
3487 * @brief Disable the selected ADC.
3488 * @note Prerequisite condition to use this function: ADC conversions must be
3489 * stopped.
3490 * @param hadc ADC handle
3491 * @retval HAL status.
3492 */
ADC_Disable(ADC_HandleTypeDef * hadc)3493 HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc)
3494 {
3495 uint32_t tickstart;
3496 const uint32_t tmp_adc_is_disable_on_going = LL_ADC_IsDisableOngoing(hadc->Instance);
3497
3498 /* Verification if ADC is not already disabled: */
3499 /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */
3500 /* disabled. */
3501 if ((LL_ADC_IsEnabled(hadc->Instance) != 0UL)
3502 && (tmp_adc_is_disable_on_going == 0UL)
3503 )
3504 {
3505 /* Check if conditions to disable the ADC are fulfilled */
3506 if ((hadc->Instance->CR & (ADC_CR_JADSTART | ADC_CR_ADSTART | ADC_CR_ADEN)) == ADC_CR_ADEN)
3507 {
3508 /* Disable the ADC peripheral */
3509 LL_ADC_Disable(hadc->Instance);
3510 __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOSMP | ADC_FLAG_RDY));
3511 }
3512 else
3513 {
3514 /* Update ADC state machine to error */
3515 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
3516
3517 /* Set ADC error code to ADC peripheral internal error */
3518 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
3519
3520 return HAL_ERROR;
3521 }
3522
3523 /* Wait for ADC effectively disabled */
3524 /* Get tick count */
3525 tickstart = HAL_GetTick();
3526
3527 while ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
3528 {
3529 if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
3530 {
3531 /* New check to avoid false timeout detection in case of preemption */
3532 if ((hadc->Instance->CR & ADC_CR_ADEN) != 0UL)
3533 {
3534 /* Update ADC state machine to error */
3535 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
3536
3537 /* Set ADC error code to ADC peripheral internal error */
3538 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
3539
3540 return HAL_ERROR;
3541 }
3542 }
3543 }
3544 }
3545
3546 /* Return HAL status */
3547 return HAL_OK;
3548 }
3549
3550 /**
3551 * @brief DMA transfer complete callback.
3552 * @param hdma pointer to DMA handle.
3553 * @retval None
3554 */
ADC_DMAConvCplt(DMA_HandleTypeDef * hdma)3555 void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
3556 {
3557 /* Retrieve ADC handle corresponding to current DMA handle */
3558 ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3559
3560 /* Update state machine on conversion status if not in error state */
3561 if ((hadc->State & (HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) == 0UL)
3562 {
3563 /* Set ADC state */
3564 SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
3565
3566 /* Determine whether any further conversion upcoming on group regular */
3567 /* by external trigger, continuous mode or scan sequence on going */
3568 /* to disable interruption. */
3569 /* Is it the end of the regular sequence ? */
3570 if ((hadc->Instance->ISR & ADC_FLAG_EOS) != 0UL)
3571 {
3572 /* Are conversions software-triggered ? */
3573 if (LL_ADC_REG_IsTriggerSourceSWStart(hadc->Instance) != 0UL)
3574 {
3575 /* Is CONT bit set ? */
3576 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_CONT) == 0UL)
3577 {
3578 /* CONT bit is not set, no more conversions expected */
3579 CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
3580 if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
3581 {
3582 SET_BIT(hadc->State, HAL_ADC_STATE_READY);
3583 }
3584 }
3585 }
3586 }
3587 else
3588 {
3589 /* DMA End of Transfer interrupt was triggered but conversions sequence
3590 is not over. If DMACFG is set to 0, conversions are stopped. */
3591 if (READ_BIT(hadc->Instance->CFGR, ADC_CFGR_DMACFG) == 0UL)
3592 {
3593 /* DMACFG bit is not set, conversions are stopped. */
3594 CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);
3595 if ((hadc->State & HAL_ADC_STATE_INJ_BUSY) == 0UL)
3596 {
3597 SET_BIT(hadc->State, HAL_ADC_STATE_READY);
3598 }
3599 }
3600 }
3601
3602 /* Conversion complete callback */
3603 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
3604 hadc->ConvCpltCallback(hadc);
3605 #else
3606 HAL_ADC_ConvCpltCallback(hadc);
3607 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
3608 }
3609 else /* DMA and-or internal error occurred */
3610 {
3611 if ((hadc->State & HAL_ADC_STATE_ERROR_INTERNAL) != 0UL)
3612 {
3613 /* Call HAL ADC Error Callback function */
3614 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
3615 hadc->ErrorCallback(hadc);
3616 #else
3617 HAL_ADC_ErrorCallback(hadc);
3618 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
3619 }
3620 else
3621 {
3622 /* Call ADC DMA error callback */
3623 hadc->DMA_Handle->XferErrorCallback(hdma);
3624 }
3625 }
3626 }
3627
3628 /**
3629 * @brief DMA half transfer complete callback.
3630 * @param hdma pointer to DMA handle.
3631 * @retval None
3632 */
ADC_DMAHalfConvCplt(DMA_HandleTypeDef * hdma)3633 void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
3634 {
3635 /* Retrieve ADC handle corresponding to current DMA handle */
3636 ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3637
3638 /* Half conversion callback */
3639 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
3640 hadc->ConvHalfCpltCallback(hadc);
3641 #else
3642 HAL_ADC_ConvHalfCpltCallback(hadc);
3643 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
3644 }
3645
3646 /**
3647 * @brief DMA error callback.
3648 * @param hdma pointer to DMA handle.
3649 * @retval None
3650 */
ADC_DMAError(DMA_HandleTypeDef * hdma)3651 void ADC_DMAError(DMA_HandleTypeDef *hdma)
3652 {
3653 /* Retrieve ADC handle corresponding to current DMA handle */
3654 ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3655
3656 /* Set ADC state */
3657 SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
3658
3659 /* Set ADC error code to DMA error */
3660 SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
3661
3662 /* Error callback */
3663 #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1)
3664 hadc->ErrorCallback(hadc);
3665 #else
3666 HAL_ADC_ErrorCallback(hadc);
3667 #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */
3668 }
3669
3670 /**
3671 * @}
3672 */
3673
3674 #endif /* HAL_ADC_MODULE_ENABLED */
3675 /**
3676 * @}
3677 */
3678
3679 /**
3680 * @}
3681 */
3682