1 /**
2   ******************************************************************************
3   * @file    stm32h7xx_hal_pwr_ex.c
4   * @author  MCD Application Team
5   * @brief   Extended PWR HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of PWR extension peripheral:
8   *           + Peripheral Extended features functions
9   ******************************************************************************
10   * @attention
11   *
12   * Copyright (c) 2017 STMicroelectronics.
13   * All rights reserved.
14   *
15   * This software is licensed under terms that can be found in the LICENSE file
16   * in the root directory of this software component.
17   * If no LICENSE file comes with this software, it is provided AS-IS.
18   *
19   ******************************************************************************
20   @verbatim
21   ==============================================================================
22                         ##### How to use this driver #####
23   ==============================================================================
24   [..]
25    (#) Call HAL_PWREx_ConfigSupply() function to configure the regulator supply
26        with the following different setups according to hardware (support SMPS):
27        (+) PWR_DIRECT_SMPS_SUPPLY
28        (+) PWR_SMPS_1V8_SUPPLIES_LDO
29        (+) PWR_SMPS_2V5_SUPPLIES_LDO
30        (+) PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO
31        (+) PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO
32        (+) PWR_SMPS_1V8_SUPPLIES_EXT
33        (+) PWR_SMPS_2V5_SUPPLIES_EXT
34        (+) PWR_LDO_SUPPLY
35        (+) PWR_EXTERNAL_SOURCE_SUPPLY
36 
37    (#) Call HAL_PWREx_GetSupplyConfig() function to get the current supply setup.
38 
39    (#) Call HAL_PWREx_ControlVoltageScaling() function to configure the main
40        internal regulator output voltage. The voltage scaling could be one of
41        the following scales :
42        (+) PWR_REGULATOR_VOLTAGE_SCALE0
43        (+) PWR_REGULATOR_VOLTAGE_SCALE1
44        (+) PWR_REGULATOR_VOLTAGE_SCALE2
45        (+) PWR_REGULATOR_VOLTAGE_SCALE3
46 
47    (#) Call HAL_PWREx_GetVoltageRange() function to get the current output
48        voltage applied to the main regulator.
49 
50    (#) Call HAL_PWREx_ControlStopModeVoltageScaling() function to configure the
51        main internal regulator output voltage in STOP mode. The voltage scaling
52        in STOP mode could be one of the following scales :
53        (+) PWR_REGULATOR_SVOS_SCALE3
54        (+) PWR_REGULATOR_SVOS_SCALE4
55        (+) PWR_REGULATOR_SVOS_SCALE5
56 
57    (#) Call HAL_PWREx_GetStopModeVoltageRange() function to get the current
58        output voltage applied to the main regulator in STOP mode.
59 
60    (#) Call HAL_PWREx_EnterSTOP2Mode() function to enter the system in STOP mode
61        with core domain in D2STOP mode. This API is used only for STM32H7Axxx
62        and STM32H7Bxxx devices.
63        Please ensure to clear all CPU pending events by calling
64        HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx
65        in DEEP-SLEEP mode with __WFE() entry.
66 
67    (#) Call HAL_PWREx_EnterSTOPMode() function to enter the selected domain in
68        DSTOP mode. Call this API with all available power domains to enter the
69        system in STOP mode.
70        Please ensure to clear all CPU pending events by calling
71        HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx
72        in DEEP-SLEEP mode with __WFE() entry.
73 
74    (#) Call HAL_PWREx_ClearPendingEvent() function always before entring the
75        Cortex-Mx in any low power mode (SLEEP/DEEP-SLEEP) using WFE entry.
76 
77    (#) Call HAL_PWREx_EnterSTANDBYMode() function to enter the selected domain
78        in DSTANDBY mode. Call this API with all available power domains to enter
79        the system in STANDBY mode.
80 
81    (#) Call HAL_PWREx_ConfigD3Domain() function to setup the D3/SRD domain state
82        (RUN/STOP) when the system enter to low power mode.
83 
84    (#) Call HAL_PWREx_ClearDomainFlags() function to clear the CPU flags for the
85        selected power domain. This API is used only for dual core devices.
86 
87    (#) Call HAL_PWREx_HoldCore() and HAL_PWREx_ReleaseCore() functions to hold
88        and release the selected CPU and and their domain peripherals when
89        exiting STOP mode. These APIs are used only for dual core devices.
90 
91    (#) Call HAL_PWREx_EnableFlashPowerDown() and
92        HAL_PWREx_DisableFlashPowerDown() functions to enable and disable the
93        Flash Power Down in STOP mode.
94 
95    (#) Call HAL_PWREx_EnableMemoryShutOff() and
96        HAL_PWREx_DisableMemoryShutOff() functions to enable and disable the
97        memory block shut-off in DStop or DStop2. These APIs are used only for
98        STM32H7Axxx and STM32H7Bxxx lines.
99 
100    (#) Call HAL_PWREx_EnableWakeUpPin() and HAL_PWREx_DisableWakeUpPin()
101        functions to enable and disable the Wake-up pin functionality for
102        the selected pin.
103 
104    (#) Call HAL_PWREx_GetWakeupFlag() and HAL_PWREx_ClearWakeupFlag()
105        functions to manage wake-up flag for the selected pin.
106 
107    (#) Call HAL_PWREx_WAKEUP_PIN_IRQHandler() function to handle all wake-up
108        pins interrupts.
109 
110    (#) Call HAL_PWREx_EnableBkUpReg() and HAL_PWREx_DisableBkUpReg() functions
111        to enable and disable the backup domain regulator.
112 
113    (#) Call HAL_PWREx_EnableUSBReg(), HAL_PWREx_DisableUSBReg(),
114        HAL_PWREx_EnableUSBVoltageDetector() and
115        HAL_PWREx_DisableUSBVoltageDetector() functions to manage USB power
116        regulation functionalities.
117 
118    (#) Call HAL_PWREx_EnableBatteryCharging() and
119        HAL_PWREx_DisableBatteryCharging() functions to enable and disable the
120        battery charging feature with the selected resistor.
121 
122    (#) Call HAL_PWREx_EnableAnalogBooster() and
123        HAL_PWREx_DisableAnalogBooster() functions to enable and disable the
124        AVD boost feature when the VDD supply voltage is below 2V7.
125 
126    (#) Call HAL_PWREx_EnableMonitoring() and HAL_PWREx_DisableMonitoring()
127        functions to enable and disable the VBAT and Temperature monitoring.
128        When VBAT and Temperature monitoring feature is enables, use
129        HAL_PWREx_GetTemperatureLevel() and HAL_PWREx_GetVBATLevel() to get
130        respectively the Temperature level and VBAT level.
131 
132    (#) Call HAL_PWREx_GetMMCVoltage() and HAL_PWREx_DisableMonitoring()
133        function to get VDDMMC voltage level. This API is used only for
134        STM32H7Axxx and STM32H7Bxxx lines
135 
136    (#) Call HAL_PWREx_ConfigAVD() after setting parameter to be configured
137        (event mode and voltage threshold) in order to set up the Analog Voltage
138        Detector then use HAL_PWREx_EnableAVD() and  HAL_PWREx_DisableAVD()
139        functions to start and stop the AVD detection.
140        (+) AVD level could be one of the following values :
141              (++) 1V7
142              (++) 2V1
143              (++) 2V5
144              (++) 2V8
145 
146    (#) Call HAL_PWREx_PVD_AVD_IRQHandler() function to handle the PWR PVD and
147        AVD interrupt request.
148 
149   @endverbatim
150   */
151 
152 /* Includes ------------------------------------------------------------------*/
153 #include "stm32h7xx_hal.h"
154 
155 /** @addtogroup STM32H7xx_HAL_Driver
156   * @{
157   */
158 
159 /** @defgroup PWREx PWREx
160   * @brief PWR Extended HAL module driver
161   * @{
162   */
163 
164 #ifdef HAL_PWR_MODULE_ENABLED
165 
166 /* Private typedef -----------------------------------------------------------*/
167 /* Private define ------------------------------------------------------------*/
168 
169 /** @addtogroup PWREx_Private_Constants
170   * @{
171   */
172 
173 /** @defgroup PWREx_AVD_Mode_Mask PWR Extended AVD Mode Mask
174   * @{
175   */
176 #define AVD_MODE_IT              (0x00010000U)
177 #define AVD_MODE_EVT             (0x00020000U)
178 #define AVD_RISING_EDGE          (0x00000001U)
179 #define AVD_FALLING_EDGE         (0x00000002U)
180 #define AVD_RISING_FALLING_EDGE  (0x00000003U)
181 /**
182   * @}
183   */
184 
185 /** @defgroup PWREx_REG_SET_TIMEOUT PWR Extended Flag Setting Time Out Value
186   * @{
187   */
188 #define PWR_FLAG_SETTING_DELAY   (1000U)
189 /**
190   * @}
191   */
192 
193 /** @defgroup PWREx_WakeUp_Pins_Offsets PWREx Wake-Up Pins masks and offsets
194   * @{
195   */
196 /* Wake-Up Pins EXTI register mask */
197 #if defined (EXTI_IMR2_IM57)
198 #define PWR_EXTI_WAKEUP_PINS_MASK  (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\
199                                     EXTI_IMR2_IM57 | EXTI_IMR2_IM58 |\
200                                     EXTI_IMR2_IM59 | EXTI_IMR2_IM60)
201 #else
202 #define PWR_EXTI_WAKEUP_PINS_MASK  (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\
203                                     EXTI_IMR2_IM58 | EXTI_IMR2_IM60)
204 #endif /* defined (EXTI_IMR2_IM57) */
205 
206 /* Wake-Up Pins PWR Pin Pull shift offsets */
207 #define PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET (2U)
208 /**
209   * @}
210   */
211 
212 /**
213   * @}
214   */
215 
216 /* Private macro -------------------------------------------------------------*/
217 /* Private variables ---------------------------------------------------------*/
218 /* Private function prototypes -----------------------------------------------*/
219 /* Private functions ---------------------------------------------------------*/
220 /* Exported types ------------------------------------------------------------*/
221 /* Exported functions --------------------------------------------------------*/
222 
223 /** @defgroup PWREx_Exported_Functions PWREx Exported Functions
224   * @{
225   */
226 
227 /** @defgroup PWREx_Exported_Functions_Group1 Power Supply Control Functions
228   * @brief    Power supply control functions
229   *
230 @verbatim
231  ===============================================================================
232                   ##### Power supply control functions #####
233  ===============================================================================
234     [..]
235    (#) When the system is powered on, the POR monitors VDD supply. Once VDD is
236        above the POR threshold level, the voltage regulator is enabled in the
237        default supply configuration:
238       (+) The Voltage converter output level is set at 1V0 in accordance with
239           the VOS3 level configured in PWR (D3/SRD) domain control register
240           (PWR_D3CR/PWR_SRDCR).
241       (+) The system is kept in reset mode as long as VCORE is not ok.
242       (+) Once VCORE is ok, the system is taken out of reset and the HSI
243           oscillator is enabled.
244       (+) Once the oscillator is stable, the system is initialized: Flash memory
245           and option bytes are loaded and the CPU starts in Run* mode.
246       (+) The software shall then initialize the system including supply
247           configuration programming using the HAL_PWREx_ConfigSupply().
248       (+) Once the supply configuration has been configured, the
249           HAL_PWREx_ConfigSupply() function checks the ACTVOSRDY bit in PWR
250           control status register 1 (PWR_CSR1) to guarantee a valid voltage
251           levels:
252        (++) As long as ACTVOSRDY indicates that voltage levels are invalid, the
253             system is in limited Run* mode, write accesses to the RAMs are not
254             permitted and VOS shall not be changed.
255        (++) Once ACTVOSRDY indicates that voltage levels are valid, the system
256             is in normal Run mode, write accesses to RAMs are allowed and VOS
257             can be changed.
258 
259 @endverbatim
260   * @{
261   */
262 
263 /**
264   * @brief Configure the system Power Supply.
265   * @param  SupplySource : Specifies the Power Supply source to set after a
266   *                        system startup.
267   *         This parameter can be one of the following values :
268   *            @arg PWR_DIRECT_SMPS_SUPPLY : The SMPS supplies the Vcore Power
269   *                                          Domains. The LDO is Bypassed.
270   *            @arg PWR_SMPS_1V8_SUPPLIES_LDO : The SMPS 1.8V output supplies
271   *                                             the LDO. The Vcore Power Domains
272   *                                             are supplied from the LDO.
273   *            @arg PWR_SMPS_2V5_SUPPLIES_LDO : The SMPS 2.5V output supplies
274   *                                             the LDO. The Vcore Power Domains
275   *                                             are supplied from the LDO.
276   *            @arg PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO : The SMPS 1.8V output
277   *                                                     supplies external
278   *                                                     circuits and the LDO.
279   *                                                     The Vcore Power Domains
280   *                                                     are supplied from the
281   *                                                     LDO.
282   *            @arg PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO : The SMPS 2.5V output
283   *                                                     supplies external
284   *                                                     circuits and the LDO.
285   *                                                     The Vcore Power Domains
286   *                                                     are supplied from the
287   *                                                     LDO.
288   *            @arg PWR_SMPS_1V8_SUPPLIES_EXT : The SMPS 1.8V output supplies
289   *                                             external circuits. The LDO is
290   *                                             Bypassed. The Vcore Power
291   *                                             Domains are supplied from
292   *                                             external source.
293   *            @arg PWR_SMPS_2V5_SUPPLIES_EXT : The SMPS 2.5V output supplies
294   *                                             external circuits. The LDO is
295   *                                             Bypassed. The Vcore Power
296   *                                             Domains are supplied from
297   *                                             external source.
298   *            @arg PWR_LDO_SUPPLY : The LDO regulator supplies the Vcore Power
299   *                                  Domains. The SMPS regulator is Bypassed.
300   *            @arg PWR_EXTERNAL_SOURCE_SUPPLY : The SMPS and the LDO are
301   *                                              Bypassed. The Vcore Power
302   *                                              Domains are supplied from
303   *                                              external source.
304   * @note   The PWR_LDO_SUPPLY and PWR_EXTERNAL_SOURCE_SUPPLY are used by all
305   *         H7 lines.
306   *         The PWR_DIRECT_SMPS_SUPPLY, PWR_SMPS_1V8_SUPPLIES_LDO,
307   *         PWR_SMPS_2V5_SUPPLIES_LDO, PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO,
308   *         PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO, PWR_SMPS_1V8_SUPPLIES_EXT and
309   *         PWR_SMPS_2V5_SUPPLIES_EXT are used only for lines that supports SMPS
310   *         regulator.
311   * @note   This API is deprecated and is kept only for backward compatibility's sake.
312   *         The power supply configuration is handled as part of the system initialization
313   *         process during startup.
314   *         For more details, please refer to the power control chapter in the reference manual
315   * @retval HAL status.
316   */
HAL_PWREx_ConfigSupply(uint32_t SupplySource)317 HAL_StatusTypeDef HAL_PWREx_ConfigSupply (uint32_t SupplySource)
318 {
319   uint32_t tickstart;
320 
321   /* Check the parameters */
322   assert_param (IS_PWR_SUPPLY (SupplySource));
323 
324   /* Check if supply source was configured */
325 #if defined (PWR_FLAG_SCUEN)
326   if (__HAL_PWR_GET_FLAG (PWR_FLAG_SCUEN) == 0U)
327 #else
328   if ((PWR->CR3 & (PWR_CR3_SMPSEN | PWR_CR3_LDOEN | PWR_CR3_BYPASS)) != (PWR_CR3_SMPSEN | PWR_CR3_LDOEN))
329 #endif /* defined (PWR_FLAG_SCUEN) */
330   {
331     /* Check supply configuration */
332     if ((PWR->CR3 & PWR_SUPPLY_CONFIG_MASK) != SupplySource)
333     {
334       /* Supply configuration update locked, can't apply a new supply config */
335       return HAL_ERROR;
336     }
337     else
338     {
339       /* Supply configuration update locked, but new supply configuration
340          matches with old supply configuration : nothing to do
341       */
342       return HAL_OK;
343     }
344   }
345 
346   /* Set the power supply configuration */
347   MODIFY_REG (PWR->CR3, PWR_SUPPLY_CONFIG_MASK, SupplySource);
348 
349   /* Get tick */
350   tickstart = HAL_GetTick ();
351 
352   /* Wait till voltage level flag is set */
353   while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
354   {
355     if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
356     {
357       return HAL_ERROR;
358     }
359   }
360 
361 #if defined (SMPS)
362   /* When the SMPS supplies external circuits verify that SDEXTRDY flag is set */
363   if ((SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO) ||
364       (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO) ||
365       (SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT)         ||
366       (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT))
367   {
368     /* Get the current tick number */
369     tickstart = HAL_GetTick ();
370 
371     /* Wait till SMPS external supply ready flag is set */
372     while (__HAL_PWR_GET_FLAG (PWR_FLAG_SMPSEXTRDY) == 0U)
373     {
374       if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
375       {
376         return HAL_ERROR;
377       }
378     }
379   }
380 #endif /* defined (SMPS) */
381 
382   return HAL_OK;
383 }
384 
385 /**
386   * @brief Get the power supply configuration.
387   * @retval The supply configuration.
388   */
HAL_PWREx_GetSupplyConfig(void)389 uint32_t HAL_PWREx_GetSupplyConfig (void)
390 {
391   return (PWR->CR3 & PWR_SUPPLY_CONFIG_MASK);
392 }
393 
394 /**
395   * @brief Configure the main internal regulator output voltage.
396   * @param  VoltageScaling : Specifies the regulator output voltage to achieve
397   *                          a tradeoff between performance and power
398   *                          consumption.
399   *          This parameter can be one of the following values :
400   *            @arg PWR_REGULATOR_VOLTAGE_SCALE0 : Regulator voltage output
401   *                                                Scale 0 mode.
402   *            @arg PWR_REGULATOR_VOLTAGE_SCALE1 : Regulator voltage output
403   *                                                range 1 mode.
404   *            @arg PWR_REGULATOR_VOLTAGE_SCALE2 : Regulator voltage output
405   *                                                range 2 mode.
406   *            @arg PWR_REGULATOR_VOLTAGE_SCALE3 : Regulator voltage output
407   *                                                range 3 mode.
408   * @note   For STM32H74x and STM32H75x lines, configuring Voltage Scale 0 is
409   *         only possible when Vcore is supplied from LDO (Low DropOut). The
410   *         SYSCFG Clock must be enabled through __HAL_RCC_SYSCFG_CLK_ENABLE()
411   *         macro before configuring Voltage Scale 0.
412   *         To enter low power mode , and if current regulator voltage is
413   *         Voltage Scale 0 then first switch to Voltage Scale 1 before entering
414   *         low power mode.
415   * @retval HAL Status
416   */
HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)417 HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling (uint32_t VoltageScaling)
418 {
419   uint32_t tickstart;
420 
421   /* Check the parameters */
422   assert_param (IS_PWR_REGULATOR_VOLTAGE (VoltageScaling));
423 
424   /* Get the voltage scaling  */
425   if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == VoltageScaling)
426   {
427     /* Old and new voltage scaling configuration match : nothing to do */
428     return HAL_OK;
429   }
430 
431 #if defined (PWR_SRDCR_VOS)
432   /* Set the voltage range */
433   MODIFY_REG (PWR->SRDCR, PWR_SRDCR_VOS, VoltageScaling);
434 #else
435 #if defined(SYSCFG_PWRCR_ODEN) /* STM32H74xxx and STM32H75xxx lines */
436   if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE0)
437   {
438     if ((PWR->CR3 & PWR_CR3_LDOEN) == PWR_CR3_LDOEN)
439     {
440       /* Set the voltage range */
441       MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
442 
443       /* Get tick */
444       tickstart = HAL_GetTick ();
445 
446       /* Wait till voltage level flag is set */
447       while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
448       {
449         if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
450         {
451           return HAL_ERROR;
452         }
453       }
454 
455       /* Enable the PWR overdrive */
456       SET_BIT (SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN);
457     }
458     else
459     {
460       /* The voltage scale 0 is only possible when LDO regulator is enabled */
461       return HAL_ERROR;
462     }
463   }
464   else
465   {
466     if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == PWR_REGULATOR_VOLTAGE_SCALE1)
467     {
468       if ((SYSCFG->PWRCR & SYSCFG_PWRCR_ODEN) != 0U)
469       {
470         /* Disable the PWR overdrive */
471         CLEAR_BIT(SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN);
472 
473         /* Get tick */
474         tickstart = HAL_GetTick ();
475 
476         /* Wait till voltage level flag is set */
477         while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
478         {
479           if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
480           {
481             return HAL_ERROR;
482           }
483         }
484       }
485     }
486 
487     /* Set the voltage range */
488     MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, VoltageScaling);
489   }
490 #else  /* STM32H72xxx and STM32H73xxx lines */
491   /* Set the voltage range */
492   MODIFY_REG(PWR->D3CR, PWR_D3CR_VOS, VoltageScaling);
493 #endif /* defined (SYSCFG_PWRCR_ODEN) */
494 #endif /* defined (PWR_SRDCR_VOS) */
495 
496   /* Get tick */
497   tickstart = HAL_GetTick ();
498 
499   /* Wait till voltage level flag is set */
500   while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
501   {
502     if ((HAL_GetTick() - tickstart) > PWR_FLAG_SETTING_DELAY)
503     {
504       return HAL_ERROR;
505     }
506   }
507 
508   return HAL_OK;
509 }
510 
511 /**
512   * @brief Get the main internal regulator output voltage. Reflecting the last
513   *        VOS value applied to the PMU.
514   * @retval The current applied VOS selection.
515   */
HAL_PWREx_GetVoltageRange(void)516 uint32_t HAL_PWREx_GetVoltageRange (void)
517 {
518   /* Get the active voltage scaling */
519   return (PWR->CSR1 & PWR_CSR1_ACTVOS);
520 }
521 
522 /**
523   * @brief Configure the main internal regulator output voltage in STOP mode.
524   * @param  VoltageScaling : Specifies the regulator output voltage when the
525   *         system enters Stop mode to achieve a tradeoff between performance
526   *         and power consumption.
527   *          This parameter can be one of the following values:
528   *            @arg PWR_REGULATOR_SVOS_SCALE3 : Regulator voltage output range
529   *                                             3 mode.
530   *            @arg PWR_REGULATOR_SVOS_SCALE4 : Regulator voltage output range
531   *                                             4 mode.
532   *            @arg PWR_REGULATOR_SVOS_SCALE5 : Regulator voltage output range
533   *                                             5 mode.
534   * @note   The Stop mode voltage scaling for SVOS4 and SVOS5 sets the voltage
535   *         regulator in Low-power (LP) mode to further reduce power consumption.
536   *         When preselecting SVOS3, the use of the voltage regulator low-power
537   *         mode (LP) can be selected by LPDS register bit.
538   * @note   The selected SVOS4 and SVOS5 levels add an additional startup delay
539   *         when exiting from system Stop mode.
540   * @retval HAL Status.
541   */
HAL_PWREx_ControlStopModeVoltageScaling(uint32_t VoltageScaling)542 HAL_StatusTypeDef HAL_PWREx_ControlStopModeVoltageScaling (uint32_t VoltageScaling)
543 {
544   /* Check the parameters */
545   assert_param (IS_PWR_STOP_MODE_REGULATOR_VOLTAGE (VoltageScaling));
546 
547   /* Return the stop mode voltage range */
548   MODIFY_REG (PWR->CR1, PWR_CR1_SVOS, VoltageScaling);
549 
550   return HAL_OK;
551 }
552 
553 /**
554   * @brief Get the main internal regulator output voltage in STOP mode.
555   * @retval The actual applied VOS selection.
556   */
HAL_PWREx_GetStopModeVoltageRange(void)557 uint32_t HAL_PWREx_GetStopModeVoltageRange (void)
558 {
559   /* Return the stop voltage scaling */
560   return (PWR->CR1 & PWR_CR1_SVOS);
561 }
562 /**
563   * @}
564   */
565 
566 /** @defgroup PWREx_Exported_Functions_Group2 Low Power Control Functions
567   * @brief    Low power control functions
568   *
569 @verbatim
570  ===============================================================================
571                      ##### Low power control functions #####
572  ===============================================================================
573 
574     *** Domains Low Power modes configuration ***
575     =============================================
576     [..]
577       This section provides the extended low power mode control APIs.
578       The system presents 3 principles domains (D1, D2 and D3) that can be
579       operated in low-power modes (DSTOP or DSTANDBY mode):
580 
581       (+) DSTOP mode to enters a domain to STOP mode:
582        (++) D1 domain and/or D2 domain enters DSTOP mode only when the CPU
583             subsystem is in CSTOP mode and has allocated peripheral in the
584             domain.
585             In DSTOP mode the domain bus matrix clock is stopped.
586        (++) The system enters STOP mode using one of the following scenarios:
587         (+++) D1 domain enters DSTANDBY mode (powered off) and D2, D3 domains
588               enter DSTOP mode.
589         (+++) D2 domain enters DSTANDBY mode (powered off) and D1, D3 domains
590               enter DSTOP mode.
591         (+++) D3 domain enters DSTANDBY mode (powered off) and D1, D2 domains
592               enter DSTOP mode.
593         (+++) D1 and D2 domains enter DSTANDBY mode (powered off) and D3 domain
594               enters DSTOP mode.
595         (+++) D1 and D3 domains enter DSTANDBY mode (powered off) and D2 domain
596               enters DSTOP mode.
597         (+++) D2 and D3 domains enter DSTANDBY mode (powered off) and D1 domain
598               enters DSTOP mode.
599         (+++) D1, D2 and D3 domains enter DSTOP mode.
600        (++) When the system enters STOP mode, the clocks are stopped and the
601             regulator is running in main or low power mode.
602        (++) D3 domain can be kept in Run mode regardless of the CPU status when
603             enter STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function.
604 
605       (+) DSTANDBY mode to enters a domain to STANDBY mode:
606        (++) The DSTANDBY mode is entered when the PDDS_Dn bit in PWR CPU control
607             register (PWR_CPUCR) for the Dn domain selects Standby mode.
608        (++) The system enters STANDBY mode only when D1, D2 and D3 domains enter
609             DSTANDBY mode. Consequently the VCORE supply regulator is powered
610             off.
611 
612    *** DSTOP mode ***
613    ==================
614     [..]
615       In DStop mode the domain bus matrix clock is stopped.
616       The Flash memory can enter low-power Stop mode when it is enabled through
617       FLPS in PWR_CR1 register. This allows a trade-off between domain DStop
618       restart time and low power consumption.
619     [..]
620       In DStop mode domain peripherals using the LSI or LSE clock and
621       peripherals having a kernel clock request are still able to operate.
622     [..]
623       Before entering DSTOP mode it is recommended to call SCB_CleanDCache
624       function in order to clean the D-Cache and guarantee the data integrity
625       for the SRAM memories.
626 
627       (+) Entry:
628          The DSTOP mode is entered using the HAL_PWREx_EnterSTOPMode(Regulator,
629          STOPEntry, Domain) function with:
630          (++) Regulator:
631           (+++) PWR_MAINREGULATOR_ON     : Main regulator ON.
632           (+++) PWR_LOWPOWERREGULATOR_ON : Low Power regulator ON.
633          (++) STOPEntry:
634           (+++) PWR_STOPENTRY_WFI : enter STOP mode with WFI instruction
635           (+++) PWR_STOPENTRY_WFE : enter STOP mode with WFE instruction
636          (++) Domain:
637           (+++) PWR_D1_DOMAIN : Enters D1/CD domain to DSTOP mode.
638           (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTOP mode.
639           (+++) PWR_D3_DOMAIN : Enters D3/SRD domain to DSTOP mode.
640 
641       (+) Exit:
642         Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
643 
644    *** DSTANDBY mode ***
645    =====================
646     [..]
647       In DStandby mode:
648         (+) The domain bus matrix clock is stopped.
649         (+) The domain is powered down and the domain RAM and register contents
650             are lost.
651     [..]
652       Before entering DSTANDBY mode it is recommended to call SCB_CleanDCache
653       function in order to clean the D-Cache and guarantee the data integrity
654       for the SRAM memories.
655 
656       (+) Entry:
657          The DSTANDBY mode is entered using the HAL_PWREx_EnterSTANDBYMode
658          (Domain) function with:
659        (++) Domain:
660         (+++) PWR_D1_DOMAIN : Enters D1/CD domain to DSTANDBY mode.
661         (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTANDBY mode.
662         (+++) PWR_D3_DOMAIN : Enters D3/SRD domain to DSTANDBY mode.
663 
664       (+) Exit:
665         WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC
666         wakeup, tamper event, time stamp event, external reset in NRST pin,
667         IWDG reset.
668 
669    *** Keep D3/SRD in RUN mode ***
670    ===============================
671     [..]
672       D3/SRD domain can be kept in Run mode regardless of the CPU status when
673       entering STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function
674       with :
675        (+) D3State:
676         (++) PWR_D3_DOMAIN_STOP : D3/SDR domain follows the CPU sub-system
677                                   mode.
678         (++) PWR_D3_DOMAIN_RUN : D3/SRD domain remains in Run mode regardless
679                                  of CPU subsystem mode.
680 
681     *** FLASH Power Down configuration ****
682     =======================================
683     [..]
684       By setting the FLPS bit in the PWR_CR1 register using the
685       HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters
686       power down mode when the device enters STOP mode. When the Flash memory is
687       in power down mode, an additional startup delay is incurred when waking up
688       from STOP mode.
689 
690     *** Wakeup Pins configuration ****
691     ===================================
692     [..]
693       Wakeup pins allow the system to exit from Standby mode. The configuration
694       of wakeup pins is done with the HAL_PWREx_EnableWakeUpPin(sPinParams)
695       function with:
696        (+) sPinParams: structure to enable and configure a wakeup pin:
697         (++) WakeUpPin: Wakeup pin to be enabled.
698         (++) PinPolarity: Wakeup pin polarity (rising or falling edge).
699         (++) PinPull: Wakeup pin pull (no pull, pull-up or pull-down).
700     [..]
701       The wakeup pins are internally connected to the EXTI lines [55-60] to
702       generate an interrupt if enabled. The EXTI lines configuration is done by
703       the HAL_EXTI_Dx_EventInputConfig() functions defined in the stm32h7xxhal.c
704       file.
705     [..]
706       When a wakeup pin event is received the HAL_PWREx_WAKEUP_PIN_IRQHandler is
707       called and the appropriate flag is set in the PWR_WKUPFR register. Then in
708       the HAL_PWREx_WAKEUP_PIN_IRQHandler function the wakeup pin flag will be
709       cleared and the appropriate user callback will be called. The user can add
710       his own code by customization of function pointer HAL_PWREx_WKUPx_Callback.
711 
712 @endverbatim
713   * @{
714   */
715 
716 #if defined (PWR_CPUCR_RETDS_CD)
717 /**
718   * @brief Enter the system to STOP mode with main domain in DSTOP2.
719   * @note   In STOP mode, the domain bus matrix clock is stalled.
720   * @note   In STOP mode, memories and registers are maintained and peripherals
721   *         in CPU domain are no longer operational.
722   * @note   All clocks in the VCORE domain are stopped, the PLL, the HSI and the
723   *         HSE oscillators are disabled. Only Peripherals that have wakeup
724   *         capability can switch on the HSI to receive a frame, and switch off
725   *         the HSI after receiving the frame if it is not a wakeup frame. In
726   *         this case the HSI clock is propagated only to the peripheral
727   *         requesting it.
728   * @note   When exiting STOP mode by issuing an interrupt or a wakeup event,
729   *         the HSI RC oscillator is selected as system clock if STOPWUCK bit in
730   *         RCC_CFGR register is set.
731   * @param  Regulator : Specifies the regulator state in STOP mode.
732   *          This parameter can be one of the following values:
733   *            @arg PWR_MAINREGULATOR_ON     : STOP mode with regulator ON.
734   *            @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power
735   *                                            regulator ON.
736   * @param  STOPEntry : Specifies if STOP mode in entered with WFI or WFE
737   *                     intrinsic instruction.
738   *          This parameter can be one of the following values:
739   *            @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction.
740   *            @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction.
741   * @retval None.
742   */
HAL_PWREx_EnterSTOP2Mode(uint32_t Regulator,uint8_t STOPEntry)743 void HAL_PWREx_EnterSTOP2Mode (uint32_t Regulator, uint8_t STOPEntry)
744 {
745   /* Check the parameters */
746   assert_param (IS_PWR_REGULATOR (Regulator));
747   assert_param (IS_PWR_STOP_ENTRY (STOPEntry));
748 
749   /* Select the regulator state in Stop mode */
750   MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator);
751 
752   /* Go to DStop2 mode (deep retention) when CPU domain enters Deepsleep */
753   SET_BIT (PWR->CPUCR, PWR_CPUCR_RETDS_CD);
754 
755   /* Keep DSTOP mode when SmartRun domain enters Deepsleep */
756   CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_SRD);
757 
758   /* Set SLEEPDEEP bit of Cortex System Control Register */
759   SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
760 
761   /* Ensure that all instructions are done before entering STOP mode */
762   __ISB ();
763   __DSB ();
764 
765   /* Select Stop mode entry */
766   if (STOPEntry == PWR_STOPENTRY_WFI)
767   {
768     /* Request Wait For Interrupt */
769     __WFI ();
770   }
771   else
772   {
773     /* Request Wait For Event */
774     __WFE ();
775   }
776 
777   /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
778   CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
779 }
780 #endif /* defined (PWR_CPUCR_RETDS_CD) */
781 
782 /**
783   * @brief Enter a Domain to DSTOP mode.
784   * @note   This API gives flexibility to manage independently each domain STOP
785   *         mode. For dual core lines, this API should be executed with the
786   *         corresponding Cortex-Mx to enter domain to DSTOP mode. When it is
787   *         executed by all available Cortex-Mx, the system enter to STOP mode.
788   *         For single core lines, calling this API with domain parameter set to
789   *         PWR_D1_DOMAIN (D1/CD), the whole system will enter in STOP mode
790   *         independently of PWR_CPUCR_PDDS_Dx bits values if RUN_D3 bit in the
791   *         CPUCR_RUN_D3 is cleared.
792   * @note   In DStop mode the domain bus matrix clock is stopped.
793   * @note   The system D3/SRD domain enter Stop mode only when the CPU subsystem
794   *         is in CStop mode, the EXTI wakeup sources are inactive and at least
795   *         one PDDS_Dn bit in PWR CPU control register (PWR_CPUCR) for
796   *         any domain request Stop.
797   * @note   Before entering DSTOP mode it is recommended to call SCB_CleanDCache
798   *         function in order to clean the D-Cache and guarantee the data
799   *         integrity for the SRAM memories.
800   * @note   In System Stop mode, the domain peripherals that use the LSI or LSE
801   *         clock, and the peripherals that have a kernel clock request to
802   *         select HSI or CSI as source, are still able to operate.
803   * @param  Regulator : Specifies the regulator state in STOP mode.
804   *          This parameter can be one of the following values:
805   *            @arg PWR_MAINREGULATOR_ON     : STOP mode with regulator ON.
806   *            @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power
807   *                                            regulator ON.
808   * @param  STOPEntry : Specifies if STOP mode in entered with WFI or WFE
809   *                     intrinsic instruction.
810   *          This parameter can be one of the following values:
811   *            @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction.
812   *            @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction.
813   * @param  Domain : Specifies the Domain to enter in DSTOP mode.
814   *          This parameter can be one of the following values:
815   *            @arg PWR_D1_DOMAIN : Enter D1/CD Domain to DSTOP mode.
816   *            @arg PWR_D2_DOMAIN : Enter D2 Domain to DSTOP mode.
817   *            @arg PWR_D3_DOMAIN : Enter D3/SRD Domain to DSTOP mode.
818   * @retval None.
819   */
HAL_PWREx_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry,uint32_t Domain)820 void HAL_PWREx_EnterSTOPMode (uint32_t Regulator, uint8_t STOPEntry, uint32_t Domain)
821 {
822   /* Check the parameters */
823   assert_param (IS_PWR_REGULATOR (Regulator));
824   assert_param (IS_PWR_STOP_ENTRY (STOPEntry));
825   assert_param (IS_PWR_DOMAIN (Domain));
826 
827   /* Select the regulator state in Stop mode */
828   MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator);
829 
830   /* Select the domain Power Down DeepSleep */
831   if (Domain == PWR_D1_DOMAIN)
832   {
833 #if defined (DUAL_CORE)
834     /* Check current core */
835     if (HAL_GetCurrentCPUID () != CM7_CPUID)
836     {
837       /*
838          When the domain selected and the cortex-mx don't match, entering stop
839          mode will not be performed
840       */
841       return;
842     }
843 #endif /* defined (DUAL_CORE) */
844 
845     /* Keep DSTOP mode when D1/CD domain enters Deepsleep */
846     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D1);
847 
848     /* Set SLEEPDEEP bit of Cortex System Control Register */
849     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
850 
851     /* Ensure that all instructions are done before entering STOP mode */
852     __DSB ();
853     __ISB ();
854 
855     /* Select Stop mode entry */
856     if (STOPEntry == PWR_STOPENTRY_WFI)
857     {
858       /* Request Wait For Interrupt */
859       __WFI ();
860     }
861     else
862     {
863       /* Request Wait For Event */
864       __WFE ();
865     }
866 
867     /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
868     CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
869   }
870 #if defined (PWR_CPUCR_PDDS_D2)
871   else if (Domain == PWR_D2_DOMAIN)
872   {
873 #if defined (DUAL_CORE)
874     /* Check current core */
875     if (HAL_GetCurrentCPUID () != CM4_CPUID)
876     {
877       /*
878          When the domain selected and the cortex-mx don't match, entering stop
879          mode will not be performed
880       */
881       return;
882     }
883 
884     /* Keep DSTOP mode when D2 domain enters Deepsleep */
885     CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D2);
886 
887     /* Set SLEEPDEEP bit of Cortex System Control Register */
888     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
889 
890     /* Ensure that all instructions are done before entering STOP mode */
891     __DSB ();
892     __ISB ();
893 
894     /* Select Stop mode entry */
895     if (STOPEntry == PWR_STOPENTRY_WFI)
896     {
897       /* Request Wait For Interrupt */
898       __WFI ();
899     }
900     else
901     {
902       /* Request Wait For Event */
903       __WFE ();
904     }
905 
906     /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
907     CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
908 #else
909     /* Keep DSTOP mode when D2 domain enters Deepsleep */
910     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D2);
911 #endif  /* defined (DUAL_CORE) */
912   }
913 #endif /* defined (PWR_CPUCR_PDDS_D2) */
914   else
915   {
916 #if defined (DUAL_CORE)
917     /* Check current core */
918     if (HAL_GetCurrentCPUID () == CM7_CPUID)
919     {
920       /* Keep DSTOP mode when D3 domain enters Deepsleep */
921       CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
922     }
923     else
924     {
925       /* Keep DSTOP mode when D3 domain enters Deepsleep */
926       CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D3);
927     }
928 #else
929     /* Keep DSTOP mode when D3/SRD domain enters Deepsleep */
930     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
931 #endif  /* defined (DUAL_CORE) */
932   }
933 }
934 
935 /**
936   * @brief Clear pending event.
937   * @note   This API clears the pending event in order to enter a given CPU
938   *         to CSLEEP or CSTOP. It should be called just before APIs performing
939   *         enter low power mode using Wait For Event request.
940   * @note   Cortex-M7 must be in CRUN mode when calling this API by Cortex-M4.
941   * @retval None.
942   */
HAL_PWREx_ClearPendingEvent(void)943 void HAL_PWREx_ClearPendingEvent (void)
944 {
945 #if defined (DUAL_CORE)
946   /* Check the current Core */
947   if (HAL_GetCurrentCPUID () == CM7_CPUID)
948   {
949     __WFE ();
950   }
951   else
952   {
953     __SEV ();
954     __WFE ();
955   }
956 #else
957   __WFE ();
958 #endif /* defined (DUAL_CORE) */
959 }
960 
961 /**
962   * @brief Enter a Domain to DSTANDBY mode.
963   * @note   This API gives flexibility to manage independently each domain
964   *         STANDBY mode. For dual core lines, this API should be executed with
965   *         the corresponding Cortex-Mx to enter domain to DSTANDBY mode. When
966   *         it is executed by all available Cortex-Mx, the system enter STANDBY
967   *         mode.
968   *         For single core lines, calling this API with D1/SRD the selected
969   *         domain will enter the whole system in STOP if PWR_CPUCR_PDDS_D3 = 0
970   *         and enter the whole system in STANDBY if PWR_CPUCR_PDDS_D3 = 1.
971   * @note   The DStandby mode is entered when all PDDS_Dn bits in PWR_CPUCR for
972   *         the Dn domain select Standby mode. When the system enters Standby
973   *         mode, the voltage regulator is disabled.
974   * @note   When D2 or D3 domain is in DStandby mode and the CPU sets the
975   *         domain PDDS_Dn bit to select Stop mode, the domain remains in
976   *         DStandby mode. The domain will only exit DStandby when the CPU
977   *         allocates a peripheral in the domain.
978   * @note   The system D3/SRD domain enters Standby mode only when the D1 and D2
979   *         domain are in DStandby.
980   * @note   Before entering DSTANDBY mode it is recommended to call
981   *         SCB_CleanDCache function in order to clean the D-Cache and guarantee
982   *         the data integrity for the SRAM memories.
983   * @param  Domain : Specifies the Domain to enter to STANDBY mode.
984   *          This parameter can be one of the following values:
985   *            @arg PWR_D1_DOMAIN: Enter D1/CD Domain to DSTANDBY mode.
986   *            @arg PWR_D2_DOMAIN: Enter D2 Domain to DSTANDBY mode.
987   *            @arg PWR_D3_DOMAIN: Enter D3/SRD Domain to DSTANDBY mode.
988   * @retval None
989   */
HAL_PWREx_EnterSTANDBYMode(uint32_t Domain)990 void HAL_PWREx_EnterSTANDBYMode (uint32_t Domain)
991 {
992   /* Check the parameters */
993   assert_param (IS_PWR_DOMAIN (Domain));
994 
995   /* Select the domain Power Down DeepSleep */
996   if (Domain == PWR_D1_DOMAIN)
997   {
998 #if defined (DUAL_CORE)
999     /* Check current core */
1000     if (HAL_GetCurrentCPUID () != CM7_CPUID)
1001     {
1002       /*
1003          When the domain selected and the cortex-mx don't match, entering
1004          standby mode will not be performed
1005       */
1006       return;
1007     }
1008 #endif /* defined (DUAL_CORE) */
1009 
1010     /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */
1011     SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D1);
1012 
1013 #if defined (DUAL_CORE)
1014     /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */
1015     SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D1);
1016 #endif /*DUAL_CORE*/
1017 
1018     /* Set SLEEPDEEP bit of Cortex System Control Register */
1019     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
1020 
1021     /* This option is used to ensure that store operations are completed */
1022 #if defined (__CC_ARM)
1023     __force_stores ();
1024 #endif /* defined (__CC_ARM) */
1025 
1026     /* Request Wait For Interrupt */
1027     __WFI ();
1028   }
1029 #if defined (PWR_CPUCR_PDDS_D2)
1030   else if (Domain == PWR_D2_DOMAIN)
1031   {
1032     /* Allow DSTANDBY mode when D2 domain enters Deepsleep */
1033     SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D2);
1034 
1035 #if defined (DUAL_CORE)
1036     /* Check current core */
1037     if (HAL_GetCurrentCPUID () != CM4_CPUID)
1038     {
1039       /*
1040          When the domain selected and the cortex-mx don't match, entering
1041          standby mode will not be performed
1042       */
1043       return;
1044     }
1045 
1046     /* Allow DSTANDBY mode when D2 domain enters Deepsleep */
1047     SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D2);
1048 
1049     /* Set SLEEPDEEP bit of Cortex System Control Register */
1050     SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
1051 
1052     /* This option is used to ensure that store operations are completed */
1053 #if defined (__CC_ARM)
1054     __force_stores ();
1055 #endif /* defined (__CC_ARM) */
1056 
1057     /* Request Wait For Interrupt */
1058     __WFI ();
1059 #endif /* defined (DUAL_CORE) */
1060   }
1061 #endif /* defined (PWR_CPUCR_PDDS_D2) */
1062   else
1063   {
1064     /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */
1065     SET_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
1066 
1067 #if defined (DUAL_CORE)
1068     /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */
1069     SET_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D3);
1070 #endif /* defined (DUAL_CORE) */
1071   }
1072 }
1073 
1074 /**
1075   * @brief Configure the D3/SRD Domain state when the System in low power mode.
1076   * @param  D3State : Specifies the D3/SRD state.
1077   *          This parameter can be one of the following values :
1078   *            @arg PWR_D3_DOMAIN_STOP : D3/SRD domain will follow the most deep
1079   *                                      CPU sub-system low power mode.
1080   *            @arg PWR_D3_DOMAIN_RUN : D3/SRD domain will stay in RUN mode
1081   *                                     regardless of the CPU sub-system low
1082   *                                     power mode.
1083   * @retval None
1084   */
HAL_PWREx_ConfigD3Domain(uint32_t D3State)1085 void HAL_PWREx_ConfigD3Domain (uint32_t D3State)
1086 {
1087   /* Check the parameter */
1088   assert_param (IS_D3_STATE (D3State));
1089 
1090   /* Keep D3/SRD in run mode */
1091   MODIFY_REG (PWR->CPUCR, PWR_CPUCR_RUN_D3, D3State);
1092 }
1093 
1094 #if defined (DUAL_CORE)
1095 /**
1096   * @brief Clear HOLD2F, HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2 flags for a
1097   *        given domain.
1098   * @param  DomainFlags : Specifies the Domain flags to be cleared.
1099   *          This parameter can be one of the following values:
1100   *            @arg PWR_D1_DOMAIN_FLAGS : Clear D1 Domain flags.
1101   *            @arg PWR_D2_DOMAIN_FLAGS : Clear D2 Domain flags.
1102   *            @arg PWR_ALL_DOMAIN_FLAGS : Clear D1 and D2 Domain flags.
1103   * @retval None.
1104   */
HAL_PWREx_ClearDomainFlags(uint32_t DomainFlags)1105 void HAL_PWREx_ClearDomainFlags (uint32_t DomainFlags)
1106 {
1107   /* Check the parameter */
1108   assert_param (IS_PWR_DOMAIN_FLAG (DomainFlags));
1109 
1110   /* D1 CPU flags */
1111   if (DomainFlags == PWR_D1_DOMAIN_FLAGS)
1112   {
1113     /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */
1114     SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF);
1115   }
1116   /* D2 CPU flags */
1117   else if (DomainFlags == PWR_D2_DOMAIN_FLAGS)
1118   {
1119     /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */
1120     SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF);
1121   }
1122   else
1123   {
1124     /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */
1125     SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF);
1126     /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */
1127     SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF);
1128   }
1129 }
1130 
1131 /**
1132   * @brief Hold the CPU and their domain peripherals when exiting STOP mode.
1133   * @param  CPU : Specifies the core to be held.
1134   *         This parameter can be one of the following values:
1135   *             @arg PWR_CORE_CPU1: Hold CPU1 and set CPU2 as master.
1136   *             @arg PWR_CORE_CPU2: Hold CPU2 and set CPU1 as master.
1137   * @retval HAL status
1138   */
HAL_PWREx_HoldCore(uint32_t CPU)1139 HAL_StatusTypeDef HAL_PWREx_HoldCore (uint32_t CPU)
1140 {
1141   HAL_StatusTypeDef status = HAL_OK;
1142 
1143   /* Check the parameters */
1144   assert_param (IS_PWR_CORE (CPU));
1145 
1146   /* Check CPU index */
1147   if (CPU == PWR_CORE_CPU2)
1148   {
1149     /* If CPU1 is not held */
1150     if ((PWR->CPU2CR & PWR_CPU2CR_HOLD1) != PWR_CPU2CR_HOLD1)
1151     {
1152       /* Set HOLD2 bit */
1153       SET_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2);
1154     }
1155     else
1156     {
1157       status = HAL_ERROR;
1158     }
1159   }
1160   else
1161   {
1162     /* If CPU2 is not held */
1163     if ((PWR->CPUCR & PWR_CPUCR_HOLD2) != PWR_CPUCR_HOLD2)
1164     {
1165       /* Set HOLD1 bit */
1166       SET_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1);
1167     }
1168     else
1169     {
1170       status = HAL_ERROR;
1171     }
1172   }
1173 
1174   return status;
1175 }
1176 
1177 /**
1178   * @brief Release the CPU and their domain peripherals after a wake-up from
1179   *        STOP mode.
1180   * @param  CPU: Specifies the core to be released.
1181   *         This parameter can be one of the following values:
1182   *             @arg  PWR_CORE_CPU1: Release the CPU1 and their domain
1183   *                   peripherals from holding.
1184   *             @arg  PWR_CORE_CPU2: Release the CPU2 and their domain
1185   *                   peripherals from holding.
1186   * @retval None
1187   */
HAL_PWREx_ReleaseCore(uint32_t CPU)1188 void HAL_PWREx_ReleaseCore (uint32_t CPU)
1189 {
1190   /* Check the parameters */
1191   assert_param (IS_PWR_CORE (CPU));
1192 
1193   /* Check CPU index */
1194   if (CPU == PWR_CORE_CPU2)
1195   {
1196     /* Reset HOLD2 bit */
1197     CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2);
1198   }
1199   else
1200   {
1201     /* Reset HOLD1 bit */
1202     CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1);
1203   }
1204 }
1205 #endif /* defined (DUAL_CORE) */
1206 
1207 
1208 /**
1209   * @brief Enable the Flash Power Down in Stop mode.
1210   * @note   When Flash Power Down is enabled  the Flash memory enters low-power
1211   *         mode when D1/SRD domain is in DStop mode. This feature allows to
1212   *         obtain the best trade-off between low-power consumption and restart
1213   *         time when exiting from DStop mode.
1214   * @retval None.
1215   */
HAL_PWREx_EnableFlashPowerDown(void)1216 void HAL_PWREx_EnableFlashPowerDown (void)
1217 {
1218   /* Enable the Flash Power Down */
1219   SET_BIT (PWR->CR1, PWR_CR1_FLPS);
1220 }
1221 
1222 /**
1223   * @brief Disable the Flash Power Down in Stop mode.
1224   * @note   When Flash Power Down is disabled  the Flash memory is kept on
1225   *         normal mode when D1/SRD domain is in DStop mode. This feature allows
1226   *         to obtain the best trade-off between low-power consumption and
1227   *         restart time when exiting from DStop mode.
1228   * @retval None.
1229   */
HAL_PWREx_DisableFlashPowerDown(void)1230 void HAL_PWREx_DisableFlashPowerDown (void)
1231 {
1232   /* Disable the Flash Power Down */
1233   CLEAR_BIT (PWR->CR1, PWR_CR1_FLPS);
1234 }
1235 
1236 #if defined (PWR_CR1_SRDRAMSO)
1237 /**
1238   * @brief Enable memory block shut-off in DStop or DStop2 modes
1239   * @note   In DStop or DStop2 mode, the content of the memory blocks is
1240   *         maintained. Further power optimization can be obtained by switching
1241   *         off some memory blocks. This optimization implies loss of the memory
1242   *         content. The user can select which memory is discarded during STOP
1243   *         mode by means of xxSO bits.
1244   * @param  MemoryBlock : Specifies the memory block to shut-off during DStop or
1245   *                       DStop2 mode.
1246   *          This parameter can be one of the following values:
1247   *            @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory.
1248   *            @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and
1249   *                                              FDCAN memories.
1250   *            @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories.
1251   *            @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories.
1252   *            @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory.
1253   *            @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory.
1254   *            @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory.
1255   *            @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory.
1256   *            @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory.
1257   * @retval None.
1258   */
HAL_PWREx_EnableMemoryShutOff(uint32_t MemoryBlock)1259 void HAL_PWREx_EnableMemoryShutOff (uint32_t MemoryBlock)
1260 {
1261   /* Check the parameter */
1262   assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock));
1263 
1264   /* Enable memory block shut-off */
1265   SET_BIT (PWR->CR1, MemoryBlock);
1266 }
1267 
1268 /**
1269   * @brief Disable memory block shut-off in DStop or DStop2 modes
1270   * @param  MemoryBlock : Specifies the memory block to keep content during
1271   *                       DStop or DStop2 mode.
1272   *          This parameter can be one of the following values:
1273   *            @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory.
1274   *            @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and
1275   *                                              FDCAN memories.
1276   *            @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories.
1277   *            @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories.
1278   *            @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory.
1279   *            @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory.
1280   *            @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory.
1281   *            @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory.
1282   *            @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory.
1283   * @retval None.
1284   */
HAL_PWREx_DisableMemoryShutOff(uint32_t MemoryBlock)1285 void HAL_PWREx_DisableMemoryShutOff (uint32_t MemoryBlock)
1286 {
1287   /* Check the parameter */
1288   assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock));
1289 
1290   /* Disable memory block shut-off */
1291   CLEAR_BIT (PWR->CR1, MemoryBlock);
1292 }
1293 #endif /* defined (PWR_CR1_SRDRAMSO) */
1294 
1295 /**
1296   * @brief Enable the Wake-up PINx functionality.
1297   * @param  sPinParams : Pointer to a PWREx_WakeupPinTypeDef structure that
1298   *                      contains the configuration information for the wake-up
1299   *                      Pin.
1300   * @note   For dual core devices, please ensure to configure the EXTI lines for
1301   *         the different Cortex-Mx. All combination are allowed: wake up only
1302   *         Cortex-M7, wake up only Cortex-M4 and wake up Cortex-M7 and
1303   *         Cortex-M4.
1304   * @retval None.
1305   */
HAL_PWREx_EnableWakeUpPin(const PWREx_WakeupPinTypeDef * sPinParams)1306 void HAL_PWREx_EnableWakeUpPin (const PWREx_WakeupPinTypeDef *sPinParams)
1307 {
1308   uint32_t pinConfig;
1309   uint32_t regMask;
1310   const uint32_t pullMask = PWR_WKUPEPR_WKUPPUPD1;
1311 
1312   /* Check the parameters */
1313   assert_param (IS_PWR_WAKEUP_PIN (sPinParams->WakeUpPin));
1314   assert_param (IS_PWR_WAKEUP_PIN_POLARITY (sPinParams->PinPolarity));
1315   assert_param (IS_PWR_WAKEUP_PIN_PULL (sPinParams->PinPull));
1316 
1317   pinConfig = sPinParams->WakeUpPin | \
1318               (sPinParams->PinPolarity << ((POSITION_VAL(sPinParams->WakeUpPin) + PWR_WKUPEPR_WKUPP1_Pos) & 0x1FU)) | \
1319               (sPinParams->PinPull << (((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) + PWR_WKUPEPR_WKUPPUPD1_Pos) & 0x1FU));
1320 
1321   regMask   = sPinParams->WakeUpPin | \
1322               (PWR_WKUPEPR_WKUPP1 << (POSITION_VAL(sPinParams->WakeUpPin) & 0x1FU)) | \
1323               (pullMask << ((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) & 0x1FU));
1324 
1325   /* Enable and Specify the Wake-Up pin polarity and the pull configuration
1326      for the event detection (rising or falling edge) */
1327   MODIFY_REG (PWR->WKUPEPR, regMask, pinConfig);
1328 #ifndef DUAL_CORE
1329   /* Configure the Wakeup Pin EXTI Line */
1330   MODIFY_REG (EXTI->IMR2, PWR_EXTI_WAKEUP_PINS_MASK, (sPinParams->WakeUpPin << EXTI_IMR2_IM55_Pos));
1331 #endif /* !DUAL_CORE */
1332 }
1333 
1334 /**
1335   * @brief Disable the Wake-up PINx functionality.
1336   * @param  WakeUpPin : Specifies the Wake-Up pin to be disabled.
1337   *          This parameter can be one of the following values:
1338   *           @arg PWR_WAKEUP_PIN1 : Disable PA0  wake-up PIN.
1339   *           @arg PWR_WAKEUP_PIN2 : Disable PA2  wake-up PIN.
1340   *           @arg PWR_WAKEUP_PIN3 : Disable PI8  wake-up PIN.
1341   *           @arg PWR_WAKEUP_PIN4 : Disable PC13 wake-up PIN.
1342   *           @arg PWR_WAKEUP_PIN5 : Disable PI11 wake-up PIN.
1343   *           @arg PWR_WAKEUP_PIN6 : Disable PC1  wake-up PIN.
1344   * @note   The PWR_WAKEUP_PIN3 and PWR_WAKEUP_PIN5 are available only for
1345   *         devices that support GPIOI port.
1346   * @retval None
1347   */
HAL_PWREx_DisableWakeUpPin(uint32_t WakeUpPin)1348 void HAL_PWREx_DisableWakeUpPin (uint32_t WakeUpPin)
1349 {
1350   /* Check the parameter */
1351   assert_param (IS_PWR_WAKEUP_PIN (WakeUpPin));
1352 
1353   /* Disable the WakeUpPin */
1354   CLEAR_BIT (PWR->WKUPEPR, WakeUpPin);
1355 }
1356 
1357 /**
1358   * @brief Get the Wake-Up Pin pending flags.
1359   * @param  WakeUpFlag : Specifies the Wake-Up PIN flag to be checked.
1360   *          This parameter can be one of the following values:
1361   *            @arg PWR_WAKEUP_FLAG1    : Get wakeup event received from PA0.
1362   *            @arg PWR_WAKEUP_FLAG2    : Get wakeup event received from PA2.
1363   *            @arg PWR_WAKEUP_FLAG3    : Get wakeup event received from PI8.
1364   *            @arg PWR_WAKEUP_FLAG4    : Get wakeup event received from PC13.
1365   *            @arg PWR_WAKEUP_FLAG5    : Get wakeup event received from PI11.
1366   *            @arg PWR_WAKEUP_FLAG6    : Get wakeup event received from PC1.
1367   *            @arg PWR_WAKEUP_FLAG_ALL : Get Wakeup event received from all
1368   *                                      wake up pins.
1369   * @note   The PWR_WAKEUP_FLAG3 and PWR_WAKEUP_FLAG5 are available only for
1370   *         devices that support GPIOI port.
1371   * @retval The Wake-Up pin flag.
1372   */
HAL_PWREx_GetWakeupFlag(uint32_t WakeUpFlag)1373 uint32_t HAL_PWREx_GetWakeupFlag (uint32_t WakeUpFlag)
1374 {
1375   /* Check the parameters */
1376   assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag));
1377 
1378   /* Return the wake up pin flag */
1379   return (PWR->WKUPFR & WakeUpFlag);
1380 }
1381 
1382 /**
1383   * @brief Clear the Wake-Up pin pending flag.
1384   * @param  WakeUpFlag: Specifies the Wake-Up PIN flag to clear.
1385   *          This parameter can be one of the following values:
1386   *            @arg PWR_WAKEUP_FLAG1 : Clear the wakeup event received from PA0.
1387   *            @arg PWR_WAKEUP_FLAG2 : Clear the wakeup event received from PA2.
1388   *            @arg PWR_WAKEUP_FLAG3 : Clear the wakeup event received from PI8.
1389   *            @arg PWR_WAKEUP_FLAG4 : Clear the wakeup event received from PC13.
1390   *            @arg PWR_WAKEUP_FLAG5 : Clear the wakeup event received from PI11.
1391   *            @arg PWR_WAKEUP_FLAG6 : Clear the wakeup event received from PC1.
1392   *            @arg PWR_WAKEUP_FLAG_ALL : Clear the wakeup events received from
1393   *                                      all wake up pins.
1394   * @note   The PWR_WAKEUP_FLAG3 and PWR_WAKEUP_FLAG5 are available only for
1395   *         devices that support GPIOI port.
1396   * @retval HAL status.
1397   */
HAL_PWREx_ClearWakeupFlag(uint32_t WakeUpFlag)1398 HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag (uint32_t WakeUpFlag)
1399 {
1400   /* Check the parameter */
1401   assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag));
1402 
1403   /* Clear the wake up event received from wake up pin x */
1404   SET_BIT (PWR->WKUPCR, WakeUpFlag);
1405 
1406   /* Check if the wake up event is well cleared */
1407   if ((PWR->WKUPFR & WakeUpFlag) != 0U)
1408   {
1409     return HAL_ERROR;
1410   }
1411 
1412   return HAL_OK;
1413 }
1414 
1415 /**
1416   * @brief This function handles the PWR WAKEUP PIN interrupt request.
1417   * @note   This API should be called under the WAKEUP_PIN_IRQHandler().
1418   * @retval None.
1419   */
HAL_PWREx_WAKEUP_PIN_IRQHandler(void)1420 void HAL_PWREx_WAKEUP_PIN_IRQHandler (void)
1421 {
1422   /* Wakeup pin EXTI line interrupt detected */
1423   if (READ_BIT(PWR->WKUPFR, PWR_WKUPFR_WKUPF1) != 0U)
1424   {
1425     /* Clear PWR WKUPF1 flag */
1426     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP1);
1427 
1428     /* PWR WKUP1 interrupt user callback */
1429     HAL_PWREx_WKUP1_Callback ();
1430   }
1431   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF2) != 0U)
1432   {
1433     /* Clear PWR WKUPF2 flag */
1434     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP2);
1435 
1436     /* PWR WKUP2 interrupt user callback */
1437     HAL_PWREx_WKUP2_Callback ();
1438   }
1439 #if defined (PWR_WKUPFR_WKUPF3)
1440   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF3) != 0U)
1441   {
1442     /* Clear PWR WKUPF3 flag */
1443     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP3);
1444 
1445     /* PWR WKUP3 interrupt user callback */
1446     HAL_PWREx_WKUP3_Callback ();
1447   }
1448 #endif /* defined (PWR_WKUPFR_WKUPF3) */
1449   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF4) != 0U)
1450   {
1451     /* Clear PWR WKUPF4 flag */
1452     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP4);
1453 
1454     /* PWR WKUP4 interrupt user callback */
1455     HAL_PWREx_WKUP4_Callback ();
1456   }
1457 #if defined (PWR_WKUPFR_WKUPF5)
1458   else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF5) != 0U)
1459   {
1460     /* Clear PWR WKUPF5 flag */
1461     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP5);
1462 
1463     /* PWR WKUP5 interrupt user callback */
1464     HAL_PWREx_WKUP5_Callback ();
1465   }
1466 #endif /* defined (PWR_WKUPFR_WKUPF5) */
1467   else
1468   {
1469     /* Clear PWR WKUPF6 flag */
1470     __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP6);
1471 
1472     /* PWR WKUP6 interrupt user callback */
1473     HAL_PWREx_WKUP6_Callback ();
1474   }
1475 }
1476 
1477 /**
1478   * @brief PWR WKUP1 interrupt callback.
1479   * @retval None.
1480   */
HAL_PWREx_WKUP1_Callback(void)1481 __weak void HAL_PWREx_WKUP1_Callback (void)
1482 {
1483   /* NOTE : This function should not be modified, when the callback is needed,
1484             the HAL_PWREx_WKUP1Callback can be implemented in the user file
1485   */
1486 }
1487 
1488 /**
1489   * @brief PWR WKUP2 interrupt callback.
1490   * @retval None.
1491   */
HAL_PWREx_WKUP2_Callback(void)1492 __weak void HAL_PWREx_WKUP2_Callback (void)
1493 {
1494   /* NOTE : This function should not be modified, when the callback is needed,
1495             the HAL_PWREx_WKUP2Callback can be implemented in the user file
1496   */
1497 }
1498 
1499 #if defined (PWR_WKUPFR_WKUPF3)
1500 /**
1501   * @brief PWR WKUP3 interrupt callback.
1502   * @retval None.
1503   */
HAL_PWREx_WKUP3_Callback(void)1504 __weak void HAL_PWREx_WKUP3_Callback (void)
1505 {
1506   /* NOTE : This function should not be modified, when the callback is needed,
1507             the HAL_PWREx_WKUP3Callback can be implemented in the user file
1508   */
1509 }
1510 #endif /* defined (PWR_WKUPFR_WKUPF3) */
1511 
1512 /**
1513   * @brief PWR WKUP4 interrupt callback.
1514   * @retval None.
1515   */
HAL_PWREx_WKUP4_Callback(void)1516 __weak void HAL_PWREx_WKUP4_Callback (void)
1517 {
1518   /* NOTE : This function should not be modified, when the callback is needed,
1519             the HAL_PWREx_WKUP4Callback can be implemented in the user file
1520   */
1521 }
1522 
1523 #if defined (PWR_WKUPFR_WKUPF5)
1524 /**
1525   * @brief PWR WKUP5 interrupt callback.
1526   * @retval None.
1527   */
HAL_PWREx_WKUP5_Callback(void)1528 __weak void HAL_PWREx_WKUP5_Callback (void)
1529 {
1530   /* NOTE : This function should not be modified, when the callback is needed,
1531             the HAL_PWREx_WKUP5Callback can be implemented in the user file
1532   */
1533 }
1534 #endif /* defined (PWR_WKUPFR_WKUPF5) */
1535 
1536 /**
1537   * @brief PWR WKUP6 interrupt callback.
1538   * @retval None.
1539   */
HAL_PWREx_WKUP6_Callback(void)1540 __weak void HAL_PWREx_WKUP6_Callback (void)
1541 {
1542   /* NOTE : This function should not be modified, when the callback is needed,
1543             the HAL_PWREx_WKUP6Callback can be implemented in the user file
1544   */
1545 }
1546 /**
1547   * @}
1548   */
1549 
1550 /** @defgroup PWREx_Exported_Functions_Group3 Peripherals control functions
1551   * @brief    Peripherals control functions
1552   *
1553 @verbatim
1554  ===============================================================================
1555                  ##### Peripherals control functions #####
1556  ===============================================================================
1557 
1558     *** Main and Backup Regulators configuration ***
1559     ================================================
1560     [..]
1561       (+) The backup domain includes 4 Kbytes of backup SRAM accessible only
1562           from the CPU, and addressed in 32-bit, 16-bit or 8-bit mode. Its
1563           content is retained even in Standby or VBAT mode when the low power
1564           backup regulator is enabled. It can be considered as an internal
1565           EEPROM when VBAT is always present. You can use the
1566           HAL_PWREx_EnableBkUpReg() function to enable the low power backup
1567           regulator.
1568       (+) When the backup domain is supplied by VDD (analog switch connected to
1569           VDD) the backup SRAM is powered from VDD which replaces the VBAT power
1570           supply to save battery life.
1571       (+) The backup SRAM is not mass erased by a tamper event. It is read
1572           protected to prevent confidential data, such as cryptographic private
1573           key, from being accessed. The backup SRAM can be erased only through
1574           the Flash interface when a protection level change from level 1 to
1575           level 0 is requested.
1576       -@- Refer to the description of Read protection (RDP) in the Flash
1577           programming manual.
1578       (+) The main internal regulator can be configured to have a tradeoff
1579           between performance and power consumption when the device does not
1580           operate at the maximum frequency. This is done through
1581           HAL_PWREx_ControlVoltageScaling(VOS) function which configure the VOS
1582           bit in PWR_D3CR register.
1583       (+) The main internal regulator can be configured to operate in Low Power
1584           mode when the system enters STOP mode to further reduce power
1585           consumption.
1586           This is done through HAL_PWREx_ControlStopModeVoltageScaling(SVOS)
1587           function which configure the SVOS bit in PWR_CR1 register.
1588           The selected SVOS4 and SVOS5 levels add an additional startup delay
1589           when exiting from system Stop mode.
1590     -@- Refer to the product datasheets for more details.
1591 
1592     *** USB Regulator configuration ***
1593     ===================================
1594     [..]
1595       (+) The USB transceivers are supplied from a dedicated VDD33USB supply
1596           that can be provided either by the integrated USB regulator, or by an
1597           external USB supply.
1598       (+) The USB regulator is enabled by HAL_PWREx_EnableUSBReg() function, the
1599           VDD33USB is then provided from the USB regulator.
1600       (+) When the USB regulator is enabled, the VDD33USB supply level detector
1601           shall be enabled through  HAL_PWREx_EnableUSBVoltageDetector()
1602           function.
1603       (+) The USB regulator is disabled through HAL_PWREx_DisableUSBReg()
1604           function and VDD33USB can be provided from an external supply. In this
1605           case VDD33USB and VDD50USB shall be connected together.
1606 
1607     *** VBAT battery charging ***
1608     =============================
1609     [..]
1610       (+) When VDD is present, the external battery connected to VBAT can be
1611           charged through an internal resistance. VBAT charging can be performed
1612           either through a 5 KOhm resistor or through a 1.5 KOhm resistor.
1613       (+) VBAT charging is enabled by HAL_PWREx_EnableBatteryCharging
1614           (ResistorValue) function with:
1615        (++) ResistorValue:
1616         (+++) PWR_BATTERY_CHARGING_RESISTOR_5: 5 KOhm resistor.
1617         (+++) PWR_BATTERY_CHARGING_RESISTOR_1_5: 1.5 KOhm resistor.
1618       (+) VBAT charging is disabled by HAL_PWREx_DisableBatteryCharging()
1619           function.
1620 
1621 @endverbatim
1622   * @{
1623   */
1624 
1625 /**
1626   * @brief Enable the Backup Regulator.
1627   * @retval HAL status.
1628   */
HAL_PWREx_EnableBkUpReg(void)1629 HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg (void)
1630 {
1631   uint32_t tickstart;
1632 
1633   /* Enable the Backup regulator */
1634   SET_BIT (PWR->CR2, PWR_CR2_BREN);
1635 
1636   /* Get tick */
1637   tickstart = HAL_GetTick ();
1638 
1639   /* Wait till Backup regulator ready flag is set */
1640   while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) == 0U)
1641   {
1642     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1643     {
1644       return HAL_ERROR;
1645     }
1646   }
1647 
1648   return HAL_OK;
1649 }
1650 
1651 /**
1652   * @brief Disable the Backup Regulator.
1653   * @retval HAL status.
1654   */
HAL_PWREx_DisableBkUpReg(void)1655 HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg (void)
1656 {
1657   uint32_t tickstart;
1658 
1659   /* Disable the Backup regulator */
1660   CLEAR_BIT (PWR->CR2, PWR_CR2_BREN);
1661 
1662   /* Get tick */
1663   tickstart = HAL_GetTick ();
1664 
1665   /* Wait till Backup regulator ready flag is reset */
1666   while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) != 0U)
1667   {
1668     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1669     {
1670       return HAL_ERROR;
1671     }
1672   }
1673 
1674   return HAL_OK;
1675 }
1676 
1677 /**
1678   * @brief Enable the USB Regulator.
1679   * @retval HAL status.
1680   */
HAL_PWREx_EnableUSBReg(void)1681 HAL_StatusTypeDef HAL_PWREx_EnableUSBReg (void)
1682 {
1683   uint32_t tickstart;
1684 
1685   /* Enable the USB regulator */
1686   SET_BIT (PWR->CR3, PWR_CR3_USBREGEN);
1687 
1688   /* Get tick */
1689   tickstart = HAL_GetTick ();
1690 
1691   /* Wait till the USB regulator ready flag is set */
1692   while (__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) == 0U)
1693   {
1694     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1695     {
1696       return HAL_ERROR;
1697     }
1698   }
1699 
1700   return HAL_OK;
1701 }
1702 
1703 /**
1704   * @brief Disable the USB Regulator.
1705   * @retval HAL status.
1706   */
HAL_PWREx_DisableUSBReg(void)1707 HAL_StatusTypeDef HAL_PWREx_DisableUSBReg (void)
1708 {
1709   uint32_t tickstart;
1710 
1711   /* Disable the USB regulator */
1712   CLEAR_BIT (PWR->CR3, PWR_CR3_USBREGEN);
1713 
1714   /* Get tick */
1715   tickstart = HAL_GetTick ();
1716 
1717   /* Wait till the USB regulator ready flag is reset */
1718   while(__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) != 0U)
1719   {
1720     if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1721     {
1722       return HAL_ERROR;
1723     }
1724   }
1725 
1726   return HAL_OK;
1727 }
1728 
1729 /**
1730   * @brief Enable the USB voltage level detector.
1731   * @retval None.
1732   */
HAL_PWREx_EnableUSBVoltageDetector(void)1733 void HAL_PWREx_EnableUSBVoltageDetector (void)
1734 {
1735   /* Enable the USB voltage detector */
1736   SET_BIT (PWR->CR3, PWR_CR3_USB33DEN);
1737 }
1738 
1739 /**
1740   * @brief Disable the USB voltage level detector.
1741   * @retval None.
1742   */
HAL_PWREx_DisableUSBVoltageDetector(void)1743 void HAL_PWREx_DisableUSBVoltageDetector (void)
1744 {
1745   /* Disable the USB voltage detector */
1746   CLEAR_BIT (PWR->CR3, PWR_CR3_USB33DEN);
1747 }
1748 
1749 /**
1750   * @brief Enable the Battery charging.
1751   * @note   When VDD is present, charge the external battery through an internal
1752   *         resistor.
1753   * @param  ResistorValue : Specifies the charging resistor.
1754   *          This parameter can be one of the following values :
1755   *            @arg PWR_BATTERY_CHARGING_RESISTOR_5 : 5 KOhm resistor.
1756   *            @arg PWR_BATTERY_CHARGING_RESISTOR_1_5 : 1.5 KOhm resistor.
1757   * @retval None.
1758   */
HAL_PWREx_EnableBatteryCharging(uint32_t ResistorValue)1759 void HAL_PWREx_EnableBatteryCharging (uint32_t ResistorValue)
1760 {
1761   /* Check the parameter */
1762   assert_param (IS_PWR_BATTERY_RESISTOR_SELECT (ResistorValue));
1763 
1764   /* Specify the charging resistor */
1765   MODIFY_REG (PWR->CR3, PWR_CR3_VBRS, ResistorValue);
1766 
1767   /* Enable the Battery charging */
1768   SET_BIT (PWR->CR3, PWR_CR3_VBE);
1769 }
1770 
1771 /**
1772   * @brief Disable the Battery charging.
1773   * @retval None.
1774   */
HAL_PWREx_DisableBatteryCharging(void)1775 void HAL_PWREx_DisableBatteryCharging (void)
1776 {
1777   /* Disable the Battery charging */
1778   CLEAR_BIT (PWR->CR3, PWR_CR3_VBE);
1779 }
1780 
1781 #if defined (PWR_CR1_BOOSTE)
1782 /**
1783   * @brief Enable the booster to guarantee the analog switch AC performance when
1784   *        the VDD supply voltage is below 2V7.
1785   * @note   The VDD supply voltage can be monitored through the PVD and the PLS
1786   *         field bits.
1787   * @retval None.
1788   */
HAL_PWREx_EnableAnalogBooster(void)1789 void HAL_PWREx_EnableAnalogBooster (void)
1790 {
1791   /* Enable the Analog voltage */
1792   SET_BIT (PWR->CR1, PWR_CR1_AVD_READY);
1793 
1794   /* Enable VDDA booster */
1795   SET_BIT (PWR->CR1, PWR_CR1_BOOSTE);
1796 }
1797 
1798 /**
1799   * @brief Disable the analog booster.
1800   * @retval None.
1801   */
HAL_PWREx_DisableAnalogBooster(void)1802 void HAL_PWREx_DisableAnalogBooster (void)
1803 {
1804   /* Disable VDDA booster */
1805   CLEAR_BIT (PWR->CR1, PWR_CR1_BOOSTE);
1806 
1807   /* Disable the Analog voltage */
1808   CLEAR_BIT (PWR->CR1, PWR_CR1_AVD_READY);
1809 }
1810 #endif /* defined (PWR_CR1_BOOSTE) */
1811 /**
1812   * @}
1813   */
1814 
1815 /** @defgroup PWREx_Exported_Functions_Group4 Power Monitoring functions
1816   * @brief    Power Monitoring functions
1817   *
1818 @verbatim
1819  ===============================================================================
1820                  ##### Power Monitoring functions #####
1821  ===============================================================================
1822 
1823     *** VBAT and Temperature supervision ***
1824     ========================================
1825     [..]
1826       (+) The VBAT battery voltage supply can be monitored by comparing it with
1827           two threshold levels: VBAThigh and VBATlow. VBATH flag and VBATL flags
1828           in the PWR control register 2 (PWR_CR2), indicate if VBAT is higher or
1829           lower than the threshold.
1830       (+) The temperature can be monitored by comparing it with two threshold
1831           levels, TEMPhigh and TEMPlow. TEMPH and TEMPL flags, in the PWR
1832           control register 2 (PWR_CR2), indicate whether the device temperature
1833           is higher or lower than the threshold.
1834       (+) The VBAT and the temperature monitoring is enabled by
1835           HAL_PWREx_EnableMonitoring() function and disabled by
1836           HAL_PWREx_DisableMonitoring() function.
1837       (+) The HAL_PWREx_GetVBATLevel() function returns the VBAT level which can
1838           be : PWR_VBAT_BELOW_LOW_THRESHOLD or PWR_VBAT_ABOVE_HIGH_THRESHOLD or
1839           PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD.
1840       (+) The HAL_PWREx_GetTemperatureLevel() function returns the Temperature
1841           level which can be :
1842           PWR_TEMP_BELOW_LOW_THRESHOLD or PWR_TEMP_ABOVE_HIGH_THRESHOLD or
1843           PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD.
1844 
1845     *** AVD configuration ***
1846     =========================
1847     [..]
1848       (+) The AVD is used to monitor the VDDA power supply by comparing it to a
1849           threshold selected by the AVD Level (ALS[3:0] bits in the PWR_CR1
1850           register).
1851       (+) A AVDO flag is available to indicate if VDDA is higher or lower
1852           than the AVD threshold. This event is internally connected to the EXTI
1853           line 16 to generate an interrupt if enabled.
1854           It is configurable through __HAL_PWR_AVD_EXTI_ENABLE_IT() macro.
1855       (+) The AVD is stopped in System Standby mode.
1856 
1857 @endverbatim
1858   * @{
1859   */
1860 
1861 /**
1862   * @brief Enable the VBAT and temperature monitoring.
1863   * @retval HAL status.
1864   */
HAL_PWREx_EnableMonitoring(void)1865 void HAL_PWREx_EnableMonitoring (void)
1866 {
1867   /* Enable the VBAT and Temperature monitoring */
1868   SET_BIT (PWR->CR2, PWR_CR2_MONEN);
1869 }
1870 
1871 /**
1872   * @brief Disable the VBAT and temperature monitoring.
1873   * @retval HAL status.
1874   */
HAL_PWREx_DisableMonitoring(void)1875 void HAL_PWREx_DisableMonitoring (void)
1876 {
1877   /* Disable the VBAT and Temperature monitoring */
1878   CLEAR_BIT (PWR->CR2, PWR_CR2_MONEN);
1879 }
1880 
1881 /**
1882   * @brief Indicate whether the junction temperature is between, above or below
1883   *        the thresholds.
1884   * @retval Temperature level.
1885   */
HAL_PWREx_GetTemperatureLevel(void)1886 uint32_t HAL_PWREx_GetTemperatureLevel (void)
1887 {
1888   uint32_t tempLevel, regValue;
1889 
1890   /* Read the temperature flags */
1891   regValue = READ_BIT (PWR->CR2, (PWR_CR2_TEMPH | PWR_CR2_TEMPL));
1892 
1893   /* Check if the temperature is below the threshold */
1894   if (regValue == PWR_CR2_TEMPL)
1895   {
1896     tempLevel = PWR_TEMP_BELOW_LOW_THRESHOLD;
1897   }
1898   /* Check if the temperature is above the threshold */
1899   else if (regValue == PWR_CR2_TEMPH)
1900   {
1901     tempLevel = PWR_TEMP_ABOVE_HIGH_THRESHOLD;
1902   }
1903   /* The temperature is between the thresholds */
1904   else
1905   {
1906     tempLevel = PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD;
1907   }
1908 
1909   return tempLevel;
1910 }
1911 
1912 /**
1913   * @brief Indicate whether the Battery voltage level is between, above or below
1914   *        the thresholds.
1915   * @retval VBAT level.
1916   */
HAL_PWREx_GetVBATLevel(void)1917 uint32_t HAL_PWREx_GetVBATLevel (void)
1918 {
1919   uint32_t VBATLevel, regValue;
1920 
1921   /* Read the VBAT flags */
1922   regValue = READ_BIT (PWR->CR2, (PWR_CR2_VBATH | PWR_CR2_VBATL));
1923 
1924   /* Check if the VBAT is below the threshold */
1925   if (regValue == PWR_CR2_VBATL)
1926   {
1927     VBATLevel = PWR_VBAT_BELOW_LOW_THRESHOLD;
1928   }
1929   /* Check if the VBAT is above the threshold */
1930   else if (regValue == PWR_CR2_VBATH)
1931   {
1932     VBATLevel = PWR_VBAT_ABOVE_HIGH_THRESHOLD;
1933   }
1934   /* The VBAT is between the thresholds */
1935   else
1936   {
1937     VBATLevel = PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD;
1938   }
1939 
1940   return VBATLevel;
1941 }
1942 
1943 #if defined (PWR_CSR1_MMCVDO)
1944 /**
1945   * @brief Get the VDDMMC voltage level.
1946   * @retval The VDDMMC voltage level.
1947   */
HAL_PWREx_GetMMCVoltage(void)1948 PWREx_MMC_VoltageLevel HAL_PWREx_GetMMCVoltage (void)
1949 {
1950   PWREx_MMC_VoltageLevel mmc_voltage;
1951 
1952   /* Check voltage detector output on VDDMMC value */
1953   if ((PWR->CSR1 & PWR_CSR1_MMCVDO_Msk) == 0U)
1954   {
1955     mmc_voltage = PWR_MMC_VOLTAGE_BELOW_1V2;
1956   }
1957   else
1958   {
1959     mmc_voltage = PWR_MMC_VOLTAGE_EQUAL_ABOVE_1V2;
1960   }
1961 
1962   return mmc_voltage;
1963 }
1964 #endif /* defined (PWR_CSR1_MMCVDO) */
1965 
1966 /**
1967   * @brief  Configure the event mode and the voltage threshold detected by the
1968   *         Analog Voltage Detector (AVD).
1969   * @param  sConfigAVD : Pointer to an PWREx_AVDTypeDef structure that contains
1970   *                      the configuration information for the AVD.
1971   * @note   Refer to the electrical characteristics of your device datasheet for
1972   *         more details about the voltage threshold corresponding to each
1973   *         detection level.
1974   * @note   For dual core devices, please ensure to configure the EXTI lines for
1975   *         the different Cortex-Mx through PWR_Exported_Macro provided by this
1976   *         driver. All combination are allowed: wake up only Cortex-M7, wake up
1977   *         only Cortex-M4 and wake up Cortex-M7 and Cortex-M4.
1978   * @retval None.
1979   */
HAL_PWREx_ConfigAVD(const PWREx_AVDTypeDef * sConfigAVD)1980 void HAL_PWREx_ConfigAVD (const PWREx_AVDTypeDef *sConfigAVD)
1981 {
1982   /* Check the parameters */
1983   assert_param (IS_PWR_AVD_LEVEL (sConfigAVD->AVDLevel));
1984   assert_param (IS_PWR_AVD_MODE (sConfigAVD->Mode));
1985 
1986   /* Set the ALS[18:17] bits according to AVDLevel value */
1987   MODIFY_REG (PWR->CR1, PWR_CR1_ALS, sConfigAVD->AVDLevel);
1988 
1989   /* Clear any previous config */
1990 #if !defined (DUAL_CORE)
1991   __HAL_PWR_AVD_EXTI_DISABLE_EVENT ();
1992   __HAL_PWR_AVD_EXTI_DISABLE_IT ();
1993 #endif /* !defined (DUAL_CORE) */
1994 
1995   __HAL_PWR_AVD_EXTI_DISABLE_RISING_EDGE ();
1996   __HAL_PWR_AVD_EXTI_DISABLE_FALLING_EDGE ();
1997 
1998 #if !defined (DUAL_CORE)
1999   /* Configure the interrupt mode */
2000   if ((sConfigAVD->Mode & AVD_MODE_IT) == AVD_MODE_IT)
2001   {
2002     __HAL_PWR_AVD_EXTI_ENABLE_IT ();
2003   }
2004 
2005   /* Configure the event mode */
2006   if ((sConfigAVD->Mode & AVD_MODE_EVT) == AVD_MODE_EVT)
2007   {
2008     __HAL_PWR_AVD_EXTI_ENABLE_EVENT ();
2009   }
2010 #endif /* !defined (DUAL_CORE) */
2011 
2012   /* Rising edge configuration */
2013   if ((sConfigAVD->Mode & AVD_RISING_EDGE) == AVD_RISING_EDGE)
2014   {
2015     __HAL_PWR_AVD_EXTI_ENABLE_RISING_EDGE ();
2016   }
2017 
2018   /* Falling edge configuration */
2019   if ((sConfigAVD->Mode & AVD_FALLING_EDGE) == AVD_FALLING_EDGE)
2020   {
2021     __HAL_PWR_AVD_EXTI_ENABLE_FALLING_EDGE ();
2022   }
2023 }
2024 
2025 /**
2026   * @brief Enable the Analog Voltage Detector (AVD).
2027   * @retval None.
2028   */
HAL_PWREx_EnableAVD(void)2029 void HAL_PWREx_EnableAVD (void)
2030 {
2031   /* Enable the Analog Voltage Detector */
2032   SET_BIT (PWR->CR1, PWR_CR1_AVDEN);
2033 }
2034 
2035 /**
2036   * @brief Disable the Analog Voltage Detector(AVD).
2037   * @retval None.
2038   */
HAL_PWREx_DisableAVD(void)2039 void HAL_PWREx_DisableAVD (void)
2040 {
2041   /* Disable the Analog Voltage Detector */
2042   CLEAR_BIT (PWR->CR1, PWR_CR1_AVDEN);
2043 }
2044 
2045 /**
2046   * @brief  This function handles the PWR PVD/AVD interrupt request.
2047   * @note   This API should be called under the PVD_AVD_IRQHandler().
2048   * @retval None
2049   */
HAL_PWREx_PVD_AVD_IRQHandler(void)2050 void HAL_PWREx_PVD_AVD_IRQHandler (void)
2051 {
2052   /* Check if the Programmable Voltage Detector is enabled (PVD) */
2053   if (READ_BIT (PWR->CR1, PWR_CR1_PVDEN) != 0U)
2054   {
2055 #if defined (DUAL_CORE)
2056     if (HAL_GetCurrentCPUID () == CM7_CPUID)
2057 #endif /* defined (DUAL_CORE) */
2058     {
2059       /* Check PWR D1/CD EXTI flag */
2060       if (__HAL_PWR_PVD_EXTI_GET_FLAG () != 0U)
2061       {
2062         /* PWR PVD interrupt user callback */
2063         HAL_PWR_PVDCallback ();
2064 
2065         if(__HAL_PWR_GET_FLAG (PWR_FLAG_AVDO) == 0U)
2066         {
2067           /* Clear PWR EXTI D1/CD pending bit */
2068           __HAL_PWR_PVD_EXTI_CLEAR_FLAG ();
2069         }
2070       }
2071     }
2072 #if defined (DUAL_CORE)
2073     else
2074     {
2075       /* Check PWR EXTI D2 flag */
2076       if (__HAL_PWR_PVD_EXTID2_GET_FLAG () != 0U)
2077       {
2078         /* PWR PVD interrupt user callback */
2079         HAL_PWR_PVDCallback ();
2080 
2081         if(__HAL_PWR_GET_FLAG (PWR_FLAG_AVDO) == 0U)
2082         {
2083           /* Clear PWR EXTI D2 pending bit */
2084           __HAL_PWR_PVD_EXTID2_CLEAR_FLAG ();
2085         }
2086       }
2087     }
2088 #endif /* defined (DUAL_CORE) */
2089   }
2090 
2091   /* Check if the Analog Voltage Detector is enabled (AVD) */
2092   if (READ_BIT (PWR->CR1, PWR_CR1_AVDEN) != 0U)
2093   {
2094 #if defined (DUAL_CORE)
2095     if (HAL_GetCurrentCPUID () == CM7_CPUID)
2096 #endif /* defined (DUAL_CORE) */
2097     {
2098       /* Check PWR EXTI D1/CD flag */
2099       if (__HAL_PWR_AVD_EXTI_GET_FLAG () != 0U)
2100       {
2101         /* PWR AVD interrupt user callback */
2102         HAL_PWREx_AVDCallback ();
2103 
2104         if(__HAL_PWR_GET_FLAG (PWR_FLAG_PVDO) == 0U)
2105         {
2106           /* Clear PWR EXTI D1/CD pending bit */
2107           __HAL_PWR_AVD_EXTI_CLEAR_FLAG ();
2108         }
2109       }
2110     }
2111 #if defined (DUAL_CORE)
2112     else
2113     {
2114       /* Check PWR EXTI D2 flag */
2115       if (__HAL_PWR_AVD_EXTID2_GET_FLAG () != 0U)
2116       {
2117         /* PWR AVD interrupt user callback */
2118         HAL_PWREx_AVDCallback ();
2119 
2120         if(__HAL_PWR_GET_FLAG (PWR_FLAG_PVDO) == 0U)
2121         {
2122           /* Clear PWR EXTI D2 pending bit */
2123           __HAL_PWR_AVD_EXTID2_CLEAR_FLAG ();
2124         }
2125       }
2126     }
2127 #endif /* defined (DUAL_CORE) */
2128   }
2129 }
2130 
2131 /**
2132   * @brief PWR AVD interrupt callback.
2133   * @retval None.
2134   */
HAL_PWREx_AVDCallback(void)2135 __weak void HAL_PWREx_AVDCallback (void)
2136 {
2137   /* NOTE : This function should not be modified, when the callback is needed,
2138             the HAL_PWR_AVDCallback can be implemented in the user file
2139   */
2140 }
2141 /**
2142   * @}
2143   */
2144 
2145 /**
2146   * @}
2147   */
2148 
2149 #endif /* HAL_PWR_MODULE_ENABLED */
2150 
2151 /**
2152   * @}
2153   */
2154 
2155 /**
2156   * @}
2157   */
2158 
2159