1 /**
2 ******************************************************************************
3 * @file stm32l0xx_hal_rtc.c
4 * @author MCD Application Team
5 * @brief RTC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Real-Time Clock (RTC) peripheral:
8 * + Initialization and de-initialization functions
9 * + RTC Calendar (Time and Date) configuration functions
10 * + RTC Alarms (Alarm A and Alarm B) configuration functions
11 * + Peripheral Control functions
12 * + Peripheral State functions
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2016 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 @verbatim
26 ==============================================================================
27 ##### RTC and Backup Domain Operating Condition #####
28 ==============================================================================
29 [..] The real-time clock (RTC) and the RTC backup registers can be powered
30 from the VBAT voltage when the main VDD supply is powered off.
31 To retain the content of the RTC backup registers and supply the RTC when
32 VDD is turned off, VBAT pin can be connected to an optional standby
33 voltage supplied by a battery or by another source.
34
35 [..] To allow the RTC operating even when the main digital supply (VDD) is turned
36 off, the VBAT pin powers the following blocks:
37 (#) The RTC
38 (#) The LSE oscillator
39 (#) PC13 to PC15 I/Os, plus PA0 and PE6 I/Os (when available)
40
41 [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
42 the following pins are available:
43 (#) PC14 and PC15 can be used as either GPIO or LSE pins
44 (#) PC13 can be used as a GPIO or as the RTC_AF1 pin
45 (#) PA0 can be used as a GPIO or as the RTC_AF2 pin
46 (#) PE6 can be used as a GPIO or as the RTC_AF3 pin
47
48 [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
49 because VDD is not present), the following pins are available:
50 (#) PC14 and PC15 can be used as LSE pins only
51 (#) PC13 can be used as the RTC_AF1 pin
52 (#) PA0 can be used as the RTC_AF2 pin
53 (#) PE6 can be used as the RTC_AF3 pin
54
55 ##### Backup Domain Reset #####
56 ==================================================================
57 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
58 to their reset values.
59 [..] A backup domain reset is generated when one of the following events occurs:
60 (#) Software reset, triggered by setting the BDRST bit in the
61 RCC Backup domain control register (RCC_BDCR).
62 (#) VDD or VBAT power on, if both supplies have previously been powered off.
63 (#) Tamper detection event resets all data backup registers.
64
65 ##### Backup Domain Access #####
66 ==================================================================
67 [..] After reset, the backup domain (RTC registers, RTC backup data registers
68 is protected against possible unwanted write accesses.
69 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
70 (+) Enable the Power Controller (PWR) APB1 interface clock using the
71 __HAL_RCC_PWR_CLK_ENABLE() macro.
72 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
73 (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() macro.
74 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
75
76 ==============================================================================
77 ##### How to use this driver #####
78 ==============================================================================
79 [..]
80 (+) Enable the RTC domain access (see description in the section above).
81 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
82 format using the HAL_RTC_Init() function.
83
84 *** Time and Date configuration ***
85 ===================================
86 [..]
87 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
88 and HAL_RTC_SetDate() functions.
89 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate()
90 functions.
91 (+) To manage the RTC summer or winter time change, use the following
92 functions:
93 (++) HAL_RTC_DST_Add1Hour() or HAL_RTC_DST_Sub1Hour to add or subtract
94 1 hour from the calendar time.
95 (++) HAL_RTC_DST_SetStoreOperation() or HAL_RTC_DST_ClearStoreOperation
96 to memorize whether the time change has been performed or not.
97
98 *** Alarm configuration ***
99 ===========================
100 [..]
101 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
102 You can also configure the RTC Alarm with interrupt mode using the
103 HAL_RTC_SetAlarm_IT() function.
104 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
105
106 ##### RTC and low power modes #####
107 ==================================================================
108 [..] The MCU can be woken up from a low power mode by an RTC alternate
109 function.
110 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
111 RTC wakeup, RTC tamper event detection and RTC timestamp event detection.
112 These RTC alternate functions can wake up the system from the Stop and
113 Standby low power modes.
114 [..] The system can also wake up from low power modes without depending
115 on an external interrupt (Auto-wakeup mode), by using the RTC alarm
116 or the RTC wakeup events.
117 [..] The RTC provides a programmable time base for waking up from the
118 Stop or Standby mode at regular intervals.
119 Wakeup from STOP and STANDBY modes is possible only when the RTC clock
120 source is LSE or LSI.
121
122 *** Callback registration ***
123 =============================================
124 [..]
125 The compilation define USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
126 allows the user to configure dynamically the driver callbacks.
127 Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
128 [..]
129 Function HAL_RTC_RegisterCallback() allows to register following callbacks:
130 (+) AlarmAEventCallback : RTC Alarm A Event callback.
131 (+) AlarmBEventCallback : RTC Alarm B Event callback.
132 (+) TimeStampEventCallback : RTC Timestamp Event callback.
133 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
134 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
135 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
136 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
137 (+) MspInitCallback : RTC MspInit callback.
138 (+) MspDeInitCallback : RTC MspDeInit callback.
139 [..]
140 This function takes as parameters the HAL peripheral handle, the Callback ID
141 and a pointer to the user callback function.
142 [..]
143 Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
144 weak function.
145 HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
146 and the Callback ID.
147 This function allows to reset following callbacks:
148 (+) AlarmAEventCallback : RTC Alarm A Event callback.
149 (+) AlarmBEventCallback : RTC Alarm B Event callback.
150 (+) TimeStampEventCallback : RTC Timestamp Event callback.
151 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
152 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
153 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
154 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
155 (+) MspInitCallback : RTC MspInit callback.
156 (+) MspDeInitCallback : RTC MspDeInit callback.
157 [..]
158 By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
159 all callbacks are set to the corresponding weak functions:
160 examples AlarmAEventCallback(), WakeUpTimerEventCallback().
161 Exception done for MspInit() and MspDeInit() callbacks that are reset to the
162 legacy weak function in the HAL_RTC_Init()/HAL_RTC_DeInit() only
163 when these callbacks are null (not registered beforehand).
164 If not, MspInit() or MspDeInit() are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
165 keep and use the user MspInit()/MspDeInit() callbacks (registered beforehand).
166 [..]
167 Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
168 Exception done MspInit()/MspDeInit() that can be registered/unregistered
169 in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state.
170 Thus registered (user) MspInit()/MspDeInit() callbacks can be used during the
171 Init/DeInit.
172 In that case first register the MspInit()/MspDeInit() user callbacks
173 using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
174 or HAL_RTC_Init() functions.
175 [..]
176 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
177 not defined, the callback registration feature is not available and all
178 callbacks are set to the corresponding weak functions.
179
180 @endverbatim
181 ******************************************************************************
182 */
183
184 /* Includes ------------------------------------------------------------------*/
185 #include "stm32l0xx_hal.h"
186
187 /** @addtogroup STM32L0xx_HAL_Driver
188 * @{
189 */
190
191 /** @defgroup RTC RTC
192 * @brief RTC HAL module driver
193 * @{
194 */
195
196 #ifdef HAL_RTC_MODULE_ENABLED
197
198 /* Private typedef -----------------------------------------------------------*/
199 /* Private define ------------------------------------------------------------*/
200 /* Private macro -------------------------------------------------------------*/
201 /* Private variables ---------------------------------------------------------*/
202 /* Private function prototypes -----------------------------------------------*/
203 /* Exported functions --------------------------------------------------------*/
204
205 /** @defgroup RTC_Exported_Functions RTC Exported Functions
206 * @{
207 */
208
209 /** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
210 * @brief Initialization and Configuration functions
211 *
212 @verbatim
213 ===============================================================================
214 ##### Initialization and de-initialization functions #####
215 ===============================================================================
216 [..] This section provides functions allowing to initialize and configure the
217 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
218 RTC registers Write protection, enter and exit the RTC initialization mode,
219 RTC registers synchronization check and reference clock detection enable.
220 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
221 It is split into 2 programmable prescalers to minimize power consumption.
222 (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
223 (++) When both prescalers are used, it is recommended to configure the
224 asynchronous prescaler to a high value to minimize power consumption.
225 (#) All RTC registers are Write protected. Writing to the RTC registers
226 is enabled by writing a key into the Write Protection register, RTC_WPR.
227 (#) To configure the RTC Calendar, user application should enter
228 initialization mode. In this mode, the calendar counter is stopped
229 and its value can be updated. When the initialization sequence is
230 complete, the calendar restarts counting after 4 RTCCLK cycles.
231 (#) To read the calendar through the shadow registers after Calendar
232 initialization, calendar update or after wakeup from low power modes
233 the software must first clear the RSF flag. The software must then
234 wait until it is set again before reading the calendar, which means
235 that the calendar registers have been correctly copied into the
236 RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function
237 implements the above software sequence (RSF clear and RSF check).
238
239 @endverbatim
240 * @{
241 */
242
243 /**
244 * @brief Initializes the RTC peripheral
245 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
246 * the configuration information for RTC.
247 * @retval HAL status
248 */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)249 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
250 {
251 HAL_StatusTypeDef status = HAL_ERROR;
252
253 /* Check RTC handler validity */
254 if (hrtc == NULL)
255 {
256 return HAL_ERROR;
257 }
258
259 /* Check the parameters */
260 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
261 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
262 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
263 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
264 assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
265 assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
266 assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
267 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
268
269 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
270 if (hrtc->State == HAL_RTC_STATE_RESET)
271 {
272 /* Allocate lock resource and initialize it */
273 hrtc->Lock = HAL_UNLOCKED;
274
275 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
276 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
277 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
278 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
279 #if defined(RTC_TAMPER1_SUPPORT)
280 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
281 #endif /* RTC_TAMPER1_SUPPORT */
282 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
283 #if defined(RTC_TAMPER3_SUPPORT)
284 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
285 #endif /* RTC_TAMPER3_SUPPORT */
286
287 if (hrtc->MspInitCallback == NULL)
288 {
289 hrtc->MspInitCallback = HAL_RTC_MspInit;
290 }
291 /* Init the low level hardware */
292 hrtc->MspInitCallback(hrtc);
293
294 if (hrtc->MspDeInitCallback == NULL)
295 {
296 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
297 }
298 }
299 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
300 if (hrtc->State == HAL_RTC_STATE_RESET)
301 {
302 /* Allocate lock resource and initialize it */
303 hrtc->Lock = HAL_UNLOCKED;
304
305 /* Initialize RTC MSP */
306 HAL_RTC_MspInit(hrtc);
307 }
308 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
309
310 /* Set RTC state */
311 hrtc->State = HAL_RTC_STATE_BUSY;
312
313 /* Check whether the calendar needs to be initialized */
314 if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
315 {
316 /* Disable the write protection for RTC registers */
317 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
318
319 /* Enter Initialization mode */
320 status = RTC_EnterInitMode(hrtc);
321
322 if (status == HAL_OK)
323 {
324 /* Clear RTC_CR FMT, OSEL and POL Bits */
325 hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
326 /* Set RTC_CR register */
327 hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
328
329 /* Configure the RTC PRER */
330 hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
331 hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
332
333 /* Exit Initialization mode */
334 status = RTC_ExitInitMode(hrtc);
335 }
336
337 if (status == HAL_OK)
338 {
339 hrtc->Instance->OR &= (uint32_t)~(RTC_OUTPUT_TYPE_PUSHPULL | RTC_OUTPUT_REMAP_POS1);
340 hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
341 }
342
343 /* Enable the write protection for RTC registers */
344 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
345 }
346 else
347 {
348 /* The calendar is already initialized */
349 status = HAL_OK;
350 }
351
352 if (status == HAL_OK)
353 {
354 hrtc->State = HAL_RTC_STATE_READY;
355 }
356
357 return status;
358 }
359
360 /**
361 * @brief DeInitializes the RTC peripheral
362 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
363 * the configuration information for RTC.
364 * @note This function does not reset the RTC Backup Data registers.
365 * @retval HAL status
366 */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)367 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
368 {
369 HAL_StatusTypeDef status = HAL_ERROR;
370
371 /* Check the parameters */
372 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
373
374 /* Set RTC state */
375 hrtc->State = HAL_RTC_STATE_BUSY;
376
377 /* Disable the write protection for RTC registers */
378 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
379
380 /* Enter Initialization mode */
381 status = RTC_EnterInitMode(hrtc);
382
383 if (status == HAL_OK)
384 {
385 /* Reset RTC registers */
386 hrtc->Instance->TR = 0x00000000U;
387 hrtc->Instance->DR = (RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0);
388 hrtc->Instance->CR &= 0x00000000U;
389 hrtc->Instance->WUTR = RTC_WUTR_WUT;
390 hrtc->Instance->PRER = (uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU);
391 hrtc->Instance->ALRMAR = 0x00000000U;
392 hrtc->Instance->ALRMBR = 0x00000000U;
393 hrtc->Instance->CALR = 0x00000000U;
394 hrtc->Instance->SHIFTR = 0x00000000U;
395 hrtc->Instance->ALRMASSR = 0x00000000U;
396 hrtc->Instance->ALRMBSSR = 0x00000000U;
397
398 /* Exit Initialization mode */
399 status = RTC_ExitInitMode(hrtc);
400 }
401
402 /* Enable the write protection for RTC registers */
403 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
404
405 if (status == HAL_OK)
406 {
407 /* Reset Tamper and alternate functions configuration register */
408 hrtc->Instance->TAMPCR = 0x00000000U;
409
410 /* Reset Option register */
411 hrtc->Instance->OR = 0x00000000U;
412
413 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
414 if (hrtc->MspDeInitCallback == NULL)
415 {
416 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
417 }
418
419 /* DeInit the low level hardware: CLOCK, NVIC.*/
420 hrtc->MspDeInitCallback(hrtc);
421 #else /* USE_HAL_RTC_REGISTER_CALLBACKS */
422 /* De-Initialize RTC MSP */
423 HAL_RTC_MspDeInit(hrtc);
424 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
425
426 hrtc->State = HAL_RTC_STATE_RESET;
427 }
428
429 /* Release Lock */
430 __HAL_UNLOCK(hrtc);
431
432 return status;
433 }
434
435 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
436 /**
437 * @brief Registers a User RTC Callback
438 * To be used instead of the weak predefined callback
439 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
440 * the configuration information for RTC.
441 * @param CallbackID ID of the callback to be registered
442 * This parameter can be one of the following values:
443 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
444 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
445 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
446 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
447 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
448 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
449 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
450 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
451 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
452 * @note HAL_RTC_TAMPER1_EVENT_CB_ID is not applicable to all devices.
453 * @note HAL_RTC_TAMPER3_EVENT_CB_ID is not applicable to all devices.
454 * @param pCallback pointer to the Callback function
455 * @retval HAL status
456 */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)457 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
458 {
459 HAL_StatusTypeDef status = HAL_OK;
460
461 if (pCallback == NULL)
462 {
463 return HAL_ERROR;
464 }
465
466 /* Process locked */
467 __HAL_LOCK(hrtc);
468
469 if (HAL_RTC_STATE_READY == hrtc->State)
470 {
471 switch (CallbackID)
472 {
473 case HAL_RTC_ALARM_A_EVENT_CB_ID :
474 hrtc->AlarmAEventCallback = pCallback;
475 break;
476
477 case HAL_RTC_ALARM_B_EVENT_CB_ID :
478 hrtc->AlarmBEventCallback = pCallback;
479 break;
480
481 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
482 hrtc->TimeStampEventCallback = pCallback;
483 break;
484
485 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
486 hrtc->WakeUpTimerEventCallback = pCallback;
487 break;
488
489 #if defined(RTC_TAMPER1_SUPPORT)
490 case HAL_RTC_TAMPER1_EVENT_CB_ID :
491 hrtc->Tamper1EventCallback = pCallback;
492 break;
493 #endif /* RTC_TAMPER1_SUPPORT */
494
495 case HAL_RTC_TAMPER2_EVENT_CB_ID :
496 hrtc->Tamper2EventCallback = pCallback;
497 break;
498
499 #if defined(RTC_TAMPER3_SUPPORT)
500 case HAL_RTC_TAMPER3_EVENT_CB_ID :
501 hrtc->Tamper3EventCallback = pCallback;
502 break;
503 #endif /* RTC_TAMPER3_SUPPORT */
504
505 case HAL_RTC_MSPINIT_CB_ID :
506 hrtc->MspInitCallback = pCallback;
507 break;
508
509 case HAL_RTC_MSPDEINIT_CB_ID :
510 hrtc->MspDeInitCallback = pCallback;
511 break;
512
513 default :
514 /* Return error status */
515 status = HAL_ERROR;
516 break;
517 }
518 }
519 else if (HAL_RTC_STATE_RESET == hrtc->State)
520 {
521 switch (CallbackID)
522 {
523 case HAL_RTC_MSPINIT_CB_ID :
524 hrtc->MspInitCallback = pCallback;
525 break;
526
527 case HAL_RTC_MSPDEINIT_CB_ID :
528 hrtc->MspDeInitCallback = pCallback;
529 break;
530
531 default :
532 /* Return error status */
533 status = HAL_ERROR;
534 break;
535 }
536 }
537 else
538 {
539 /* Return error status */
540 status = HAL_ERROR;
541 }
542
543 /* Release Lock */
544 __HAL_UNLOCK(hrtc);
545
546 return status;
547 }
548
549 /**
550 * @brief Unregisters an RTC Callback
551 * RTC callback is redirected to the weak predefined callback
552 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
553 * the configuration information for RTC.
554 * @param CallbackID ID of the callback to be unregistered
555 * This parameter can be one of the following values:
556 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
557 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
558 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID Timestamp Event Callback ID
559 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID Wakeup Timer Event Callback ID
560 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
561 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
562 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
563 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
564 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
565 * @note HAL_RTC_TAMPER1_EVENT_CB_ID is not applicable to all devices.
566 * @note HAL_RTC_TAMPER3_EVENT_CB_ID is not applicable to all devices.
567 * @retval HAL status
568 */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)569 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
570 {
571 HAL_StatusTypeDef status = HAL_OK;
572
573 /* Process locked */
574 __HAL_LOCK(hrtc);
575
576 if (HAL_RTC_STATE_READY == hrtc->State)
577 {
578 switch (CallbackID)
579 {
580 case HAL_RTC_ALARM_A_EVENT_CB_ID :
581 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
582 break;
583
584 case HAL_RTC_ALARM_B_EVENT_CB_ID :
585 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
586 break;
587
588 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
589 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
590 break;
591
592 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
593 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
594 break;
595
596 #if defined(RTC_TAMPER1_SUPPORT)
597 case HAL_RTC_TAMPER1_EVENT_CB_ID :
598 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
599 break;
600 #endif /* RTC_TAMPER1_SUPPORT */
601
602 case HAL_RTC_TAMPER2_EVENT_CB_ID :
603 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
604 break;
605
606 #if defined(RTC_TAMPER3_SUPPORT)
607 case HAL_RTC_TAMPER3_EVENT_CB_ID :
608 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
609 break;
610 #endif /* RTC_TAMPER3_SUPPORT */
611
612 case HAL_RTC_MSPINIT_CB_ID :
613 hrtc->MspInitCallback = HAL_RTC_MspInit;
614 break;
615
616 case HAL_RTC_MSPDEINIT_CB_ID :
617 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
618 break;
619
620 default :
621 /* Return error status */
622 status = HAL_ERROR;
623 break;
624 }
625 }
626 else if (HAL_RTC_STATE_RESET == hrtc->State)
627 {
628 switch (CallbackID)
629 {
630 case HAL_RTC_MSPINIT_CB_ID :
631 hrtc->MspInitCallback = HAL_RTC_MspInit;
632 break;
633
634 case HAL_RTC_MSPDEINIT_CB_ID :
635 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
636 break;
637
638 default :
639 /* Return error status */
640 status = HAL_ERROR;
641 break;
642 }
643 }
644 else
645 {
646 /* Return error status */
647 status = HAL_ERROR;
648 }
649
650 /* Release Lock */
651 __HAL_UNLOCK(hrtc);
652
653 return status;
654 }
655 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
656
657 /**
658 * @brief Initializes the RTC MSP.
659 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
660 * the configuration information for RTC.
661 * @retval None
662 */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)663 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
664 {
665 /* Prevent unused argument(s) compilation warning */
666 UNUSED(hrtc);
667
668 /* NOTE: This function should not be modified, when the callback is needed,
669 the HAL_RTC_MspInit could be implemented in the user file
670 */
671 }
672
673 /**
674 * @brief DeInitializes the RTC MSP.
675 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
676 * the configuration information for RTC.
677 * @retval None
678 */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)679 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
680 {
681 /* Prevent unused argument(s) compilation warning */
682 UNUSED(hrtc);
683
684 /* NOTE: This function should not be modified, when the callback is needed,
685 the HAL_RTC_MspDeInit could be implemented in the user file
686 */
687 }
688
689 /**
690 * @}
691 */
692
693 /** @defgroup RTC_Exported_Functions_Group2 RTC Time and Date functions
694 * @brief RTC Time and Date functions
695 *
696 @verbatim
697 ===============================================================================
698 ##### RTC Time and Date functions #####
699 ===============================================================================
700
701 [..] This section provides functions allowing to configure Time and Date features
702
703 @endverbatim
704 * @{
705 */
706
707 /**
708 * @brief Sets RTC current time.
709 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
710 * the configuration information for RTC.
711 * @param sTime Pointer to Time structure
712 * @note DayLightSaving and StoreOperation interfaces are deprecated.
713 * To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions.
714 * @param Format Specifies the format of the entered parameters.
715 * This parameter can be one of the following values:
716 * @arg RTC_FORMAT_BIN: Binary data format
717 * @arg RTC_FORMAT_BCD: BCD data format
718 * @retval HAL status
719 */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)720 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
721 {
722 uint32_t tmpreg = 0U;
723 HAL_StatusTypeDef status;
724
725 /* Check the parameters */
726 assert_param(IS_RTC_FORMAT(Format));
727 assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
728 assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
729
730 /* Process Locked */
731 __HAL_LOCK(hrtc);
732
733 hrtc->State = HAL_RTC_STATE_BUSY;
734
735 if (Format == RTC_FORMAT_BIN)
736 {
737 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
738 {
739 assert_param(IS_RTC_HOUR12(sTime->Hours));
740 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
741 }
742 else
743 {
744 sTime->TimeFormat = 0x00U;
745 assert_param(IS_RTC_HOUR24(sTime->Hours));
746 }
747 assert_param(IS_RTC_MINUTES(sTime->Minutes));
748 assert_param(IS_RTC_SECONDS(sTime->Seconds));
749
750 tmpreg = (uint32_t)(( (uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
751 ( (uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
752 ( (uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
753 (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
754 }
755 else
756 {
757 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
758 {
759 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
760 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
761 }
762 else
763 {
764 sTime->TimeFormat = 0x00U;
765 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
766 }
767 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
768 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
769 tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
770 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
771 ((uint32_t) sTime->Seconds) | \
772 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
773 }
774
775 /* Disable the write protection for RTC registers */
776 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
777
778 /* Enter Initialization mode */
779 status = RTC_EnterInitMode(hrtc);
780
781 if (status == HAL_OK)
782 {
783 /* Set the RTC_TR register */
784 hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
785
786 /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
787 hrtc->Instance->CR &= (uint32_t)~RTC_CR_BKP;
788
789 /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
790 hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
791
792 /* Exit Initialization mode */
793 status = RTC_ExitInitMode(hrtc);
794 }
795
796 if (status == HAL_OK)
797 {
798 hrtc->State = HAL_RTC_STATE_READY;
799 }
800
801 /* Enable the write protection for RTC registers */
802 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
803
804 /* Process Unlocked */
805 __HAL_UNLOCK(hrtc);
806
807 return status;
808 }
809
810 /**
811 * @brief Gets RTC current time.
812 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
813 * the configuration information for RTC.
814 * @param sTime Pointer to Time structure
815 * @param Format Specifies the format of the entered parameters.
816 * This parameter can be one of the following values:
817 * @arg RTC_FORMAT_BIN: Binary data format
818 * @arg RTC_FORMAT_BCD: BCD data format
819 * @note You can use SubSeconds and SecondFraction (sTime structure fields
820 * returned) to convert SubSeconds value in second fraction ratio with
821 * time unit following generic formula:
822 * Second fraction ratio * time_unit =
823 * [(SecondFraction - SubSeconds) / (SecondFraction + 1)] * time_unit
824 * This conversion can be performed only if no shift operation is pending
825 * (ie. SHFP=0) when PREDIV_S >= SS
826 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
827 * values in the higher-order calendar shadow registers to ensure
828 * consistency between the time and date values.
829 * Reading RTC current time locks the values in calendar shadow registers
830 * until current date is read to ensure consistency between the time and
831 * date values.
832 * @retval HAL status
833 */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)834 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
835 {
836 uint32_t tmpreg = 0U;
837
838 /* Check the parameters */
839 assert_param(IS_RTC_FORMAT(Format));
840
841 /* Get subseconds value from the corresponding register */
842 sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
843
844 /* Get SecondFraction structure field from the corresponding register field*/
845 sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
846
847 /* Get the TR register */
848 tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
849
850 /* Fill the structure fields with the read parameters */
851 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
852 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
853 sTime->Seconds = (uint8_t)( tmpreg & (RTC_TR_ST | RTC_TR_SU));
854 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
855
856 /* Check the input parameters format */
857 if (Format == RTC_FORMAT_BIN)
858 {
859 /* Convert the time structure parameters to Binary format */
860 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
861 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
862 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
863 }
864
865 return HAL_OK;
866 }
867
868 /**
869 * @brief Sets RTC current date.
870 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
871 * the configuration information for RTC.
872 * @param sDate Pointer to date structure
873 * @param Format specifies the format of the entered parameters.
874 * This parameter can be one of the following values:
875 * @arg RTC_FORMAT_BIN: Binary data format
876 * @arg RTC_FORMAT_BCD: BCD data format
877 * @retval HAL status
878 */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)879 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
880 {
881 uint32_t datetmpreg = 0U;
882 HAL_StatusTypeDef status;
883
884 /* Check the parameters */
885 assert_param(IS_RTC_FORMAT(Format));
886
887 /* Process Locked */
888 __HAL_LOCK(hrtc);
889
890 hrtc->State = HAL_RTC_STATE_BUSY;
891
892 if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
893 {
894 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
895 }
896
897 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
898
899 if (Format == RTC_FORMAT_BIN)
900 {
901 assert_param(IS_RTC_YEAR(sDate->Year));
902 assert_param(IS_RTC_MONTH(sDate->Month));
903 assert_param(IS_RTC_DATE(sDate->Date));
904
905 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
906 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
907 ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
908 ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
909 }
910 else
911 {
912 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
913 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
914 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
915
916 datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
917 (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
918 ((uint32_t) sDate->Date) | \
919 (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
920 }
921
922 /* Disable the write protection for RTC registers */
923 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
924
925 /* Enter Initialization mode */
926 status = RTC_EnterInitMode(hrtc);
927
928 if (status == HAL_OK)
929 {
930 /* Set the RTC_DR register */
931 hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
932
933 /* Exit Initialization mode */
934 status = RTC_ExitInitMode(hrtc);
935 }
936
937 if (status == HAL_OK)
938 {
939 hrtc->State = HAL_RTC_STATE_READY;
940 }
941
942 /* Enable the write protection for RTC registers */
943 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
944
945 /* Process Unlocked */
946 __HAL_UNLOCK(hrtc);
947
948 return status;
949 }
950
951 /**
952 * @brief Gets RTC current date.
953 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
954 * the configuration information for RTC.
955 * @param sDate Pointer to Date structure
956 * @param Format Specifies the format of the entered parameters.
957 * This parameter can be one of the following values:
958 * @arg RTC_FORMAT_BIN: Binary data format
959 * @arg RTC_FORMAT_BCD: BCD data format
960 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the
961 * values in the higher-order calendar shadow registers to ensure
962 * consistency between the time and date values.
963 * Reading RTC current time locks the values in calendar shadow registers
964 * until current date is read to ensure consistency between the time and
965 * date values.
966 * @retval HAL status
967 */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)968 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
969 {
970 uint32_t datetmpreg = 0U;
971
972 /* Check the parameters */
973 assert_param(IS_RTC_FORMAT(Format));
974
975 /* Get the DR register */
976 datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
977
978 /* Fill the structure fields with the read parameters */
979 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
980 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
981 sDate->Date = (uint8_t) (datetmpreg & (RTC_DR_DT | RTC_DR_DU));
982 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
983
984 /* Check the input parameters format */
985 if (Format == RTC_FORMAT_BIN)
986 {
987 /* Convert the date structure parameters to Binary format */
988 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
989 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
990 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
991 }
992 return HAL_OK;
993 }
994
995 /**
996 * @}
997 */
998
999 /** @defgroup RTC_Exported_Functions_Group3 RTC Alarm functions
1000 * @brief RTC Alarm functions
1001 *
1002 @verbatim
1003 ===============================================================================
1004 ##### RTC Alarm functions #####
1005 ===============================================================================
1006
1007 [..] This section provides functions allowing to configure Alarm feature
1008
1009 @endverbatim
1010 * @{
1011 */
1012 /**
1013 * @brief Sets the specified RTC Alarm.
1014 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1015 * the configuration information for RTC.
1016 * @param sAlarm Pointer to Alarm structure
1017 * @param Format Specifies the format of the entered parameters.
1018 * This parameter can be one of the following values:
1019 * @arg RTC_FORMAT_BIN: Binary data format
1020 * @arg RTC_FORMAT_BCD: BCD data format
1021 * @note The Alarm register can only be written when the corresponding Alarm
1022 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1023 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1024 * @retval HAL status
1025 */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1026 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1027 {
1028 uint32_t tickstart = 0U;
1029 uint32_t tmpreg = 0U;
1030 uint32_t subsecondtmpreg = 0U;
1031
1032 /* Check the parameters */
1033 assert_param(IS_RTC_FORMAT(Format));
1034 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1035 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1036 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1037 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1038 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1039
1040 /* Process Locked */
1041 __HAL_LOCK(hrtc);
1042
1043 /* Change RTC state to BUSY */
1044 hrtc->State = HAL_RTC_STATE_BUSY;
1045
1046 /* Check the data format (binary or BCD) and store the Alarm time and date
1047 configuration accordingly */
1048 if (Format == RTC_FORMAT_BIN)
1049 {
1050 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1051 {
1052 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1053 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1054 }
1055 else
1056 {
1057 sAlarm->AlarmTime.TimeFormat = 0x00U;
1058 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1059 }
1060 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1061 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1062
1063 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1064 {
1065 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1066 }
1067 else
1068 {
1069 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1070 }
1071
1072 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1073 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1074 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
1075 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1076 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1077 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1078 ((uint32_t)sAlarm->AlarmMask));
1079 }
1080 else
1081 {
1082 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1083 {
1084 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1085 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1086 }
1087 else
1088 {
1089 sAlarm->AlarmTime.TimeFormat = 0x00U;
1090 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1091 }
1092
1093 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1094 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1095
1096 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1097 {
1098 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1099 }
1100 else
1101 {
1102 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1103 }
1104
1105 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1106 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1107 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
1108 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1109 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1110 ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
1111 ((uint32_t) sAlarm->AlarmMask));
1112 }
1113
1114 /* Store the Alarm subseconds configuration */
1115 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1116 (uint32_t)(sAlarm->AlarmSubSecondMask));
1117
1118 /* Disable the write protection for RTC registers */
1119 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1120
1121 /* Configure the Alarm register */
1122 if (sAlarm->Alarm == RTC_ALARM_A)
1123 {
1124 /* Disable the Alarm A */
1125 __HAL_RTC_ALARMA_DISABLE(hrtc);
1126
1127 /* In case interrupt mode is used, the interrupt source must be disabled */
1128 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1129
1130 /* Clear the Alarm flag */
1131 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1132
1133 /* Get tick */
1134 tickstart = HAL_GetTick();
1135
1136 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1137 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1138 {
1139 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1140 {
1141 /* Enable the write protection for RTC registers */
1142 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1143
1144 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1145
1146 /* Process Unlocked */
1147 __HAL_UNLOCK(hrtc);
1148
1149 return HAL_TIMEOUT;
1150 }
1151 }
1152
1153 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1154 /* Configure the Alarm A Subseconds register */
1155 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1156 /* Configure the Alarm state: Enable Alarm */
1157 __HAL_RTC_ALARMA_ENABLE(hrtc);
1158 }
1159 else
1160 {
1161 /* Disable the Alarm B */
1162 __HAL_RTC_ALARMB_DISABLE(hrtc);
1163
1164 /* In case interrupt mode is used, the interrupt source must be disabled */
1165 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1166
1167 /* Clear the Alarm flag */
1168 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1169
1170 /* Get tick */
1171 tickstart = HAL_GetTick();
1172
1173 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1174 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1175 {
1176 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1177 {
1178 /* Enable the write protection for RTC registers */
1179 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1180
1181 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1182
1183 /* Process Unlocked */
1184 __HAL_UNLOCK(hrtc);
1185
1186 return HAL_TIMEOUT;
1187 }
1188 }
1189
1190 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1191 /* Configure the Alarm B Subseconds register */
1192 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1193 /* Configure the Alarm state: Enable Alarm */
1194 __HAL_RTC_ALARMB_ENABLE(hrtc);
1195 }
1196
1197 /* Enable the write protection for RTC registers */
1198 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1199
1200 /* Change RTC state back to READY */
1201 hrtc->State = HAL_RTC_STATE_READY;
1202
1203 /* Process Unlocked */
1204 __HAL_UNLOCK(hrtc);
1205
1206 return HAL_OK;
1207 }
1208
1209 /**
1210 * @brief Sets the specified RTC Alarm with Interrupt.
1211 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1212 * the configuration information for RTC.
1213 * @param sAlarm Pointer to Alarm structure
1214 * @param Format Specifies the format of the entered parameters.
1215 * This parameter can be one of the following values:
1216 * @arg RTC_FORMAT_BIN: Binary data format
1217 * @arg RTC_FORMAT_BCD: BCD data format
1218 * @note The Alarm register can only be written when the corresponding Alarm
1219 * is disabled (Use the HAL_RTC_DeactivateAlarm()).
1220 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1221 * @retval HAL status
1222 */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1223 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1224 {
1225 __IO uint32_t count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1226 uint32_t tmpreg = 0U;
1227 uint32_t subsecondtmpreg = 0U;
1228
1229 /* Check the parameters */
1230 assert_param(IS_RTC_FORMAT(Format));
1231 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1232 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1233 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1234 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1235 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1236
1237 /* Process Locked */
1238 __HAL_LOCK(hrtc);
1239
1240 /* Change RTC state to BUSY */
1241 hrtc->State = HAL_RTC_STATE_BUSY;
1242
1243 /* Check the data format (binary or BCD) and store the Alarm time and date
1244 configuration accordingly */
1245 if (Format == RTC_FORMAT_BIN)
1246 {
1247 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1248 {
1249 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1250 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1251 }
1252 else
1253 {
1254 sAlarm->AlarmTime.TimeFormat = 0x00U;
1255 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1256 }
1257 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1258 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1259
1260 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1261 {
1262 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1263 }
1264 else
1265 {
1266 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1267 }
1268
1269 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1270 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1271 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
1272 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1273 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1274 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1275 ((uint32_t)sAlarm->AlarmMask));
1276 }
1277 else
1278 {
1279 if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1280 {
1281 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1282 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1283 }
1284 else
1285 {
1286 sAlarm->AlarmTime.TimeFormat = 0x00U;
1287 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1288 }
1289
1290 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1291 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1292
1293 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1294 {
1295 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1296 }
1297 else
1298 {
1299 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1300 }
1301
1302 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1303 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1304 ((uint32_t) sAlarm->AlarmTime.Seconds) | \
1305 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_TR_PM_Pos) | \
1306 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1307 ((uint32_t) sAlarm->AlarmDateWeekDaySel) | \
1308 ((uint32_t) sAlarm->AlarmMask));
1309 }
1310
1311 /* Store the Alarm subseconds configuration */
1312 subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | \
1313 (uint32_t)(sAlarm->AlarmSubSecondMask));
1314
1315 /* Disable the write protection for RTC registers */
1316 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1317
1318 /* Configure the Alarm register */
1319 if (sAlarm->Alarm == RTC_ALARM_A)
1320 {
1321 /* Disable the Alarm A */
1322 __HAL_RTC_ALARMA_DISABLE(hrtc);
1323
1324 /* Clear the Alarm flag */
1325 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1326
1327 /* Wait till RTC ALRAWF flag is set and if timeout is reached exit */
1328 do
1329 {
1330 count = count - 1U;
1331 if (count == 0U)
1332 {
1333 /* Enable the write protection for RTC registers */
1334 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1335
1336 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1337
1338 /* Process Unlocked */
1339 __HAL_UNLOCK(hrtc);
1340
1341 return HAL_TIMEOUT;
1342 }
1343 } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U);
1344
1345 hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1346 /* Configure the Alarm A Subseconds register */
1347 hrtc->Instance->ALRMASSR = subsecondtmpreg;
1348 /* Configure the Alarm state: Enable Alarm */
1349 __HAL_RTC_ALARMA_ENABLE(hrtc);
1350 /* Configure the Alarm interrupt */
1351 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
1352 }
1353 else
1354 {
1355 /* Disable the Alarm B */
1356 __HAL_RTC_ALARMB_DISABLE(hrtc);
1357
1358 /* Clear the Alarm flag */
1359 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1360
1361 /* Reload the counter */
1362 count = RTC_TIMEOUT_VALUE * (SystemCoreClock / 32U / 1000U);
1363
1364 /* Wait till RTC ALRBWF flag is set and if timeout is reached exit */
1365 do
1366 {
1367 count = count - 1U;
1368 if (count == 0U)
1369 {
1370 /* Enable the write protection for RTC registers */
1371 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1372
1373 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1374
1375 /* Process Unlocked */
1376 __HAL_UNLOCK(hrtc);
1377
1378 return HAL_TIMEOUT;
1379 }
1380 } while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U);
1381
1382 hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1383 /* Configure the Alarm B Subseconds register */
1384 hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1385 /* Configure the Alarm state: Enable Alarm */
1386 __HAL_RTC_ALARMB_ENABLE(hrtc);
1387 /* Configure the Alarm interrupt */
1388 __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
1389 }
1390
1391 /* RTC Alarm Interrupt Configuration: EXTI configuration */
1392 __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1393 __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1394
1395 /* Enable the write protection for RTC registers */
1396 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1397
1398 /* Change RTC state back to READY */
1399 hrtc->State = HAL_RTC_STATE_READY;
1400
1401 /* Process Unlocked */
1402 __HAL_UNLOCK(hrtc);
1403
1404 return HAL_OK;
1405 }
1406
1407 /**
1408 * @brief Deactivates the specified RTC Alarm.
1409 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1410 * the configuration information for RTC.
1411 * @param Alarm Specifies the Alarm.
1412 * This parameter can be one of the following values:
1413 * @arg RTC_ALARM_A: Alarm A
1414 * @arg RTC_ALARM_B: Alarm B
1415 * @retval HAL status
1416 */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1417 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1418 {
1419 uint32_t tickstart = 0U;
1420
1421 /* Check the parameters */
1422 assert_param(IS_RTC_ALARM(Alarm));
1423
1424 /* Process Locked */
1425 __HAL_LOCK(hrtc);
1426
1427 hrtc->State = HAL_RTC_STATE_BUSY;
1428
1429 /* Disable the write protection for RTC registers */
1430 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1431
1432 if (Alarm == RTC_ALARM_A)
1433 {
1434 /* Disable Alarm A */
1435 __HAL_RTC_ALARMA_DISABLE(hrtc);
1436
1437 /* In case interrupt mode is used, the interrupt source must be disabled */
1438 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1439
1440 /* Get tick */
1441 tickstart = HAL_GetTick();
1442
1443 /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
1444 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1445 {
1446 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1447 {
1448 /* Enable the write protection for RTC registers */
1449 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1450
1451 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1452
1453 /* Process Unlocked */
1454 __HAL_UNLOCK(hrtc);
1455
1456 return HAL_TIMEOUT;
1457 }
1458 }
1459 }
1460 else
1461 {
1462 /* Disable Alarm B */
1463 __HAL_RTC_ALARMB_DISABLE(hrtc);
1464
1465 /* In case interrupt mode is used, the interrupt source must be disabled */
1466 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1467
1468 /* Get tick */
1469 tickstart = HAL_GetTick();
1470
1471 /* Wait till RTC ALRxWF flag is set and if timeout is reached exit */
1472 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1473 {
1474 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1475 {
1476 /* Enable the write protection for RTC registers */
1477 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1478
1479 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1480
1481 /* Process Unlocked */
1482 __HAL_UNLOCK(hrtc);
1483
1484 return HAL_TIMEOUT;
1485 }
1486 }
1487 }
1488
1489 /* Enable the write protection for RTC registers */
1490 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1491
1492 hrtc->State = HAL_RTC_STATE_READY;
1493
1494 /* Process Unlocked */
1495 __HAL_UNLOCK(hrtc);
1496
1497 return HAL_OK;
1498 }
1499
1500 /**
1501 * @brief Gets the RTC Alarm value and masks.
1502 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1503 * the configuration information for RTC.
1504 * @param sAlarm Pointer to Date structure
1505 * @param Alarm Specifies the Alarm.
1506 * This parameter can be one of the following values:
1507 * @arg RTC_ALARM_A: Alarm A
1508 * @arg RTC_ALARM_B: Alarm B
1509 * @param Format Specifies the format of the entered parameters.
1510 * This parameter can be one of the following values:
1511 * @arg RTC_FORMAT_BIN: Binary data format
1512 * @arg RTC_FORMAT_BCD: BCD data format
1513 * @retval HAL status
1514 */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1515 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1516 {
1517 uint32_t tmpreg = 0U;
1518 uint32_t subsecondtmpreg = 0U;
1519
1520 /* Check the parameters */
1521 assert_param(IS_RTC_FORMAT(Format));
1522 assert_param(IS_RTC_ALARM(Alarm));
1523
1524 if (Alarm == RTC_ALARM_A)
1525 {
1526 sAlarm->Alarm = RTC_ALARM_A;
1527
1528 tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
1529 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
1530 }
1531 else
1532 {
1533 sAlarm->Alarm = RTC_ALARM_B;
1534
1535 tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
1536 subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
1537 }
1538
1539 /* Fill the structure with the read parameters */
1540 sAlarm->AlarmTime.Hours = (uint8_t) ((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1541 sAlarm->AlarmTime.Minutes = (uint8_t) ((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1542 sAlarm->AlarmTime.Seconds = (uint8_t) ( tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
1543 sAlarm->AlarmTime.TimeFormat = (uint8_t) ((tmpreg & RTC_ALRMAR_PM) >> RTC_TR_PM_Pos);
1544 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1545 sAlarm->AlarmDateWeekDay = (uint8_t) ((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1546 sAlarm->AlarmDateWeekDaySel = (uint32_t) (tmpreg & RTC_ALRMAR_WDSEL);
1547 sAlarm->AlarmMask = (uint32_t) (tmpreg & RTC_ALARMMASK_ALL);
1548
1549 if (Format == RTC_FORMAT_BIN)
1550 {
1551 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1552 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1553 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1554 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1555 }
1556
1557 return HAL_OK;
1558 }
1559
1560 /**
1561 * @brief Handles Alarm interrupt request.
1562 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1563 * the configuration information for RTC.
1564 * @retval None
1565 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1566 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1567 {
1568 /* Clear the EXTI's line Flag for RTC Alarm */
1569 __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
1570
1571 /* Get the Alarm A interrupt source enable status */
1572 if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
1573 {
1574 /* Get the pending status of the Alarm A Interrupt */
1575 if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
1576 {
1577 /* Clear the Alarm A interrupt pending bit */
1578 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1579
1580 /* Alarm A callback */
1581 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1582 hrtc->AlarmAEventCallback(hrtc);
1583 #else
1584 HAL_RTC_AlarmAEventCallback(hrtc);
1585 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1586 }
1587 }
1588
1589 /* Get the Alarm B interrupt source enable status */
1590 if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
1591 {
1592 /* Get the pending status of the Alarm B Interrupt */
1593 if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
1594 {
1595 /* Clear the Alarm B interrupt pending bit */
1596 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1597
1598 /* Alarm B callback */
1599 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1600 hrtc->AlarmBEventCallback(hrtc);
1601 #else
1602 HAL_RTCEx_AlarmBEventCallback(hrtc);
1603 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1604 }
1605 }
1606
1607 /* Change RTC state */
1608 hrtc->State = HAL_RTC_STATE_READY;
1609 }
1610
1611 /**
1612 * @brief Alarm A callback.
1613 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1614 * the configuration information for RTC.
1615 * @retval None
1616 */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1617 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1618 {
1619 /* Prevent unused argument(s) compilation warning */
1620 UNUSED(hrtc);
1621
1622 /* NOTE: This function should not be modified, when the callback is needed,
1623 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1624 */
1625 }
1626
1627 /**
1628 * @brief Handles Alarm A Polling request.
1629 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1630 * the configuration information for RTC.
1631 * @param Timeout Timeout duration
1632 * @retval HAL status
1633 */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)1634 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1635 {
1636 uint32_t tickstart = 0U;
1637
1638 /* Get tick */
1639 tickstart = HAL_GetTick();
1640
1641 /* Wait till RTC ALRAF flag is set and if timeout is reached exit */
1642 while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
1643 {
1644 if (Timeout != HAL_MAX_DELAY)
1645 {
1646 if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
1647 {
1648 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1649 return HAL_TIMEOUT;
1650 }
1651 }
1652 }
1653
1654 /* Clear the Alarm flag */
1655 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1656
1657 /* Change RTC state */
1658 hrtc->State = HAL_RTC_STATE_READY;
1659
1660 return HAL_OK;
1661 }
1662
1663 /**
1664 * @}
1665 */
1666
1667 /** @defgroup RTC_Exported_Functions_Group4 Peripheral Control functions
1668 * @brief Peripheral Control functions
1669 *
1670 @verbatim
1671 ===============================================================================
1672 ##### Peripheral Control functions #####
1673 ===============================================================================
1674 [..]
1675 This subsection provides functions allowing to
1676 (+) Wait for RTC Time and Date Synchronization
1677 (+) Manage RTC Summer or Winter time change
1678
1679 @endverbatim
1680 * @{
1681 */
1682
1683 /**
1684 * @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1685 * synchronized with RTC APB clock.
1686 * @note The RTC Resynchronization mode is write protected, use the
1687 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1688 * @note To read the calendar through the shadow registers after Calendar
1689 * initialization, calendar update or after wakeup from low power modes
1690 * the software must first clear the RSF flag.
1691 * The software must then wait until it is set again before reading
1692 * the calendar, which means that the calendar registers have been
1693 * correctly copied into the RTC_TR and RTC_DR shadow registers.
1694 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1695 * the configuration information for RTC.
1696 * @retval HAL status
1697 */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)1698 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
1699 {
1700 uint32_t tickstart = 0U;
1701
1702 /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
1703 hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
1704
1705 /* Get tick */
1706 tickstart = HAL_GetTick();
1707
1708 /* Wait the registers to be synchronised */
1709 while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
1710 {
1711 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1712 {
1713 return HAL_TIMEOUT;
1714 }
1715 }
1716
1717 return HAL_OK;
1718 }
1719
1720 /**
1721 * @brief Daylight Saving Time, adds one hour to the calendar in one
1722 * single operation without going through the initialization procedure.
1723 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1724 * the configuration information for RTC.
1725 * @retval None
1726 */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)1727 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
1728 {
1729 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1730 SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
1731 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1732 }
1733
1734 /**
1735 * @brief Daylight Saving Time, subtracts one hour from the calendar in one
1736 * single operation without going through the initialization procedure.
1737 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1738 * the configuration information for RTC.
1739 * @retval None
1740 */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)1741 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
1742 {
1743 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1744 SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
1745 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1746 }
1747
1748 /**
1749 * @brief Daylight Saving Time, sets the store operation bit.
1750 * @note It can be used by the software in order to memorize the DST status.
1751 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1752 * the configuration information for RTC.
1753 * @retval None
1754 */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)1755 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
1756 {
1757 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1758 SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1759 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1760 }
1761
1762 /**
1763 * @brief Daylight Saving Time, clears the store operation bit.
1764 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1765 * the configuration information for RTC.
1766 * @retval None
1767 */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)1768 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
1769 {
1770 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1771 CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1772 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1773 }
1774
1775 /**
1776 * @brief Daylight Saving Time, reads the store operation bit.
1777 * @param hrtc RTC handle
1778 * @retval operation see RTC_StoreOperation_Definitions
1779 */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)1780 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
1781 {
1782 return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
1783 }
1784
1785 /**
1786 * @}
1787 */
1788
1789 /** @defgroup RTC_Exported_Functions_Group5 Peripheral State functions
1790 * @brief Peripheral State functions
1791 *
1792 @verbatim
1793 ===============================================================================
1794 ##### Peripheral State functions #####
1795 ===============================================================================
1796 [..]
1797 This subsection provides functions allowing to
1798 (+) Get RTC state
1799
1800 @endverbatim
1801 * @{
1802 */
1803 /**
1804 * @brief Returns the RTC state.
1805 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1806 * the configuration information for RTC.
1807 * @retval HAL state
1808 */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)1809 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
1810 {
1811 return hrtc->State;
1812 }
1813
1814 /**
1815 * @}
1816 */
1817
1818
1819 /**
1820 * @}
1821 */
1822
1823 /** @addtogroup RTC_Private_Functions
1824 * @{
1825 */
1826
1827 /**
1828 * @brief Enters the RTC Initialization mode.
1829 * @note The RTC Initialization mode is write protected, use the
1830 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
1831 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1832 * the configuration information for RTC.
1833 * @retval HAL status
1834 */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)1835 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
1836 {
1837 uint32_t tickstart = 0U;
1838 HAL_StatusTypeDef status = HAL_OK;
1839
1840 /* Check that Initialization mode is not already set */
1841 if (READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U)
1842 {
1843 /* Set INIT bit to enter Initialization mode */
1844 SET_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1845
1846 /* Get tick */
1847 tickstart = HAL_GetTick();
1848
1849 /* Wait till RTC is in INIT state and if timeout is reached exit */
1850 while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_ERROR))
1851 {
1852 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1853 {
1854 /* Set RTC state */
1855 hrtc->State = HAL_RTC_STATE_ERROR;
1856 status = HAL_ERROR;
1857 }
1858 }
1859 }
1860
1861 return status;
1862 }
1863
1864 /**
1865 * @brief Exits the RTC Initialization mode.
1866 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1867 * the configuration information for RTC.
1868 * @retval HAL status
1869 */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)1870 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
1871 {
1872 HAL_StatusTypeDef status = HAL_OK;
1873
1874 /* Clear INIT bit to exit Initialization mode */
1875 CLEAR_BIT(hrtc->Instance->ISR, RTC_ISR_INIT);
1876
1877 /* If CR_BYPSHAD bit = 0, wait for synchro */
1878 if (READ_BIT(hrtc->Instance->CR, RTC_CR_BYPSHAD) == 0U)
1879 {
1880 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
1881 {
1882 /* Set RTC state */
1883 hrtc->State = HAL_RTC_STATE_ERROR;
1884 status = HAL_ERROR;
1885 }
1886 }
1887
1888 return status;
1889 }
1890
1891 /**
1892 * @brief Converts a 2-digit number from decimal to BCD format.
1893 * @param number decimal-formatted number (from 0 to 99) to be converted
1894 * @retval Converted byte
1895 */
RTC_ByteToBcd2(uint8_t number)1896 uint8_t RTC_ByteToBcd2(uint8_t number)
1897 {
1898 uint32_t bcdhigh = 0U;
1899
1900 while (number >= 10U)
1901 {
1902 bcdhigh++;
1903 number -= 10U;
1904 }
1905
1906 return ((uint8_t)(bcdhigh << 4U) | number);
1907 }
1908
1909 /**
1910 * @brief Converts a 2-digit number from BCD to decimal format.
1911 * @param number BCD-formatted number (from 00 to 99) to be converted
1912 * @retval Converted word
1913 */
RTC_Bcd2ToByte(uint8_t number)1914 uint8_t RTC_Bcd2ToByte(uint8_t number)
1915 {
1916 uint32_t tens = 0U;
1917 tens = (((uint32_t)number & 0xF0U) >> 4U) * 10U;
1918 return (uint8_t)(tens + ((uint32_t)number & 0x0FU));
1919 }
1920
1921 /**
1922 * @}
1923 */
1924
1925 #endif /* HAL_RTC_MODULE_ENABLED */
1926 /**
1927 * @}
1928 */
1929
1930 /**
1931 * @}
1932 */
1933