1 /**
2   ******************************************************************************
3   * @file    stm32l1xx_hal_rcc.c
4   * @author  MCD Application Team
5   * @brief   RCC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Reset and Clock Control (RCC) peripheral:
8   *           + Initialization and de-initialization functions
9   *           + Peripheral Control functions
10   *
11   @verbatim
12   ==============================================================================
13                       ##### RCC specific features #####
14   ==============================================================================
15     [..]
16       After reset the device is running from multispeed internal oscillator clock
17       (MSI 2.097MHz) with Flash 0 wait state and Flash prefetch buffer is disabled,
18       and all peripherals are off except internal SRAM, Flash and JTAG.
19       (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
20           all peripherals mapped on these buses are running at MSI speed.
21       (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
22       (+) All GPIOs are in input floating state, except the JTAG pins which
23           are assigned to be used for debug purpose.
24     [..] Once the device started from reset, the user application has to:
25       (+) Configure the clock source to be used to drive the System clock
26           (if the application needs higher frequency/performance)
27       (+) Configure the System clock frequency and Flash settings
28       (+) Configure the AHB and APB buses prescalers
29       (+) Enable the clock for the peripheral(s) to be used
30       (+) Configure the clock source(s) for peripherals whose clocks are not
31           derived from the System clock (I2S, RTC, ADC, USB OTG FS/SDIO/RNG)
32           (*) SDIO only for STM32L1xxxD devices
33 
34                       ##### RCC Limitations #####
35   ==============================================================================
36     [..]
37       A delay between an RCC peripheral clock enable and the effective peripheral
38       enabling should be taken into account in order to manage the peripheral read/write
39       from/to registers.
40       (+) This delay depends on the peripheral mapping.
41         (++) AHB & APB peripherals, 1 dummy read is necessary
42 
43     [..]
44       Workarounds:
45       (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
46           inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.
47 
48   @endverbatim
49   ******************************************************************************
50   * @attention
51   *
52   * Copyright (c) 2017 STMicroelectronics.
53   * All rights reserved.
54   *
55   * This software is licensed under terms that can be found in the LICENSE file in
56   * the root directory of this software component.
57   * If no LICENSE file comes with this software, it is provided AS-IS.
58   ******************************************************************************
59   */
60 
61 /* Includes ------------------------------------------------------------------*/
62 #include "stm32l1xx_hal.h"
63 
64 /** @addtogroup STM32L1xx_HAL_Driver
65   * @{
66   */
67 
68 /** @defgroup RCC RCC
69 * @brief RCC HAL module driver
70   * @{
71   */
72 
73 #ifdef HAL_RCC_MODULE_ENABLED
74 
75 /* Private typedef -----------------------------------------------------------*/
76 /* Private define ------------------------------------------------------------*/
77 /* Private macro -------------------------------------------------------------*/
78 /** @defgroup RCC_Private_Macros RCC Private Macros
79   * @{
80   */
81 
82 #define MCO1_CLK_ENABLE()     __HAL_RCC_GPIOA_CLK_ENABLE()
83 #define MCO1_GPIO_PORT        GPIOA
84 #define MCO1_PIN              GPIO_PIN_8
85 
86 /**
87   * @}
88   */
89 
90 /* Private variables ---------------------------------------------------------*/
91 /** @defgroup RCC_Private_Variables RCC Private Variables
92   * @{
93   */
94 extern const uint8_t PLLMulTable[];          /* Defined in CMSIS (system_stm32l0xx.c)*/
95 /**
96   * @}
97   */
98 
99 /* Private function prototypes -----------------------------------------------*/
100 /** @defgroup RCC_Private_Functions RCC Private Functions
101   * @{
102   */
103 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange);
104 /**
105   * @}
106   */
107 
108 /* Exported functions ---------------------------------------------------------*/
109 
110 /** @defgroup RCC_Exported_Functions RCC Exported Functions
111   * @{
112   */
113 
114 /** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions
115   *  @brief    Initialization and Configuration functions
116   *
117   @verbatim
118   ===============================================================================
119            ##### Initialization and de-initialization functions #####
120   ===============================================================================
121     [..]
122       This section provides functions allowing to configure the internal/external oscillators
123       (MSI, HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
124       and APB2).
125 
126     [..] Internal/external clock and PLL configuration
127       (#) MSI (Multispeed internal), Seven frequency ranges are available: 65.536 kHz,
128           131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz, 2.097 MHz (default value) and 4.194 MHz.
129 
130       (#) HSI (high-speed internal), 16 MHz factory-trimmed RC used directly or through
131           the PLL as System clock source.
132       (#) LSI (low-speed internal), ~37 KHz low consumption RC used as IWDG and/or RTC
133           clock source.
134 
135       (#) HSE (high-speed external), 1 to 24 MHz crystal oscillator used directly or
136           through the PLL as System clock source. Can be used also as RTC clock source.
137 
138       (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
139 
140       (#) PLL (clocked by HSI or HSE), featuring different output clocks:
141         (++) The first output is used to generate the high speed system clock (up to 32 MHz)
142         (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)
143 
144       (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
145           and if a HSE clock failure occurs(HSE used directly or through PLL as System
146           clock source), the System clocks automatically switched to MSI and an interrupt
147           is generated if enabled. The interrupt is linked to the Cortex-M3 NMI
148           (Non-Maskable Interrupt) exception vector.
149 
150       (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI, LSI, MSI, LSE,
151           HSE or PLL clock (through a configurable prescaler) on PA8 pin.
152 
153     [..] System, AHB and APB buses clocks configuration
154       (#) Several clock sources can be used to drive the System clock (SYSCLK): MSI, HSI,
155           HSE and PLL.
156           The AHB clock (HCLK) is derived from System clock through configurable
157           prescaler and used to clock the CPU, memory and peripherals mapped
158           on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
159           from AHB clock through configurable prescalers and used to clock
160           the peripherals mapped on these buses. You can use
161           "HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.
162 
163       -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
164           (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
165               divided by 2 to 16. You have to use __HAL_RCC_RTC_CONFIG() and __HAL_RCC_RTC_ENABLE()
166               macros to configure this clock.
167           (+@) LCD: LCD clock can be derived either from the LSI, LSE or HSE clock
168               divided by 2 to 16. You have to use __HAL_RCC_LCD_CONFIG()
169               macros to configure this clock.
170           (+@) USB OTG FS: USB OTG FS require a frequency equal to 48 MHz
171               to work correctly. This clock is derived of the main PLL through PLL Multiplier.
172 
173           (+@) IWDG clock which is always the LSI clock.
174 
175       (#) The maximum frequency of the SYSCLK and HCLK is 32 MHz, PCLK2 32 MHz
176           and PCLK1 32 MHz. Depending on the device voltage range, the maximum
177           frequency should be adapted accordingly.
178   @endverbatim
179   * @{
180   */
181 
182 /*
183   Additional consideration on the HCLK based on Latency settings:
184   +----------------------------------------------------------------------+
185   | Latency       |                HCLK clock frequency (MHz)            |
186   |               |------------------------------------------------------|
187   |               | voltage range 1  | voltage range 2 | voltage range 3 |
188   |               |      1.8 V       |     1.5 V       |      1.2 V      |
189   |---------------|------------------|-----------------|-----------------|
190   |0WS(1CPU cycle)| 0 < HCLK <= 16   | 0 < HCLK <= 8   | 0 < HCLK <= 2   |
191   |---------------|------------------|-----------------|-----------------|
192   |1WS(2CPU cycle)| 16 < HCLK <= 32  | 8 < HCLK <= 16  | 2 < HCLK <= 4   |
193   +----------------------------------------------------------------------+
194 
195   The following table gives the different clock source frequencies depending on the product
196   voltage range:
197   +------------------------------------------------------------------------------------------+
198   | Product voltage |                    Clock frequency                                     |
199   |                 |------------------|-----------------------------|-----------------------|
200   |      range      |   MSI   |   HSI  |              HSE            |          PLL          |
201   |-----------------|---------|--------|-----------------------------|-----------------------|
202   | Range 1 (1.8 V) | 4.2 MHz | 16 MHz | HSE 32 MHz (external clock) |         32 MHz        |
203   |                 |         |        |      or 24 MHz (crystal)    | (PLLVCO max = 96 MHz) |
204   |-----------------|---------|--------|-----------------------------|-----------------------|
205   | Range 2 (1.5 V) | 4.2 MHz | 16 MHz |         16 MHz              |         16 MHz        |
206   |                 |         |        |                             | (PLLVCO max = 48 MHz) |
207   |-----------------|---------|--------|-----------------------------|-----------------------|
208   | Range 3 (1.2 V) | 4.2 MHz |   NA   |         8 MHz               |           4 MHz       |
209   |                 |         |        |                             | (PLLVCO max = 24 MHz) |
210   +------------------------------------------------------------------------------------------+
211   */
212 
213 /**
214   * @brief  Resets the RCC clock configuration to the default reset state.
215   * @note   The default reset state of the clock configuration is given below:
216   *            - MSI ON and used as system clock source
217   *            - HSI, HSE and PLL  OFF
218   *            - AHB, APB1 and APB2 prescaler set to 1.
219   *            - CSS and MCO1 OFF
220   *            - All interrupts disabled
221   * @note   This function does not modify the configuration of the
222   *            - Peripheral clocks
223   *            - LSI, LSE and RTC clocks
224   * @retval HAL status
225   */
HAL_RCC_DeInit(void)226 HAL_StatusTypeDef HAL_RCC_DeInit(void)
227 {
228   uint32_t tickstart;
229   HAL_StatusTypeDef status;
230 
231   /* Set MSIClockRange, HSITRIM and MSITRIM bits to the reset values */
232   MODIFY_REG(RCC->ICSCR, (RCC_ICSCR_MSITRIM | RCC_ICSCR_HSITRIM | RCC_ICSCR_MSIRANGE), \
233             ((RCC_MSICALIBRATION_DEFAULT << RCC_ICSCR_MSITRIM_Pos) | (RCC_HSICALIBRATION_DEFAULT << RCC_ICSCR_HSITRIM_Pos) | RCC_ICSCR_MSIRANGE_5));
234 
235   /* Set MSION bit */
236   SET_BIT(RCC->CR, RCC_CR_MSION);
237 
238   /* Get Start Tick*/
239   tickstart = HAL_GetTick();
240 
241   /* Wait till MSI is ready */
242   while (READ_BIT(RCC->CR, RCC_CR_MSIRDY) == 0U)
243   {
244     if ((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
245     {
246       return HAL_TIMEOUT;
247     }
248   }
249 
250   /* Switch SYSCLK to MSI*/
251   CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);
252 
253   /* Wait till MSI as SYSCLK status is ready */
254   while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != 0U)
255   {
256     if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE)
257     {
258       return HAL_TIMEOUT;
259     }
260   }
261 
262   /* Update the SystemCoreClock global variable */
263   SystemCoreClock = MSI_VALUE;
264 
265   /* Configure the source of time base considering new system clock settings  */
266   status = HAL_InitTick(uwTickPrio);
267   if(status != HAL_OK)
268   {
269     return status;
270   }
271 
272   /* Reset HSION, HSEON, CSSON & PLLON bits */
273   CLEAR_BIT(RCC->CR, RCC_CR_HSION | RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON);
274   /* Reset HSEBYP bit */
275   CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
276 
277   /* Get Start Tick*/
278   tickstart = HAL_GetTick();
279 
280   /* Wait till PLL is not ready */
281   while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != 0U)
282   {
283     if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE)
284     {
285       return HAL_TIMEOUT;
286     }
287   }
288 
289   /* Reset CFGR register */
290   CLEAR_REG(RCC->CFGR);
291 
292   /* Disable all interrupts */
293   CLEAR_REG(RCC->CIR);
294 
295   /* Clear all flags */
296 #if defined(RCC_LSECSS_SUPPORT)
297   WRITE_REG(RCC->CIR, RCC_CIR_LSIRDYC | RCC_CIR_LSERDYC | RCC_CIR_HSIRDYC | RCC_CIR_HSERDYC | RCC_CIR_PLLRDYC | RCC_CIR_MSIRDYC |  RCC_CIR_LSECSSC | RCC_CIR_CSSC);
298 #else
299   WRITE_REG(RCC->CIR, RCC_CIR_LSIRDYC | RCC_CIR_LSERDYC | RCC_CIR_HSIRDYC | RCC_CIR_HSERDYC | RCC_CIR_PLLRDYC | RCC_CIR_MSIRDYC |  RCC_CIR_CSSC);
300 #endif
301 
302   /* Clear all reset flags */
303   SET_BIT(RCC->CSR, RCC_CSR_RMVF);
304 
305   return HAL_OK;
306 }
307 
308 /**
309   * @brief  Initializes the RCC Oscillators according to the specified parameters in the
310   *         RCC_OscInitTypeDef.
311   * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
312   *         contains the configuration information for the RCC Oscillators.
313   * @note   The PLL is not disabled when used as system clock.
314   * @note   Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
315   *         supported by this macro. User should request a transition to LSE Off
316   *         first and then LSE On or LSE Bypass.
317   * @note   Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
318   *         supported by this macro. User should request a transition to HSE Off
319   *         first and then HSE On or HSE Bypass.
320   * @retval HAL status
321   */
HAL_RCC_OscConfig(RCC_OscInitTypeDef * RCC_OscInitStruct)322 HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
323 {
324   uint32_t tickstart;
325   HAL_StatusTypeDef status;
326   uint32_t sysclk_source, pll_config;
327 
328   /* Check the parameters */
329   if(RCC_OscInitStruct == NULL)
330   {
331     return HAL_ERROR;
332   }
333 
334   assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
335 
336   sysclk_source = __HAL_RCC_GET_SYSCLK_SOURCE();
337   pll_config = __HAL_RCC_GET_PLL_OSCSOURCE();
338 
339   /*------------------------------- HSE Configuration ------------------------*/
340   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
341   {
342     /* Check the parameters */
343     assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
344 
345     /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
346     if((sysclk_source == RCC_SYSCLKSOURCE_STATUS_HSE)
347        || ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (pll_config == RCC_PLLSOURCE_HSE)))
348     {
349       if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
350       {
351         return HAL_ERROR;
352       }
353     }
354     else
355     {
356       /* Set the new HSE configuration ---------------------------------------*/
357       __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
358 
359       /* Check the HSE State */
360       if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
361       {
362         /* Get Start Tick */
363         tickstart = HAL_GetTick();
364 
365         /* Wait till HSE is ready */
366         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U)
367         {
368           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
369           {
370             return HAL_TIMEOUT;
371           }
372         }
373       }
374       else
375       {
376         /* Get Start Tick */
377         tickstart = HAL_GetTick();
378 
379         /* Wait till HSE is disabled */
380         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != 0U)
381         {
382            if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
383           {
384             return HAL_TIMEOUT;
385           }
386         }
387       }
388     }
389   }
390   /*----------------------------- HSI Configuration --------------------------*/
391   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
392   {
393     /* Check the parameters */
394     assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
395     assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
396 
397     /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */
398     if((sysclk_source == RCC_SYSCLKSOURCE_STATUS_HSI)
399        || ((sysclk_source == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (pll_config == RCC_PLLSOURCE_HSI)))
400     {
401       /* When HSI is used as system clock it will not disabled */
402       if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
403       {
404         return HAL_ERROR;
405       }
406       /* Otherwise, just the calibration is allowed */
407       else
408       {
409         /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
410         __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
411       }
412     }
413     else
414     {
415       /* Check the HSI State */
416       if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
417       {
418         /* Enable the Internal High Speed oscillator (HSI). */
419         __HAL_RCC_HSI_ENABLE();
420 
421         /* Get Start Tick */
422         tickstart = HAL_GetTick();
423 
424         /* Wait till HSI is ready */
425         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
426         {
427           if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
428           {
429             return HAL_TIMEOUT;
430           }
431         }
432 
433         /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
434         __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
435       }
436       else
437       {
438         /* Disable the Internal High Speed oscillator (HSI). */
439         __HAL_RCC_HSI_DISABLE();
440 
441         /* Get Start Tick */
442         tickstart = HAL_GetTick();
443 
444         /* Wait till HSI is disabled */
445         while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != 0U)
446         {
447           if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
448           {
449             return HAL_TIMEOUT;
450           }
451         }
452       }
453     }
454   }
455   /*----------------------------- MSI Configuration --------------------------*/
456   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_MSI) == RCC_OSCILLATORTYPE_MSI)
457   {
458     /* When the MSI is used as system clock it will not be disabled */
459     if(sysclk_source == RCC_CFGR_SWS_MSI)
460     {
461       if((__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != 0U) && (RCC_OscInitStruct->MSIState == RCC_MSI_OFF))
462       {
463         return HAL_ERROR;
464       }
465       /* Otherwise, just the calibration and MSI range change are allowed */
466       else
467       {
468        /* Check MSICalibrationValue and MSIClockRange input parameters */
469         assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
470         assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
471 
472         /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
473            must be correctly programmed according to the frequency of the CPU clock
474            (HCLK) and the supply voltage of the device. */
475         if(RCC_OscInitStruct->MSIClockRange > __HAL_RCC_GET_MSI_RANGE())
476         {
477           /* First increase number of wait states update if necessary */
478           if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
479           {
480             return HAL_ERROR;
481           }
482 
483           /* Selects the Multiple Speed oscillator (MSI) clock range .*/
484           __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
485           /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
486           __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
487         }
488         else
489         {
490           /* Else, keep current flash latency while decreasing applies */
491           /* Selects the Multiple Speed oscillator (MSI) clock range .*/
492           __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
493           /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
494           __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
495 
496           /* Decrease number of wait states update if necessary */
497           if(RCC_SetFlashLatencyFromMSIRange(RCC_OscInitStruct->MSIClockRange) != HAL_OK)
498           {
499             return HAL_ERROR;
500           }
501         }
502 
503         /* Update the SystemCoreClock global variable */
504         SystemCoreClock =  (32768U * (1UL << ((RCC_OscInitStruct->MSIClockRange >> RCC_ICSCR_MSIRANGE_Pos) + 1U)))
505                            >> AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos)];
506 
507         /* Configure the source of time base considering new system clocks settings*/
508         status = HAL_InitTick(uwTickPrio);
509         if(status != HAL_OK)
510         {
511           return status;
512         }
513       }
514     }
515     else
516     {
517       /* Check MSI State */
518       assert_param(IS_RCC_MSI(RCC_OscInitStruct->MSIState));
519 
520       /* Check the MSI State */
521       if(RCC_OscInitStruct->MSIState != RCC_MSI_OFF)
522       {
523         /* Enable the Multi Speed oscillator (MSI). */
524         __HAL_RCC_MSI_ENABLE();
525 
526         /* Get Start Tick */
527         tickstart = HAL_GetTick();
528 
529         /* Wait till MSI is ready */
530         while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == 0U)
531         {
532           if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
533           {
534             return HAL_TIMEOUT;
535           }
536         }
537         /* Check MSICalibrationValue and MSIClockRange input parameters */
538         assert_param(IS_RCC_MSICALIBRATION_VALUE(RCC_OscInitStruct->MSICalibrationValue));
539         assert_param(IS_RCC_MSI_CLOCK_RANGE(RCC_OscInitStruct->MSIClockRange));
540 
541         /* Selects the Multiple Speed oscillator (MSI) clock range .*/
542         __HAL_RCC_MSI_RANGE_CONFIG(RCC_OscInitStruct->MSIClockRange);
543          /* Adjusts the Multiple Speed oscillator (MSI) calibration value.*/
544         __HAL_RCC_MSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->MSICalibrationValue);
545 
546       }
547       else
548       {
549         /* Disable the Multi Speed oscillator (MSI). */
550         __HAL_RCC_MSI_DISABLE();
551 
552         /* Get Start Tick */
553         tickstart = HAL_GetTick();
554 
555         /* Wait till MSI is ready */
556         while(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) != 0U)
557         {
558           if((HAL_GetTick() - tickstart) > MSI_TIMEOUT_VALUE)
559           {
560             return HAL_TIMEOUT;
561           }
562         }
563       }
564     }
565   }
566   /*------------------------------ LSI Configuration -------------------------*/
567   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
568   {
569     /* Check the parameters */
570     assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
571 
572     /* Check the LSI State */
573     if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
574     {
575       /* Enable the Internal Low Speed oscillator (LSI). */
576       __HAL_RCC_LSI_ENABLE();
577 
578       /* Get Start Tick */
579       tickstart = HAL_GetTick();
580 
581       /* Wait till LSI is ready */
582       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == 0U)
583       {
584         if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
585         {
586           return HAL_TIMEOUT;
587         }
588       }
589     }
590     else
591     {
592       /* Disable the Internal Low Speed oscillator (LSI). */
593       __HAL_RCC_LSI_DISABLE();
594 
595       /* Get Start Tick */
596       tickstart = HAL_GetTick();
597 
598       /* Wait till LSI is disabled */
599       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != 0U)
600       {
601         if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
602         {
603           return HAL_TIMEOUT;
604         }
605       }
606     }
607   }
608   /*------------------------------ LSE Configuration -------------------------*/
609   if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
610   {
611     FlagStatus       pwrclkchanged = RESET;
612 
613     /* Check the parameters */
614     assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));
615 
616     /* Update LSE configuration in Backup Domain control register    */
617     /* Requires to enable write access to Backup Domain of necessary */
618     if(__HAL_RCC_PWR_IS_CLK_DISABLED())
619     {
620       __HAL_RCC_PWR_CLK_ENABLE();
621       pwrclkchanged = SET;
622     }
623 
624     if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
625     {
626       /* Enable write access to Backup domain */
627       SET_BIT(PWR->CR, PWR_CR_DBP);
628 
629       /* Wait for Backup domain Write protection disable */
630       tickstart = HAL_GetTick();
631 
632       while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
633       {
634         if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
635         {
636           return HAL_TIMEOUT;
637         }
638       }
639     }
640 
641     /* Set the new LSE configuration -----------------------------------------*/
642     __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
643     /* Check the LSE State */
644     if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
645     {
646       /* Get Start Tick */
647       tickstart = HAL_GetTick();
648 
649       /* Wait till LSE is ready */
650       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == 0U)
651       {
652         if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
653         {
654           return HAL_TIMEOUT;
655         }
656       }
657     }
658     else
659     {
660       /* Get Start Tick */
661       tickstart = HAL_GetTick();
662 
663       /* Wait till LSE is disabled */
664       while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != 0U)
665       {
666         if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
667         {
668           return HAL_TIMEOUT;
669         }
670       }
671     }
672 
673     /* Require to disable power clock if necessary */
674     if(pwrclkchanged == SET)
675     {
676       __HAL_RCC_PWR_CLK_DISABLE();
677     }
678   }
679 
680   /*-------------------------------- PLL Configuration -----------------------*/
681   /* Check the parameters */
682   assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
683   if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
684   {
685     /* Check if the PLL is used as system clock or not */
686     if(sysclk_source != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
687     {
688       if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
689       {
690         /* Check the parameters */
691         assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
692         assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
693         assert_param(IS_RCC_PLL_DIV(RCC_OscInitStruct->PLL.PLLDIV));
694 
695         /* Disable the main PLL. */
696         __HAL_RCC_PLL_DISABLE();
697 
698         /* Get Start Tick */
699         tickstart = HAL_GetTick();
700 
701         /* Wait till PLL is disabled */
702         while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U)
703         {
704           if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
705           {
706             return HAL_TIMEOUT;
707           }
708         }
709 
710         /* Configure the main PLL clock source, multiplication and division factors. */
711         __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
712                              RCC_OscInitStruct->PLL.PLLMUL,
713                              RCC_OscInitStruct->PLL.PLLDIV);
714         /* Enable the main PLL. */
715         __HAL_RCC_PLL_ENABLE();
716 
717         /* Get Start Tick */
718         tickstart = HAL_GetTick();
719 
720         /* Wait till PLL is ready */
721         while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U)
722         {
723           if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
724           {
725             return HAL_TIMEOUT;
726           }
727         }
728       }
729       else
730       {
731         /* Disable the main PLL. */
732         __HAL_RCC_PLL_DISABLE();
733 
734         /* Get Start Tick */
735         tickstart = HAL_GetTick();
736 
737         /* Wait till PLL is disabled */
738         while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != 0U)
739         {
740           if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
741           {
742             return HAL_TIMEOUT;
743           }
744         }
745       }
746     }
747     else
748     {
749       /* Check if there is a request to disable the PLL used as System clock source */
750       if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_OFF)
751       {
752         return HAL_ERROR;
753       }
754       else
755       {
756         /* Do not return HAL_ERROR if request repeats the current configuration */
757         pll_config = RCC->CFGR;
758         if((READ_BIT(pll_config, RCC_CFGR_PLLSRC) != RCC_OscInitStruct->PLL.PLLSource) ||
759            (READ_BIT(pll_config, RCC_CFGR_PLLMUL) != RCC_OscInitStruct->PLL.PLLMUL) ||
760            (READ_BIT(pll_config, RCC_CFGR_PLLDIV) != RCC_OscInitStruct->PLL.PLLDIV))
761         {
762           return HAL_ERROR;
763         }
764       }
765     }
766   }
767 
768   return HAL_OK;
769 }
770 
771 /**
772   * @brief  Initializes the CPU, AHB and APB buses clocks according to the specified
773   *         parameters in the RCC_ClkInitStruct.
774   * @param  RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
775   *         contains the configuration information for the RCC peripheral.
776   * @param  FLatency FLASH Latency
777   *          The value of this parameter depend on device used within the same series
778   * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
779   *         and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
780   *
781   * @note   The MSI is used (enabled by hardware) as system clock source after
782   *         start-up from Reset, wake-up from STOP and STANDBY mode, or in case
783   *         of failure of the HSE used directly or indirectly as system clock
784   *         (if the Clock Security System CSS is enabled).
785   *
786   * @note   A switch from one clock source to another occurs only if the target
787   *         clock source is ready (clock stable after start-up delay or PLL locked).
788   *         If a clock source which is not yet ready is selected, the switch will
789   *         occur when the clock source will be ready.
790   *         You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
791   *         currently used as system clock source.
792   * @note   Depending on the device voltage range, the software has to set correctly
793   *         HPRE[3:0] bits to ensure that HCLK not exceed the maximum allowed frequency
794   *         (for more details refer to section above "Initialization/de-initialization functions")
795   * @retval HAL status
796   */
HAL_RCC_ClockConfig(RCC_ClkInitTypeDef * RCC_ClkInitStruct,uint32_t FLatency)797 HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
798 {
799   uint32_t tickstart;
800   HAL_StatusTypeDef status;
801 
802   /* Check the parameters */
803   if(RCC_ClkInitStruct == NULL)
804   {
805     return HAL_ERROR;
806   }
807 
808   assert_param(IS_FLASH_LATENCY(FLatency));
809 
810   /* To correctly read data from FLASH memory, the number of wait states (LATENCY)
811   must be correctly programmed according to the frequency of the CPU clock
812   (HCLK) and the supply voltage of the device. */
813 
814   /* Increasing the number of wait states because of higher CPU frequency */
815   if(FLatency > __HAL_FLASH_GET_LATENCY())
816   {
817     /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
818     __HAL_FLASH_SET_LATENCY(FLatency);
819 
820     /* Check that the new number of wait states is taken into account to access the Flash
821     memory by reading the FLASH_ACR register */
822     if(__HAL_FLASH_GET_LATENCY() != FLatency)
823     {
824       return HAL_ERROR;
825     }
826   }
827 
828   /*-------------------------- HCLK Configuration --------------------------*/
829   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
830   {
831     assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
832     MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
833   }
834 
835   /*------------------------- SYSCLK Configuration ---------------------------*/
836   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
837   {
838     assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
839 
840     /* HSE is selected as System Clock Source */
841     if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
842     {
843       /* Check the HSE ready flag */
844       if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == 0U)
845       {
846         return HAL_ERROR;
847       }
848     }
849     /* PLL is selected as System Clock Source */
850     else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
851     {
852       /* Check the PLL ready flag */
853       if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == 0U)
854       {
855         return HAL_ERROR;
856       }
857     }
858     /* HSI is selected as System Clock Source */
859     else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI)
860     {
861       /* Check the HSI ready flag */
862       if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == 0U)
863       {
864         return HAL_ERROR;
865       }
866     }
867     /* MSI is selected as System Clock Source */
868     else
869     {
870       /* Check the MSI ready flag */
871       if(__HAL_RCC_GET_FLAG(RCC_FLAG_MSIRDY) == 0U)
872       {
873         return HAL_ERROR;
874       }
875     }
876     __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);
877 
878     /* Get Start Tick */
879     tickstart = HAL_GetTick();
880 
881     if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
882     {
883       while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
884       {
885         if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
886         {
887           return HAL_TIMEOUT;
888         }
889       }
890     }
891     else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
892     {
893       while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
894       {
895         if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
896         {
897           return HAL_TIMEOUT;
898         }
899       }
900     }
901     else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSI)
902     {
903       while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
904       {
905         if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
906         {
907           return HAL_TIMEOUT;
908         }
909       }
910     }
911     else
912     {
913       while(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_MSI)
914       {
915         if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
916         {
917           return HAL_TIMEOUT;
918         }
919       }
920     }
921   }
922   /* Decreasing the number of wait states because of lower CPU frequency */
923   if(FLatency < __HAL_FLASH_GET_LATENCY())
924   {
925     /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
926     __HAL_FLASH_SET_LATENCY(FLatency);
927 
928     /* Check that the new number of wait states is taken into account to access the Flash
929     memory by reading the FLASH_ACR register */
930     if(__HAL_FLASH_GET_LATENCY() != FLatency)
931     {
932       return HAL_ERROR;
933     }
934   }
935 
936   /*-------------------------- PCLK1 Configuration ---------------------------*/
937   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
938   {
939     assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
940     MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
941   }
942 
943   /*-------------------------- PCLK2 Configuration ---------------------------*/
944   if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
945   {
946     assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
947     MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3U));
948   }
949 
950   /* Update the SystemCoreClock global variable */
951   SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos];
952 
953   /* Configure the source of time base considering new system clocks settings*/
954   status = HAL_InitTick(uwTickPrio);
955 
956   return status;
957 }
958 
959 /**
960   * @}
961   */
962 
963 /** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
964   *  @brief   RCC clocks control functions
965   *
966   @verbatim
967   ===============================================================================
968                   ##### Peripheral Control functions #####
969   ===============================================================================
970     [..]
971     This subsection provides a set of functions allowing to control the RCC Clocks
972     frequencies.
973 
974   @endverbatim
975   * @{
976   */
977 
978 /**
979   * @brief  Selects the clock source to output on MCO pin.
980   * @note   MCO pin should be configured in alternate function mode.
981   * @param  RCC_MCOx specifies the output direction for the clock source.
982   *          This parameter can be one of the following values:
983   *            @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
984   * @param  RCC_MCOSource specifies the clock source to output.
985   *          This parameter can be one of the following values:
986   *            @arg @ref RCC_MCO1SOURCE_NOCLOCK     No clock selected as MCO clock
987   *            @arg @ref RCC_MCO1SOURCE_SYSCLK      System clock selected as MCO clock
988   *            @arg @ref RCC_MCO1SOURCE_HSI         HSI selected as MCO clock
989   *            @arg @ref RCC_MCO1SOURCE_HSE         HSE selected as MCO clock
990   *            @arg @ref RCC_MCO1SOURCE_MSI         MSI oscillator clock selected as MCO clock
991   *            @arg @ref RCC_MCO1SOURCE_PLLCLK      PLL clock selected as MCO clock
992   *            @arg @ref RCC_MCO1SOURCE_LSI         LSI clock selected as MCO clock
993   *            @arg @ref RCC_MCO1SOURCE_LSE         LSE clock selected as MCO clock
994   * @param  RCC_MCODiv specifies the MCO DIV.
995   *          This parameter can be one of the following values:
996   *            @arg @ref RCC_MCODIV_1 no division applied to MCO clock
997   *            @arg @ref RCC_MCODIV_2  division by 2 applied to MCO clock
998   *            @arg @ref RCC_MCODIV_4  division by 4 applied to MCO clock
999   *            @arg @ref RCC_MCODIV_8  division by 8 applied to MCO clock
1000   *            @arg @ref RCC_MCODIV_16 division by 16 applied to MCO clock
1001   * @retval None
1002   */
HAL_RCC_MCOConfig(uint32_t RCC_MCOx,uint32_t RCC_MCOSource,uint32_t RCC_MCODiv)1003 void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
1004 {
1005   GPIO_InitTypeDef gpio;
1006 
1007   /* Check the parameters */
1008   assert_param(IS_RCC_MCO(RCC_MCOx));
1009   assert_param(IS_RCC_MCODIV(RCC_MCODiv));
1010   assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));
1011 
1012   /* Configure the MCO1 pin in alternate function mode */
1013   gpio.Mode      = GPIO_MODE_AF_PP;
1014   gpio.Speed     = GPIO_SPEED_FREQ_HIGH;
1015   gpio.Pull      = GPIO_NOPULL;
1016   gpio.Pin       = MCO1_PIN;
1017   gpio.Alternate = GPIO_AF0_MCO;
1018 
1019   /* MCO1 Clock Enable */
1020   MCO1_CLK_ENABLE();
1021 
1022   HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);
1023 
1024   /* Configure the MCO clock source */
1025   __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
1026 }
1027 
1028 /**
1029   * @brief  Enables the Clock Security System.
1030   * @note   If a failure is detected on the HSE oscillator clock, this oscillator
1031   *         is automatically disabled and an interrupt is generated to inform the
1032   *         software about the failure (Clock Security System Interrupt, CSSI),
1033   *         allowing the MCU to perform rescue operations. The CSSI is linked to
1034   *         the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.
1035   * @retval None
1036   */
HAL_RCC_EnableCSS(void)1037 void HAL_RCC_EnableCSS(void)
1038 {
1039   *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
1040 }
1041 
1042 /**
1043   * @brief  Disables the Clock Security System.
1044   * @retval None
1045   */
HAL_RCC_DisableCSS(void)1046 void HAL_RCC_DisableCSS(void)
1047 {
1048   *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
1049 }
1050 
1051 /**
1052   * @brief  Returns the SYSCLK frequency
1053   * @note   The system frequency computed by this function is not the real
1054   *         frequency in the chip. It is calculated based on the predefined
1055   *         constant and the selected clock source:
1056   * @note     If SYSCLK source is MSI, function returns a value based on MSI
1057   *             Value as defined by the MSI range.
1058   * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
1059   * @note     If SYSCLK source is HSE, function returns a value based on HSE_VALUE(**)
1060   * @note     If SYSCLK source is PLL, function returns a value based on HSE_VALUE(**)
1061   *           or HSI_VALUE(*) multiplied/divided by the PLL factors.
1062   * @note     (*) HSI_VALUE is a constant defined in stm32l1xx_hal_conf.h file (default value
1063   *               16 MHz) but the real value may vary depending on the variations
1064   *               in voltage and temperature.
1065   * @note     (**) HSE_VALUE is a constant defined in stm32l1xx_hal_conf.h file (default value
1066   *                8 MHz), user has to ensure that HSE_VALUE is same as the real
1067   *                frequency of the crystal used. Otherwise, this function may
1068   *                have wrong result.
1069   *
1070   * @note   The result of this function could be not correct when using fractional
1071   *         value for HSE crystal.
1072   *
1073   * @note   This function can be used by the user application to compute the
1074   *         baud-rate for the communication peripherals or configure other parameters.
1075   *
1076   * @note   Each time SYSCLK changes, this function must be called to update the
1077   *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
1078   *
1079   * @retval SYSCLK frequency
1080   */
HAL_RCC_GetSysClockFreq(void)1081 uint32_t HAL_RCC_GetSysClockFreq(void)
1082 {
1083   uint32_t tmpreg, pllm, plld, pllvco, msiclkrange, sysclockfreq;
1084 
1085   tmpreg = RCC->CFGR;
1086 
1087   /* Get SYSCLK source -------------------------------------------------------*/
1088   switch (tmpreg & RCC_CFGR_SWS)
1089   {
1090     case RCC_SYSCLKSOURCE_STATUS_HSI:  /* HSI used as system clock source */
1091     {
1092       sysclockfreq = HSI_VALUE;
1093       break;
1094     }
1095     case RCC_SYSCLKSOURCE_STATUS_HSE:  /* HSE used as system clock */
1096     {
1097       sysclockfreq = HSE_VALUE;
1098       break;
1099     }
1100     case RCC_SYSCLKSOURCE_STATUS_PLLCLK:  /* PLL used as system clock */
1101     {
1102       pllm = PLLMulTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMUL) >> RCC_CFGR_PLLMUL_Pos];
1103       plld = ((uint32_t)(tmpreg & RCC_CFGR_PLLDIV) >> RCC_CFGR_PLLDIV_Pos) + 1U;
1104       if (__HAL_RCC_GET_PLL_OSCSOURCE() != RCC_PLLSOURCE_HSI)
1105       {
1106         /* HSE used as PLL clock source */
1107         pllvco = (uint32_t)(((uint64_t)HSE_VALUE * (uint64_t)pllm) / (uint64_t)plld);
1108       }
1109       else
1110       {
1111         /* HSI used as PLL clock source */
1112         pllvco = (uint32_t)(((uint64_t)HSI_VALUE * (uint64_t)pllm) / (uint64_t)plld);
1113       }
1114       sysclockfreq = pllvco;
1115       break;
1116     }
1117     case RCC_SYSCLKSOURCE_STATUS_MSI:  /* MSI used as system clock source */
1118     default: /* MSI used as system clock */
1119     {
1120       msiclkrange = (RCC->ICSCR & RCC_ICSCR_MSIRANGE ) >> RCC_ICSCR_MSIRANGE_Pos;
1121       sysclockfreq = (32768U * (1UL << (msiclkrange + 1U)));
1122       break;
1123     }
1124   }
1125   return sysclockfreq;
1126 }
1127 
1128 /**
1129   * @brief  Returns the HCLK frequency
1130   * @note   Each time HCLK changes, this function must be called to update the
1131   *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
1132   *
1133   * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency
1134   *         and updated within this function
1135   * @retval HCLK frequency
1136   */
HAL_RCC_GetHCLKFreq(void)1137 uint32_t HAL_RCC_GetHCLKFreq(void)
1138 {
1139   return SystemCoreClock;
1140 }
1141 
1142 /**
1143   * @brief  Returns the PCLK1 frequency
1144   * @note   Each time PCLK1 changes, this function must be called to update the
1145   *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
1146   * @retval PCLK1 frequency
1147   */
HAL_RCC_GetPCLK1Freq(void)1148 uint32_t HAL_RCC_GetPCLK1Freq(void)
1149 {
1150   /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
1151   return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos]);
1152 }
1153 
1154 /**
1155   * @brief  Returns the PCLK2 frequency
1156   * @note   Each time PCLK2 changes, this function must be called to update the
1157   *         right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
1158   * @retval PCLK2 frequency
1159   */
HAL_RCC_GetPCLK2Freq(void)1160 uint32_t HAL_RCC_GetPCLK2Freq(void)
1161 {
1162   /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
1163   return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos]);
1164 }
1165 
1166 /**
1167   * @brief  Configures the RCC_OscInitStruct according to the internal
1168   * RCC configuration registers.
1169   * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
1170   * will be configured.
1171   * @retval None
1172   */
HAL_RCC_GetOscConfig(RCC_OscInitTypeDef * RCC_OscInitStruct)1173 void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
1174 {
1175   /* Check the parameters */
1176   assert_param(RCC_OscInitStruct != (void *)NULL);
1177 
1178   /* Set all possible values for the Oscillator type parameter ---------------*/
1179   RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI  \
1180                   | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_MSI;
1181 
1182 
1183   /* Get the HSE configuration -----------------------------------------------*/
1184   if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
1185   {
1186     RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
1187   }
1188   else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
1189   {
1190     RCC_OscInitStruct->HSEState = RCC_HSE_ON;
1191   }
1192   else
1193   {
1194     RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
1195   }
1196 
1197   /* Get the HSI configuration -----------------------------------------------*/
1198   if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
1199   {
1200     RCC_OscInitStruct->HSIState = RCC_HSI_ON;
1201   }
1202   else
1203   {
1204     RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
1205   }
1206 
1207   RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_HSITRIM) >> RCC_ICSCR_HSITRIM_Pos);
1208 
1209   /* Get the MSI configuration -----------------------------------------------*/
1210   if((RCC->CR &RCC_CR_MSION) == RCC_CR_MSION)
1211   {
1212     RCC_OscInitStruct->MSIState = RCC_MSI_ON;
1213   }
1214   else
1215   {
1216     RCC_OscInitStruct->MSIState = RCC_MSI_OFF;
1217   }
1218 
1219   RCC_OscInitStruct->MSICalibrationValue = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSITRIM) >> RCC_ICSCR_MSITRIM_Pos);
1220   RCC_OscInitStruct->MSIClockRange = (uint32_t)((RCC->ICSCR & RCC_ICSCR_MSIRANGE));
1221 
1222   /* Get the LSE configuration -----------------------------------------------*/
1223   if((RCC->CSR &RCC_CSR_LSEBYP) == RCC_CSR_LSEBYP)
1224   {
1225     RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
1226   }
1227   else if((RCC->CSR &RCC_CSR_LSEON) == RCC_CSR_LSEON)
1228   {
1229     RCC_OscInitStruct->LSEState = RCC_LSE_ON;
1230   }
1231   else
1232   {
1233     RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
1234   }
1235 
1236   /* Get the LSI configuration -----------------------------------------------*/
1237   if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
1238   {
1239     RCC_OscInitStruct->LSIState = RCC_LSI_ON;
1240   }
1241   else
1242   {
1243     RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
1244   }
1245 
1246 
1247   /* Get the PLL configuration -----------------------------------------------*/
1248   if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
1249   {
1250     RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
1251   }
1252   else
1253   {
1254     RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
1255   }
1256   RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
1257   RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMUL);
1258   RCC_OscInitStruct->PLL.PLLDIV = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLDIV);
1259 }
1260 
1261 /**
1262   * @brief  Get the RCC_ClkInitStruct according to the internal
1263   * RCC configuration registers.
1264   * @param  RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that
1265   * contains the current clock configuration.
1266   * @param  pFLatency Pointer on the Flash Latency.
1267   * @retval None
1268   */
HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef * RCC_ClkInitStruct,uint32_t * pFLatency)1269 void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
1270 {
1271   /* Check the parameters */
1272   assert_param(RCC_ClkInitStruct != (void *)NULL);
1273   assert_param(pFLatency != (void *)NULL);
1274 
1275   /* Set all possible values for the Clock type parameter --------------------*/
1276   RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
1277 
1278   /* Get the SYSCLK configuration --------------------------------------------*/
1279   RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
1280 
1281   /* Get the HCLK configuration ----------------------------------------------*/
1282   RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE);
1283 
1284   /* Get the APB1 configuration ----------------------------------------------*/
1285   RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);
1286 
1287   /* Get the APB2 configuration ----------------------------------------------*/
1288   RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3U);
1289 
1290   /* Get the Flash Wait State (Latency) configuration ------------------------*/
1291   *pFLatency = __HAL_FLASH_GET_LATENCY();
1292 }
1293 
1294 /**
1295   * @brief This function handles the RCC CSS interrupt request.
1296   * @note This API should be called under the NMI_Handler().
1297   * @retval None
1298   */
HAL_RCC_NMI_IRQHandler(void)1299 void HAL_RCC_NMI_IRQHandler(void)
1300 {
1301   /* Check RCC CSSF flag  */
1302   if(__HAL_RCC_GET_IT(RCC_IT_CSS))
1303   {
1304     /* RCC Clock Security System interrupt user callback */
1305     HAL_RCC_CSSCallback();
1306 
1307     /* Clear RCC CSS pending bit */
1308     __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
1309   }
1310 }
1311 
1312 /**
1313   * @brief  RCC Clock Security System interrupt callback
1314   * @retval none
1315   */
HAL_RCC_CSSCallback(void)1316 __weak void HAL_RCC_CSSCallback(void)
1317 {
1318   /* NOTE : This function Should not be modified, when the callback is needed,
1319     the HAL_RCC_CSSCallback could be implemented in the user file
1320     */
1321 }
1322 
1323 /**
1324   * @}
1325   */
1326 
1327 /**
1328   * @}
1329   */
1330 
1331 /* Private function prototypes -----------------------------------------------*/
1332 /** @addtogroup RCC_Private_Functions
1333   * @{
1334   */
1335 /**
1336   * @brief  Update number of Flash wait states in line with MSI range and current
1337             voltage range
1338   * @param  MSIrange  MSI range value from RCC_MSIRANGE_0 to RCC_MSIRANGE_6
1339   * @retval HAL status
1340   */
RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange)1341 static HAL_StatusTypeDef RCC_SetFlashLatencyFromMSIRange(uint32_t MSIrange)
1342 {
1343   uint32_t vos;
1344   uint32_t latency = FLASH_LATENCY_0;  /* default value 0WS */
1345 
1346   /* HCLK can reach 4 MHz only if AHB prescaler = 1 */
1347   if (READ_BIT(RCC->CFGR, RCC_CFGR_HPRE) == RCC_SYSCLK_DIV1)
1348   {
1349     if(__HAL_RCC_PWR_IS_CLK_ENABLED())
1350     {
1351       vos = READ_BIT(PWR->CR, PWR_CR_VOS);
1352     }
1353     else
1354     {
1355       __HAL_RCC_PWR_CLK_ENABLE();
1356       vos = READ_BIT(PWR->CR, PWR_CR_VOS);
1357       __HAL_RCC_PWR_CLK_DISABLE();
1358     }
1359 
1360     /* Check if need to set latency 1 only for Range 3 & HCLK = 4MHz */
1361     if((vos == PWR_REGULATOR_VOLTAGE_SCALE3) && (MSIrange == RCC_MSIRANGE_6))
1362     {
1363       latency = FLASH_LATENCY_1; /* 1WS */
1364     }
1365   }
1366 
1367   __HAL_FLASH_SET_LATENCY(latency);
1368 
1369   /* Check that the new number of wait states is taken into account to access the Flash
1370      memory by reading the FLASH_ACR register */
1371   if(__HAL_FLASH_GET_LATENCY() != latency)
1372   {
1373     return HAL_ERROR;
1374   }
1375 
1376   return HAL_OK;
1377 }
1378 
1379 /**
1380   * @}
1381   */
1382 
1383 #endif /* HAL_RCC_MODULE_ENABLED */
1384 /**
1385   * @}
1386   */
1387 
1388 /**
1389   * @}
1390   */
1391 
1392