1 /**
2   ******************************************************************************
3   * @file    stm32l1xx_hal_pwr.c
4   * @author  MCD Application Team
5   * @brief   PWR HAL module driver.
6   *
7   *          This file provides firmware functions to manage the following
8   *          functionalities of the Power Controller (PWR) peripheral:
9   *           + Initialization/de-initialization functions
10   *           + Peripheral Control functions
11   *
12   ******************************************************************************
13   * @attention
14   *
15   * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
16   * All rights reserved.</center></h2>
17   *
18   * This software component is licensed by ST under BSD 3-Clause license,
19   * the "License"; You may not use this file except in compliance with the
20   * License. You may obtain a copy of the License at:
21   *                        opensource.org/licenses/BSD-3-Clause
22   *
23   ******************************************************************************
24   */
25 
26 /* Includes ------------------------------------------------------------------*/
27 #include "stm32l1xx_hal.h"
28 
29 /** @addtogroup STM32L1xx_HAL_Driver
30   * @{
31   */
32 
33 /** @defgroup PWR PWR
34   * @brief    PWR HAL module driver
35   * @{
36   */
37 
38 #ifdef HAL_PWR_MODULE_ENABLED
39 
40 /* Private typedef -----------------------------------------------------------*/
41 /* Private define ------------------------------------------------------------*/
42 #define PVD_MODE_IT               (0x00010000U)
43 #define PVD_MODE_EVT              (0x00020000U)
44 #define PVD_RISING_EDGE           (0x00000001U)
45 #define PVD_FALLING_EDGE          (0x00000002U)
46 
47 /* Private macro -------------------------------------------------------------*/
48 /* Private variables ---------------------------------------------------------*/
49 /* Private function prototypes -----------------------------------------------*/
50 /* Private functions ---------------------------------------------------------*/
51 
52 /** @defgroup PWR_Exported_Functions PWR Exported Functions
53   * @{
54   */
55 
56 /** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
57   *  @brief   Initialization and de-initialization functions
58   *
59 @verbatim
60  ===============================================================================
61               ##### Initialization and de-initialization functions #####
62  ===============================================================================
63     [..]
64       After reset, the backup domain (RTC registers, RTC backup data
65       registers) is protected against possible unwanted
66       write accesses.
67       To enable access to the RTC Domain and RTC registers, proceed as follows:
68         (+) Enable the Power Controller (PWR) APB1 interface clock using the
69             __HAL_RCC_PWR_CLK_ENABLE() macro.
70         (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
71 
72 @endverbatim
73   * @{
74   */
75 
76 /**
77   * @brief  Deinitializes the PWR peripheral registers to their default reset values.
78   * @note   Before calling this function, the VOS[1:0] bits should be configured
79   *         to "10" and the system frequency has to be configured accordingly.
80   *         To configure the VOS[1:0] bits, use the PWR_VoltageScalingConfig()
81   *         function.
82   * @note   ULP and FWU bits are not reset by this function.
83   * @retval None
84   */
HAL_PWR_DeInit(void)85 void HAL_PWR_DeInit(void)
86 {
87   __HAL_RCC_PWR_FORCE_RESET();
88   __HAL_RCC_PWR_RELEASE_RESET();
89 }
90 
91 /**
92   * @brief  Enables access to the backup domain (RTC registers, RTC
93   *         backup data registers ).
94   * @note   If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
95   *         Backup Domain Access should be kept enabled.
96   * @retval None
97   */
HAL_PWR_EnableBkUpAccess(void)98 void HAL_PWR_EnableBkUpAccess(void)
99 {
100   /* Enable access to RTC and backup registers */
101   *(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
102 }
103 
104 /**
105   * @brief  Disables access to the backup domain (RTC registers, RTC
106   *         backup data registers).
107   * @note   If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
108   *         Backup Domain Access should be kept enabled.
109   * @retval None
110   */
HAL_PWR_DisableBkUpAccess(void)111 void HAL_PWR_DisableBkUpAccess(void)
112 {
113   /* Disable access to RTC and backup registers */
114   *(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
115 }
116 
117 /**
118   * @}
119   */
120 
121 /** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
122   * @brief    Low Power modes configuration functions
123   *
124 @verbatim
125 
126  ===============================================================================
127                  ##### Peripheral Control functions #####
128  ===============================================================================
129 
130     *** PVD configuration ***
131     =========================
132     [..]
133       (+) The PVD is used to monitor the VDD power supply by comparing it to a
134           threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
135       (+) The PVD can use an external input analog voltage (PVD_IN) which is compared
136       internally to VREFINT. The PVD_IN (PB7) has to be configured in Analog mode
137       when PWR_PVDLevel_7 is selected (PLS[2:0] = 111).
138 
139       (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
140           than the PVD threshold. This event is internally connected to the EXTI
141           line16 and can generate an interrupt if enabled. This is done through
142           __HAL_PWR_PVD_EXTI_ENABLE_IT() macro.
143       (+) The PVD is stopped in Standby mode.
144 
145     *** WakeUp pin configuration ***
146     ================================
147     [..]
148       (+) WakeUp pin is used to wake up the system from Standby mode. This pin is
149           forced in input pull-down configuration and is active on rising edges.
150       (+) There are two or three WakeUp pins:
151           WakeUp Pin 1 on PA.00.
152           WakeUp Pin 2 on PC.13.
153           WakeUp Pin 3 on PE.06. : Only on product with GPIOE available
154 
155     [..]
156     *** Main and Backup Regulators configuration ***
157     ================================================
158 
159       (+) The main internal regulator can be configured to have a tradeoff between
160           performance and power consumption when the device does not operate at
161           the maximum frequency. This is done through __HAL_PWR_VOLTAGESCALING_CONFIG()
162           macro which configure VOS bit in PWR_CR register:
163         (++) When this bit is set (Regulator voltage output Scale 1 mode selected)
164              the System frequency can go up to 32 MHz.
165         (++) When this bit is reset (Regulator voltage output Scale 2 mode selected)
166              the System frequency can go up to 16 MHz.
167         (++) When this bit is reset (Regulator voltage output Scale 3 mode selected)
168              the System frequency can go up to 4.2 MHz.
169 
170         Refer to the datasheets for more details.
171 
172     *** Low Power modes configuration ***
173     =====================================
174      [..]
175       The device features 5 low-power modes:
176       (+) Low power run mode: regulator in low power mode, limited clock frequency,
177         limited number of peripherals running.
178       (+) Sleep mode: Cortex-M3 core stopped, peripherals kept running.
179       (+) Low power sleep mode: Cortex-M3 core stopped, limited clock frequency,
180          limited number of peripherals running, regulator in low power mode.
181       (+) Stop mode: All clocks are stopped, regulator running, regulator in low power mode.
182       (+) Standby mode: VCORE domain powered off
183 
184    *** Low power run mode ***
185    =========================
186     [..]
187        To further reduce the consumption when the system is in Run mode, the regulator can be
188         configured in low power mode. In this mode, the system frequency should not exceed
189         MSI frequency range1.
190         In Low power run mode, all I/O pins keep the same state as in Run mode.
191 
192       (+) Entry:
193         (++) VCORE in range2
194         (++) Decrease the system frequency tonot exceed the frequency of MSI frequency range1.
195         (++) The regulator is forced in low power mode using the HAL_PWREx_EnableLowPowerRunMode()
196              function.
197       (+) Exit:
198         (++) The regulator is forced in Main regulator mode using the HAL_PWREx_DisableLowPowerRunMode()
199               function.
200         (++) Increase the system frequency if needed.
201 
202    *** Sleep mode ***
203    ==================
204     [..]
205       (+) Entry:
206           The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
207               functions with
208           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
209           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
210 
211       (+) Exit:
212         (++) Any peripheral interrupt acknowledged by the nested vectored interrupt
213               controller (NVIC) can wake up the device from Sleep mode.
214 
215    *** Low power sleep mode ***
216    ============================
217     [..]
218       (+) Entry:
219           The Low power sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_LOWPOWERREGULATOR_ON, PWR_SLEEPENTRY_WFx)
220               functions with
221           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
222           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
223        (+) The Flash memory can be switched off by using the control bits (SLEEP_PD in the FLASH_ACR register.
224              This reduces power consumption but increases the wake-up time.
225 
226       (+) Exit:
227         (++) If the WFI instruction was used to enter Low power sleep mode, any peripheral interrupt
228               acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device
229               from Low power sleep mode. If the WFE instruction was used to enter Low power sleep mode,
230               the MCU exits Sleep mode as soon as an event occurs.
231 
232    *** Stop mode ***
233    =================
234     [..]
235       The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral
236       clock gating. The voltage regulator can be configured either in normal or low-power mode.
237       In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI and
238       the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved.
239       To get the lowest consumption in Stop mode, the internal Flash memory also enters low
240       power mode. When the Flash memory is in power-down mode, an additional startup delay is
241       incurred when waking up from Stop mode.
242       To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
243       sensor can be switched off before entering Stop mode. They can be switched on again by
244       software after exiting Stop mode using the ULP bit in the PWR_CR register.
245       In Stop mode, all I/O pins keep the same state as in Run mode.
246 
247       (+) Entry:
248            The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI )
249              function with:
250           (++) Main regulator ON.
251           (++) Low Power regulator ON.
252           (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
253           (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
254       (+) Exit:
255         (++) By issuing an interrupt or a wakeup event, the MSI RC oscillator is selected as system clock.
256 
257    *** Standby mode ***
258    ====================
259      [..]
260       The Standby mode allows to achieve the lowest power consumption. It is based on the
261       Cortex-M3 deepsleep mode, with the voltage regulator disabled. The VCORE domain is
262       consequently powered off. The PLL, the MSI, the HSI oscillator and the HSE oscillator are
263       also switched off. SRAM and register contents are lost except for the RTC registers, RTC
264       backup registers and Standby circuitry.
265 
266       To minimize the consumption In Standby mode, VREFINT, the BOR, PVD, and temperature
267        sensor can be switched off before entering the Standby mode. They can be switched
268        on again by software after exiting the Standby mode.
269        function.
270 
271       (+) Entry:
272         (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
273       (+) Exit:
274         (++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
275              tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
276 
277    *** Auto-wakeup (AWU) from low-power mode ***
278    =============================================
279     [..]
280       The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
281       Wakeup event, a tamper event, a time-stamp event, or a comparator event,
282       without depending on an external interrupt (Auto-wakeup mode).
283 
284     (+) RTC auto-wakeup (AWU) from the Stop mode
285         (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
286              (+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
287                    or Event modes) and Enable the RTC Alarm Interrupt using the HAL_RTC_SetAlarm_IT()
288                    function
289              (+++) Configure the RTC to generate the RTC alarm using the HAL_RTC_Init()
290                    and HAL_RTC_SetTime() functions.
291         (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
292              is necessary to:
293              (+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt or Event modes) and
294                    Enable the RTC Tamper or time stamp Interrupt using the HAL_RTCEx_SetTamper_IT()
295                    or HAL_RTCEx_SetTimeStamp_IT() functions.
296         (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
297              (+++) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt or Event modes) and
298                    Enable the RTC WakeUp Interrupt using the HAL_RTCEx_SetWakeUpTimer_IT() function.
299              (+++) Configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer()
300                    function.
301 
302     (+) RTC auto-wakeup (AWU) from the Standby mode
303         (++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
304              (+++) Enable the RTC Alarm Interrupt using the HAL_RTC_SetAlarm_IT() function.
305              (+++) Configure the RTC to generate the RTC alarm using the HAL_RTC_Init()
306                    and HAL_RTC_SetTime() functions.
307         (++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it
308              is necessary to:
309              (+++) Enable the RTC Tamper or time stamp Interrupt and Configure the RTC to
310                    detect the tamper or time stamp event using the HAL_RTCEx_SetTimeStamp_IT()
311                    or HAL_RTCEx_SetTamper_IT()functions.
312         (++) To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
313              (+++) Enable the RTC WakeUp Interrupt and Configure the RTC to generate the RTC WakeUp event
314                    using the HAL_RTCEx_SetWakeUpTimer_IT() and HAL_RTCEx_SetWakeUpTimer() functions.
315 
316     (+) Comparator auto-wakeup (AWU) from the Stop mode
317         (++) To wake up from the Stop mode with an comparator 1 or comparator 2 wakeup
318              event, it is necessary to:
319              (+++) Configure the EXTI Line 21 or EXTI Line 22 for comparator to be sensitive to to the
320                    selected edges (falling, rising or falling and rising) (Interrupt or Event modes) using
321                    the COMP functions.
322              (+++) Configure the comparator to generate the event.
323 
324 
325 
326 @endverbatim
327   * @{
328   */
329 
330 /**
331   * @brief  Configures the voltage threshold detected by the Power Voltage Detector(PVD).
332   * @param  sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
333   *         information for the PVD.
334   * @note   Refer to the electrical characteristics of your device datasheet for
335   *         more details about the voltage threshold corresponding to each
336   *         detection level.
337   * @retval None
338   */
HAL_PWR_ConfigPVD(PWR_PVDTypeDef * sConfigPVD)339 void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
340 {
341   /* Check the parameters */
342   assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
343   assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
344 
345   /* Set PLS[7:5] bits according to PVDLevel value */
346   MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
347 
348   /* Clear any previous config. Keep it clear if no event or IT mode is selected */
349   __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
350   __HAL_PWR_PVD_EXTI_DISABLE_IT();
351   __HAL_PWR_PVD_EXTI_DISABLE_RISING_FALLING_EDGE();
352 
353   /* Configure interrupt mode */
354   if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
355   {
356     __HAL_PWR_PVD_EXTI_ENABLE_IT();
357   }
358 
359   /* Configure event mode */
360   if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
361   {
362     __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
363   }
364 
365   /* Configure the edge */
366   if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
367   {
368     __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
369   }
370 
371   if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
372   {
373     __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
374   }
375 }
376 
377 /**
378   * @brief  Enables the Power Voltage Detector(PVD).
379   * @retval None
380   */
HAL_PWR_EnablePVD(void)381 void HAL_PWR_EnablePVD(void)
382 {
383   /* Enable the power voltage detector */
384   *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
385 }
386 
387 /**
388   * @brief  Disables the Power Voltage Detector(PVD).
389   * @retval None
390   */
HAL_PWR_DisablePVD(void)391 void HAL_PWR_DisablePVD(void)
392 {
393   /* Disable the power voltage detector */
394   *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
395 }
396 
397 /**
398   * @brief Enables the WakeUp PINx functionality.
399   * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
400   *        This parameter can be one of the following values:
401   *           @arg PWR_WAKEUP_PIN1
402   *           @arg PWR_WAKEUP_PIN2
403   *           @arg PWR_WAKEUP_PIN3: Only on product with GPIOE available
404   * @retval None
405   */
HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)406 void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
407 {
408   /* Check the parameter */
409   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
410   /* Enable the EWUPx pin */
411   *(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)ENABLE;
412 }
413 
414 /**
415   * @brief Disables the WakeUp PINx functionality.
416   * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
417   *        This parameter can be one of the following values:
418   *           @arg PWR_WAKEUP_PIN1
419   *           @arg PWR_WAKEUP_PIN2
420   *           @arg PWR_WAKEUP_PIN3: Only on product with GPIOE available
421   * @retval None
422   */
HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)423 void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
424 {
425   /* Check the parameter */
426   assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
427   /* Disable the EWUPx pin */
428   *(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)DISABLE;
429 }
430 
431 /**
432   * @brief Enters Sleep mode.
433   * @note  In Sleep mode, all I/O pins keep the same state as in Run mode.
434   * @param Regulator: Specifies the regulator state in SLEEP mode.
435   *         This parameter can be one of the following values:
436   *            @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON
437   *            @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON
438   * @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
439   *           When WFI entry is used, tick interrupt have to be disabled if not desired as
440   *           the interrupt wake up source.
441   *           This parameter can be one of the following values:
442   *            @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
443   *            @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
444   * @retval None
445   */
HAL_PWR_EnterSLEEPMode(uint32_t Regulator,uint8_t SLEEPEntry)446 void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
447 {
448   /* Check the parameters */
449   assert_param(IS_PWR_REGULATOR(Regulator));
450   assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
451 
452   /* Select the regulator state in Sleep mode: Set PDDS and LPSDSR bit according to PWR_Regulator value */
453   MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPSDSR), Regulator);
454 
455   /* Clear SLEEPDEEP bit of Cortex System Control Register */
456   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
457 
458   /* Select SLEEP mode entry -------------------------------------------------*/
459   if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
460   {
461     /* Request Wait For Interrupt */
462     __WFI();
463   }
464   else
465   {
466     /* Request Wait For Event */
467     __SEV();
468     __WFE();
469     __WFE();
470   }
471 }
472 
473 /**
474   * @brief Enters Stop mode.
475   * @note  In Stop mode, all I/O pins keep the same state as in Run mode.
476   * @note  When exiting Stop mode by using an interrupt or a wakeup event,
477   *        MSI RC oscillator is selected as system clock.
478   * @note  When the voltage regulator operates in low power mode, an additional
479   *         startup delay is incurred when waking up from Stop mode.
480   *         By keeping the internal regulator ON during Stop mode, the consumption
481   *         is higher although the startup time is reduced.
482   * @param Regulator: Specifies the regulator state in Stop mode.
483   *          This parameter can be one of the following values:
484   *            @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
485   *            @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
486   * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
487   *          This parameter can be one of the following values:
488   *            @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
489   *            @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
490   * @retval None
491   */
HAL_PWR_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry)492 void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
493 {
494   /* Check the parameters */
495   assert_param(IS_PWR_REGULATOR(Regulator));
496   assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
497 
498   /* Select the regulator state in Stop mode: Set PDDS and LPSDSR bit according to PWR_Regulator value */
499   MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPSDSR), Regulator);
500 
501   /* Set SLEEPDEEP bit of Cortex System Control Register */
502   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
503 
504   /* Select Stop mode entry --------------------------------------------------*/
505   if(STOPEntry == PWR_STOPENTRY_WFI)
506   {
507     /* Request Wait For Interrupt */
508     __WFI();
509   }
510   else
511   {
512     /* Request Wait For Event */
513     __SEV();
514     __WFE();
515     __WFE();
516   }
517   /* Reset SLEEPDEEP bit of Cortex System Control Register */
518   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
519 }
520 
521 /**
522   * @brief Enters Standby mode.
523   * @note  In Standby mode, all I/O pins are high impedance except for:
524   *          - Reset pad (still available)
525   *          - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
526   *            Alarm out, or RTC clock calibration out.
527   *          - WKUP pin 1 (PA0) if enabled.
528   *          - WKUP pin 2 (PC13) if enabled.
529   *          - WKUP pin 3 (PE6) if enabled.
530   * @retval None
531   */
HAL_PWR_EnterSTANDBYMode(void)532 void HAL_PWR_EnterSTANDBYMode(void)
533 {
534   /* Select Standby mode */
535   SET_BIT(PWR->CR, PWR_CR_PDDS);
536 
537   /* Set SLEEPDEEP bit of Cortex System Control Register */
538   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
539 
540   /* This option is used to ensure that store operations are completed */
541 #if defined ( __CC_ARM)
542   __force_stores();
543 #endif
544   /* Request Wait For Interrupt */
545   __WFI();
546 }
547 
548 
549 /**
550   * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
551   * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
552   *       re-enters SLEEP mode when an interruption handling is over.
553   *       Setting this bit is useful when the processor is expected to run only on
554   *       interruptions handling.
555   * @retval None
556   */
HAL_PWR_EnableSleepOnExit(void)557 void HAL_PWR_EnableSleepOnExit(void)
558 {
559   /* Set SLEEPONEXIT bit of Cortex System Control Register */
560   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
561 }
562 
563 
564 /**
565   * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
566   * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
567   *       re-enters SLEEP mode when an interruption handling is over.
568   * @retval None
569   */
HAL_PWR_DisableSleepOnExit(void)570 void HAL_PWR_DisableSleepOnExit(void)
571 {
572   /* Clear SLEEPONEXIT bit of Cortex System Control Register */
573   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
574 }
575 
576 
577 /**
578   * @brief Enables CORTEX M3 SEVONPEND bit.
579   * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
580   *       WFE to wake up when an interrupt moves from inactive to pended.
581   * @retval None
582   */
HAL_PWR_EnableSEVOnPend(void)583 void HAL_PWR_EnableSEVOnPend(void)
584 {
585   /* Set SEVONPEND bit of Cortex System Control Register */
586   SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
587 }
588 
589 
590 /**
591   * @brief Disables CORTEX M3 SEVONPEND bit.
592   * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
593   *       WFE to wake up when an interrupt moves from inactive to pended.
594   * @retval None
595   */
HAL_PWR_DisableSEVOnPend(void)596 void HAL_PWR_DisableSEVOnPend(void)
597 {
598   /* Clear SEVONPEND bit of Cortex System Control Register */
599   CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
600 }
601 
602 
603 
604 /**
605   * @brief  This function handles the PWR PVD interrupt request.
606   * @note   This API should be called under the PVD_IRQHandler().
607   * @retval None
608   */
HAL_PWR_PVD_IRQHandler(void)609 void HAL_PWR_PVD_IRQHandler(void)
610 {
611   /* Check PWR exti flag */
612   if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
613   {
614     /* PWR PVD interrupt user callback */
615     HAL_PWR_PVDCallback();
616 
617     /* Clear PWR Exti pending bit */
618     __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
619   }
620 }
621 
622 /**
623   * @brief  PWR PVD interrupt callback
624   * @retval None
625   */
HAL_PWR_PVDCallback(void)626 __weak void HAL_PWR_PVDCallback(void)
627 {
628   /* NOTE : This function Should not be modified, when the callback is needed,
629             the HAL_PWR_PVDCallback could be implemented in the user file
630    */
631 }
632 
633 /**
634   * @}
635   */
636 
637 /**
638   * @}
639   */
640 
641 #endif /* HAL_PWR_MODULE_ENABLED */
642 /**
643   * @}
644   */
645 
646 /**
647   * @}
648   */
649 
650 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
651