1 /**
2 ******************************************************************************
3 * @file stm32h7xx_hal_fmac.c
4 * @author MCD Application Team
5 * @brief FMAC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the FMAC peripheral:
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 * + Callback functions
11 * + IRQ handler management
12 * + Peripheral State and Error functions
13 *
14 ******************************************************************************
15 * @attention
16 *
17 * Copyright (c) 2017 STMicroelectronics.
18 * All rights reserved.
19 *
20 * This software is licensed under terms that can be found in the LICENSE file
21 * in the root directory of this software component.
22 * If no LICENSE file comes with this software, it is provided AS-IS.
23 *
24 ******************************************************************************
25 *
26 * @verbatim
27 ================================================================================
28 ##### How to use this driver #####
29 ================================================================================
30 [..]
31 The FMAC HAL driver can be used as follows:
32
33 (#) Initialize the FMAC low level resources by implementing the HAL_FMAC_MspInit():
34 (++) Enable the FMAC interface clock using __HAL_RCC_FMAC_CLK_ENABLE().
35 (++) In case of using interrupts (e.g. access configured as FMAC_BUFFER_ACCESS_IT):
36 (+++) Configure the FMAC interrupt priority using HAL_NVIC_SetPriority().
37 (+++) Enable the FMAC IRQ handler using HAL_NVIC_EnableIRQ().
38 (+++) In FMAC IRQ handler, call HAL_FMAC_IRQHandler().
39 (++) In case of using DMA to control data transfer (e.g. access configured
40 as FMAC_BUFFER_ACCESS_DMA):
41 (+++) Enable the DMA interface clock using __HAL_RCC_DMA1_CLK_ENABLE()
42 or __HAL_RCC_DMA2_CLK_ENABLE() depending on the used DMA instance.
43 (+++) Enable the DMAMUX1 interface clock using __HAL_RCC_DMAMUX1_CLK_ENABLE().
44 (+++) If the initialization of the internal buffers (coefficients, input,
45 output) is done via DMA, configure and enable one DMA channel for
46 managing data transfer from memory to memory (preload channel).
47 (+++) If the input buffer is accessed via DMA, configure and enable one
48 DMA channel for managing data transfer from memory to peripheral
49 (input channel).
50 (+++) If the output buffer is accessed via DMA, configure and enable
51 one DMA channel for managing data transfer from peripheral to
52 memory (output channel).
53 (+++) Associate the initialized DMA handle(s) to the FMAC DMA handle(s)
54 using __HAL_LINKDMA().
55 (+++) Configure the priority and enable the NVIC for the transfer complete
56 interrupt on the enabled DMA channel(s) using HAL_NVIC_SetPriority()
57 and HAL_NVIC_EnableIRQ().
58
59 (#) Initialize the FMAC HAL using HAL_FMAC_Init(). This function
60 resorts to HAL_FMAC_MspInit() for low-level initialization.
61
62 (#) Configure the FMAC processing (filter) using HAL_FMAC_FilterConfig()
63 or HAL_FMAC_FilterConfig_DMA().
64 This function:
65 (++) Defines the memory area within the FMAC internal memory
66 (input, coefficients, output) and the associated threshold (input, output).
67 (++) Configures the filter and its parameters:
68 (+++) Finite Impulse Response (FIR) filter (also known as convolution).
69 (+++) Infinite Impulse Response (IIR) filter (direct form 1).
70 (++) Choose the way to access to the input and output buffers: none, polling,
71 DMA, IT. "none" means the input and/or output data will be handled by
72 another IP (ADC, DAC, etc.).
73 (++) Enable the error interruptions in the input access and/or the output
74 access is done through IT/DMA. If an error occurs, the interruption
75 will be triggered in loop. In order to recover, the user will have
76 to reset the IP with the sequence HAL_FMAC_DeInit / HAL_FMAC_Init.
77 Optionally, he can also disable the interrupt using __HAL_FMAC_DISABLE_IT;
78 the error status will be kept, but no more interrupt will be triggered.
79 (++) Write the provided coefficients into the internal memory using polling
80 mode ( HAL_FMAC_FilterConfig() ) or DMA ( HAL_FMAC_FilterConfig_DMA() ).
81 In the DMA case, HAL_FMAC_FilterConfigCallback() is called when
82 the handling is over.
83
84 (#) Optionally, the user can enable the error interruption related to
85 saturation by calling __HAL_FMAC_ENABLE_IT. This helps in debugging the
86 filter. If a saturation occurs, the interruption will be triggered in loop.
87 In order to recover, the user will have to:
88 (++) Disable the interruption by calling __HAL_FMAC_DISABLE_IT if
89 the user wishes to continue all the same.
90 (++) Reset the IP with the sequence HAL_FMAC_DeInit / HAL_FMAC_Init.
91
92 (#) Optionally, preload input (FIR, IIR) and output (IIR) data using
93 HAL_FMAC_FilterPreload() or HAL_FMAC_FilterPreload_DMA().
94 In the DMA case, HAL_FMAC_FilterPreloadCallback() is called when
95 the handling is over.
96 This step is optional as the filter can be started without preloaded
97 data.
98
99 (#) Start the FMAC processing (filter) using HAL_FMAC_FilterStart().
100 This function also configures the output buffer that will be filled from
101 the circular internal output buffer. The function returns immediately
102 without updating the provided buffer. The IP processing will be active until
103 HAL_FMAC_FilterStop() is called.
104
105 (#) If the input internal buffer is accessed via DMA, HAL_FMAC_HalfGetDataCallback()
106 will be called to indicate that half of the input buffer has been handled.
107
108 (#) If the input internal buffer is accessed via DMA or interrupt, HAL_FMAC_GetDataCallback()
109 will be called to require new input data. It will be provided through
110 HAL_FMAC_AppendFilterData() if the DMA isn't in circular mode.
111
112 (#) If the output internal buffer is accessed via DMA, HAL_FMAC_HalfOutputDataReadyCallback()
113 will be called to indicate that half of the output buffer has been handled.
114
115 (#) If the output internal buffer is accessed via DMA or interrupt,
116 HAL_FMAC_OutputDataReadyCallback() will be called to require a new output
117 buffer. It will be provided through HAL_FMAC_ConfigFilterOutputBuffer()
118 if the DMA isn't in circular mode.
119
120 (#) In all modes except none, provide new input data to be processed via HAL_FMAC_AppendFilterData().
121 This function should only be called once the previous input data has been handled
122 (the preloaded input data isn't concerned).
123
124 (#) In all modes except none, provide a new output buffer to be filled via
125 HAL_FMAC_ConfigFilterOutputBuffer(). This function should only be called once the previous
126 user's output buffer has been filled.
127
128 (#) In polling mode, handle the input and output data using HAL_FMAC_PollFilterData().
129 This function:
130 (++) Write the user's input data (provided via HAL_FMAC_AppendFilterData())
131 into the FMAC input memory area.
132 (++) Read the FMAC output memory area and write it into the user's output buffer.
133 It will return either when:
134 (++) the user's output buffer is filled.
135 (++) the user's input buffer has been handled.
136 The unused data (unread input data or free output data) will not be saved.
137 The user will have to use the updated input and output sizes to keep track
138 of them.
139
140 (#) Stop the FMAC processing (filter) using HAL_FMAC_FilterStop().
141
142 (#) Call HAL_FMAC_DeInit() to de-initialize the FMAC peripheral. This function
143 resorts to HAL_FMAC_MspDeInit() for low-level de-initialization.
144
145 ##### Callback registration #####
146 ==================================
147
148 [..]
149 The compilation define USE_HAL_FMAC_REGISTER_CALLBACKS when set to 1
150 allows the user to configure dynamically the driver callbacks.
151
152 [..]
153 Use Function HAL_FMAC_RegisterCallback() to register a user callback.
154 Function HAL_FMAC_RegisterCallback() allows to register following callbacks:
155 (+) ErrorCallback : Error Callback.
156 (+) HalfGetDataCallback : Get Half Data Callback.
157 (+) GetDataCallback : Get Data Callback.
158 (+) HalfOutputDataReadyCallback : Half Output Data Ready Callback.
159 (+) OutputDataReadyCallback : Output Data Ready Callback.
160 (+) FilterConfigCallback : Filter Configuration Callback.
161 (+) FilterPreloadCallback : Filter Preload Callback.
162 (+) MspInitCallback : FMAC MspInit.
163 (+) MspDeInitCallback : FMAC MspDeInit.
164 This function takes as parameters the HAL peripheral handle, the Callback ID
165 and a pointer to the user callback function.
166
167 [..]
168 Use function HAL_FMAC_UnRegisterCallback() to reset a callback to the default
169 weak function.
170 HAL_FMAC_UnRegisterCallback() takes as parameters the HAL peripheral handle
171 and the Callback ID.
172 This function allows to reset following callbacks:
173 (+) ErrorCallback : Error Callback.
174 (+) HalfGetDataCallback : Get Half Data Callback.
175 (+) GetDataCallback : Get Data Callback.
176 (+) HalfOutputDataReadyCallback : Half Output Data Ready Callback.
177 (+) OutputDataReadyCallback : Output Data Ready Callback.
178 (+) FilterConfigCallback : Filter Configuration Callback.
179 (+) FilterPreloadCallback : Filter Preload Callback.
180 (+) MspInitCallback : FMAC MspInit.
181 (+) MspDeInitCallback : FMAC MspDeInit.
182
183 [..]
184 By default, after the HAL_FMAC_Init() and when the state is HAL_FMAC_STATE_RESET
185 all callbacks are set to the corresponding weak functions:
186 examples GetDataCallback(), OutputDataReadyCallback().
187 Exception done for MspInit and MspDeInit functions that are respectively
188 reset to the legacy weak functions in the HAL_FMAC_Init()
189 and HAL_FMAC_DeInit() only when these callbacks are null (not registered beforehand).
190 If not, MspInit or MspDeInit are not null, the HAL_FMAC_Init() and HAL_FMAC_DeInit()
191 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
192
193 [..]
194 Callbacks can be registered/unregistered in HAL_FMAC_STATE_READY state only.
195 Exception done MspInit/MspDeInit that can be registered/unregistered
196 in HAL_FMAC_STATE_READY or HAL_FMAC_STATE_RESET state, thus registered (user)
197 MspInit/DeInit callbacks can be used during the Init/DeInit.
198 In that case first register the MspInit/MspDeInit user callbacks
199 using HAL_FMAC_RegisterCallback() before calling HAL_FMAC_DeInit()
200 or HAL_FMAC_Init() function.
201
202 [..]
203 When the compilation define USE_HAL_FMAC_REGISTER_CALLBACKS is set to 0 or
204 not defined, the callback registration feature is not available
205 and weak callbacks are used.
206
207 @endverbatim
208 *
209 */
210
211 /* Includes ------------------------------------------------------------------*/
212 #include "stm32h7xx_hal.h"
213
214 #if defined(FMAC)
215 #ifdef HAL_FMAC_MODULE_ENABLED
216
217 /** @addtogroup STM32H7xx_HAL_Driver
218 * @{
219 */
220
221 /** @defgroup FMAC FMAC
222 * @brief FMAC HAL driver module
223 * @{
224 */
225
226 /* Private typedef -----------------------------------------------------------*/
227 /* Private defines -----------------------------------------------------------*/
228 /** @defgroup FMAC_Private_Constants FMAC Private Constants
229 * @{
230 */
231 #define MAX_FILTER_DATA_SIZE_TO_HANDLE ((uint16_t) 0xFFU)
232 #define MAX_PRELOAD_INDEX 0xFFU
233 #define PRELOAD_ACCESS_DMA 0x00U
234 #define PRELOAD_ACCESS_POLLING 0x01U
235 #define POLLING_DISABLED 0U
236 #define POLLING_ENABLED 1U
237 #define POLLING_NOT_STOPPED 0U
238 #define POLLING_STOPPED 1U
239 /* FMAC polling-based communications time-out value */
240 #define HAL_FMAC_TIMEOUT_VALUE 1000U
241 /* FMAC reset time-out value */
242 #define HAL_FMAC_RESET_TIMEOUT_VALUE 500U
243 /* DMA Read Requests Enable */
244 #define FMAC_DMA_REN FMAC_CR_DMAREN
245 /* DMA Write Channel Enable */
246 #define FMAC_DMA_WEN FMAC_CR_DMAWEN
247 /* FMAC Execution Enable */
248 #define FMAC_START FMAC_PARAM_START
249
250 /**
251 * @}
252 */
253
254 /* Private macros ------------------------------------------------------------*/
255 /** @defgroup FMAC_Private_Macros FMAC Private Macros
256 * @{
257 */
258
259 /**
260 * @brief Get the X1 memory area size.
261 * @param __HANDLE__ FMAC handle.
262 * @retval X1_BUF_SIZE
263 */
264 #define FMAC_GET_X1_SIZE(__HANDLE__) \
265 ((((__HANDLE__)->Instance->X1BUFCFG) & (FMAC_X1BUFCFG_X1_BUF_SIZE)) >> (FMAC_X1BUFCFG_X1_BUF_SIZE_Pos))
266
267 /**
268 * @brief Get the X1 watermark.
269 * @param __HANDLE__ FMAC handle.
270 * @retval FULL_WM
271 */
272 #define FMAC_GET_X1_FULL_WM(__HANDLE__) \
273 (((__HANDLE__)->Instance->X1BUFCFG) & (FMAC_X1BUFCFG_FULL_WM))
274
275 /**
276 * @brief Get the X2 memory area size.
277 * @param __HANDLE__ FMAC handle.
278 * @retval X2_BUF_SIZE
279 */
280 #define FMAC_GET_X2_SIZE(__HANDLE__) \
281 ((((__HANDLE__)->Instance->X2BUFCFG) & (FMAC_X2BUFCFG_X2_BUF_SIZE)) >> (FMAC_X2BUFCFG_X2_BUF_SIZE_Pos))
282
283 /**
284 * @brief Get the Y memory area size.
285 * @param __HANDLE__ FMAC handle.
286 * @retval Y_BUF_SIZE
287 */
288 #define FMAC_GET_Y_SIZE(__HANDLE__) \
289 ((((__HANDLE__)->Instance->YBUFCFG) & (FMAC_YBUFCFG_Y_BUF_SIZE)) >> (FMAC_YBUFCFG_Y_BUF_SIZE_Pos))
290
291 /**
292 * @brief Get the Y watermark.
293 * @param __HANDLE__ FMAC handle.
294 * @retval EMPTY_WM
295 */
296 #define FMAC_GET_Y_EMPTY_WM(__HANDLE__) \
297 (((__HANDLE__)->Instance->YBUFCFG) & (FMAC_YBUFCFG_EMPTY_WM))
298
299 /**
300 * @brief Get the start bit state.
301 * @param __HANDLE__ FMAC handle.
302 * @retval START
303 */
304 #define FMAC_GET_START_BIT(__HANDLE__) \
305 ((((__HANDLE__)->Instance->PARAM) & (FMAC_PARAM_START)) >> (FMAC_PARAM_START_Pos))
306
307 /**
308 * @brief Get the threshold matching the watermark.
309 * @param __WM__ Watermark value.
310 * @retval THRESHOLD
311 */
312 #define FMAC_GET_THRESHOLD_FROM_WM(__WM__) (((__WM__) == FMAC_THRESHOLD_1)? 1U: \
313 ((__WM__) == FMAC_THRESHOLD_2)? 2U: \
314 ((__WM__) == FMAC_THRESHOLD_4)? 4U:8U)
315
316 /**
317 * @}
318 */
319
320 /* Private variables ---------------------------------------------------------*/
321 /* Global variables ----------------------------------------------------------*/
322 /* Private function prototypes -----------------------------------------------*/
323 static HAL_StatusTypeDef FMAC_Reset(FMAC_HandleTypeDef *hfmac);
324 static void FMAC_ResetDataPointers(FMAC_HandleTypeDef *hfmac);
325 static void FMAC_ResetOutputStateAndDataPointers(FMAC_HandleTypeDef *hfmac);
326 static void FMAC_ResetInputStateAndDataPointers(FMAC_HandleTypeDef *hfmac);
327 static HAL_StatusTypeDef FMAC_FilterConfig(FMAC_HandleTypeDef *hfmac, FMAC_FilterConfigTypeDef *pConfig,
328 uint8_t PreloadAccess);
329 static HAL_StatusTypeDef FMAC_FilterPreload(FMAC_HandleTypeDef *hfmac, int16_t *pInput, uint8_t InputSize,
330 int16_t *pOutput, uint8_t OutputSize, uint8_t PreloadAccess);
331 static void FMAC_WritePreloadDataIncrementPtr(FMAC_HandleTypeDef *hfmac, int16_t **ppData, uint8_t Size);
332 static HAL_StatusTypeDef FMAC_WaitOnStartUntilTimeout(FMAC_HandleTypeDef *hfmac, uint32_t Tickstart, uint32_t Timeout);
333 static HAL_StatusTypeDef FMAC_AppendFilterDataUpdateState(FMAC_HandleTypeDef *hfmac, int16_t *pInput,
334 uint16_t *pInputSize);
335 static HAL_StatusTypeDef FMAC_ConfigFilterOutputBufferUpdateState(FMAC_HandleTypeDef *hfmac, int16_t *pOutput,
336 uint16_t *pOutputSize);
337 static void FMAC_WriteDataIncrementPtr(FMAC_HandleTypeDef *hfmac, uint16_t MaxSizeToWrite);
338 static void FMAC_ReadDataIncrementPtr(FMAC_HandleTypeDef *hfmac, uint16_t MaxSizeToRead);
339 static void FMAC_DMAHalfGetData(DMA_HandleTypeDef *hdma);
340 static void FMAC_DMAGetData(DMA_HandleTypeDef *hdma);
341 static void FMAC_DMAHalfOutputDataReady(DMA_HandleTypeDef *hdma);
342 static void FMAC_DMAOutputDataReady(DMA_HandleTypeDef *hdma);
343 static void FMAC_DMAFilterConfig(DMA_HandleTypeDef *hdma);
344 static void FMAC_DMAFilterPreload(DMA_HandleTypeDef *hdma);
345 static void FMAC_DMAError(DMA_HandleTypeDef *hdma);
346
347 /* Functions Definition ------------------------------------------------------*/
348 /** @defgroup FMAC_Exported_Functions FMAC Exported Functions
349 * @{
350 */
351
352 /** @defgroup FMAC_Exported_Functions_Group1 Initialization and de-initialization functions
353 * @brief Initialization and Configuration functions
354 *
355 @verbatim
356 ===============================================================================
357 ##### Initialization and de-initialization functions #####
358 ===============================================================================
359 [..] This section provides functions allowing to:
360 (+) Initialize the FMAC peripheral and the associated handle
361 (+) DeInitialize the FMAC peripheral
362 (+) Initialize the FMAC MSP (MCU Specific Package)
363 (+) De-Initialize the FMAC MSP
364 (+) Register a User FMAC Callback
365 (+) Unregister a FMAC CallBack
366
367 [..]
368
369 @endverbatim
370 * @{
371 */
372
373 /**
374 * @brief Initialize the FMAC peripheral and the associated handle.
375 * @param hfmac pointer to a FMAC_HandleTypeDef structure.
376 * @retval HAL_StatusTypeDef HAL status
377 */
HAL_FMAC_Init(FMAC_HandleTypeDef * hfmac)378 HAL_StatusTypeDef HAL_FMAC_Init(FMAC_HandleTypeDef *hfmac)
379 {
380 HAL_StatusTypeDef status;
381
382 /* Check the FMAC handle allocation */
383 if (hfmac == NULL)
384 {
385 return HAL_ERROR;
386 }
387
388 /* Check the instance */
389 assert_param(IS_FMAC_ALL_INSTANCE(hfmac->Instance));
390
391 if (hfmac->State == HAL_FMAC_STATE_RESET)
392 {
393 /* Initialize lock resource */
394 hfmac->Lock = HAL_UNLOCKED;
395
396 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
397 /* Register the default callback functions */
398 hfmac->ErrorCallback = HAL_FMAC_ErrorCallback;
399 hfmac->HalfGetDataCallback = HAL_FMAC_HalfGetDataCallback;
400 hfmac->GetDataCallback = HAL_FMAC_GetDataCallback;
401 hfmac->HalfOutputDataReadyCallback = HAL_FMAC_HalfOutputDataReadyCallback;
402 hfmac->OutputDataReadyCallback = HAL_FMAC_OutputDataReadyCallback;
403 hfmac->FilterConfigCallback = HAL_FMAC_FilterConfigCallback;
404 hfmac->FilterPreloadCallback = HAL_FMAC_FilterPreloadCallback;
405
406 if (hfmac->MspInitCallback == NULL)
407 {
408 hfmac->MspInitCallback = HAL_FMAC_MspInit;
409 }
410
411 /* Init the low level hardware */
412 hfmac->MspInitCallback(hfmac);
413 #else
414 /* Init the low level hardware */
415 HAL_FMAC_MspInit(hfmac);
416 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
417 }
418
419 /* Reset pInput and pOutput */
420 hfmac->FilterParam = 0U;
421 FMAC_ResetDataPointers(hfmac);
422
423 /* Reset FMAC unit (internal pointers) */
424 if (FMAC_Reset(hfmac) == HAL_ERROR)
425 {
426 /* Update FMAC error code and FMAC peripheral state */
427 hfmac->ErrorCode |= HAL_FMAC_ERROR_RESET;
428 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
429
430 status = HAL_ERROR;
431 }
432 else
433 {
434 /* Update FMAC error code and FMAC peripheral state */
435 hfmac->ErrorCode = HAL_FMAC_ERROR_NONE;
436 hfmac->State = HAL_FMAC_STATE_READY;
437
438 status = HAL_OK;
439 }
440
441 __HAL_UNLOCK(hfmac);
442
443 return status;
444 }
445
446 /**
447 * @brief De-initialize the FMAC peripheral.
448 * @param hfmac pointer to a FMAC structure.
449 * @retval HAL_StatusTypeDef HAL status
450 */
HAL_FMAC_DeInit(FMAC_HandleTypeDef * hfmac)451 HAL_StatusTypeDef HAL_FMAC_DeInit(FMAC_HandleTypeDef *hfmac)
452 {
453 /* Check the FMAC handle allocation */
454 if (hfmac == NULL)
455 {
456 return HAL_ERROR;
457 }
458
459 /* Check the parameters */
460 assert_param(IS_FMAC_ALL_INSTANCE(hfmac->Instance));
461
462 /* Change FMAC peripheral state */
463 hfmac->State = HAL_FMAC_STATE_BUSY;
464
465 /* Set FMAC error code to none */
466 hfmac->ErrorCode = HAL_FMAC_ERROR_NONE;
467
468 /* Reset pInput and pOutput */
469 hfmac->FilterParam = 0U;
470 FMAC_ResetDataPointers(hfmac);
471
472 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
473 if (hfmac->MspDeInitCallback == NULL)
474 {
475 hfmac->MspDeInitCallback = HAL_FMAC_MspDeInit;
476 }
477 /* DeInit the low level hardware */
478 hfmac->MspDeInitCallback(hfmac);
479 #else
480 /* DeInit the low level hardware: CLOCK, NVIC, DMA */
481 HAL_FMAC_MspDeInit(hfmac);
482 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
483
484 /* Change FMAC peripheral state */
485 hfmac->State = HAL_FMAC_STATE_RESET;
486
487 /* Always release Lock in case of de-initialization */
488 __HAL_UNLOCK(hfmac);
489
490 return HAL_OK;
491 }
492
493 /**
494 * @brief Initialize the FMAC MSP.
495 * @param hfmac FMAC handle.
496 * @retval None
497 */
HAL_FMAC_MspInit(FMAC_HandleTypeDef * hfmac)498 __weak void HAL_FMAC_MspInit(FMAC_HandleTypeDef *hfmac)
499 {
500 /* Prevent unused argument(s) compilation warning */
501 UNUSED(hfmac);
502
503 /* NOTE : This function should not be modified, when the callback is needed,
504 the HAL_FMAC_MspInit can be implemented in the user file
505 */
506 }
507
508 /**
509 * @brief De-initialize the FMAC MSP.
510 * @param hfmac FMAC handle.
511 * @retval None
512 */
HAL_FMAC_MspDeInit(FMAC_HandleTypeDef * hfmac)513 __weak void HAL_FMAC_MspDeInit(FMAC_HandleTypeDef *hfmac)
514 {
515 /* Prevent unused argument(s) compilation warning */
516 UNUSED(hfmac);
517
518 /* NOTE : This function should not be modified, when the callback is needed,
519 the HAL_FMAC_MspDeInit can be implemented in the user file
520 */
521 }
522
523 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
524 /**
525 * @brief Register a User FMAC Callback.
526 * @note The User FMAC Callback is to be used instead of the weak predefined callback.
527 * @note The HAL_FMAC_RegisterCallback() may be called before HAL_FMAC_Init() in HAL_FMAC_STATE_RESET to register
528 * callbacks for HAL_FMAC_MSPINIT_CB_ID and HAL_FMAC_MSPDEINIT_CB_ID.
529 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
530 * the configuration information for FMAC module.
531 * @param CallbackID ID of the callback to be registered.
532 * This parameter can be one of the following values:
533 * @arg @ref HAL_FMAC_ERROR_CB_ID Error Callback ID
534 * @arg @ref HAL_FMAC_HALF_GET_DATA_CB_ID Get Half Data Callback ID
535 * @arg @ref HAL_FMAC_GET_DATA_CB_ID Get Data Callback ID
536 * @arg @ref HAL_FMAC_HALF_OUTPUT_DATA_READY_CB_ID Half Output Data Ready Callback ID
537 * @arg @ref HAL_FMAC_OUTPUT_DATA_READY_CB_ID Output Data Ready Callback ID
538 * @arg @ref HAL_FMAC_FILTER_CONFIG_CB_ID Filter Configuration Callback ID
539 * @arg @ref HAL_FMAC_FILTER_PRELOAD_CB_ID Filter Preload Callback ID
540 * @arg @ref HAL_FMAC_MSPINIT_CB_ID FMAC MspInit ID
541 * @arg @ref HAL_FMAC_MSPDEINIT_CB_ID FMAC MspDeInit ID
542 * @param pCallback pointer to the Callback function.
543 * @retval HAL_StatusTypeDef HAL status
544 */
HAL_FMAC_RegisterCallback(FMAC_HandleTypeDef * hfmac,HAL_FMAC_CallbackIDTypeDef CallbackID,pFMAC_CallbackTypeDef pCallback)545 HAL_StatusTypeDef HAL_FMAC_RegisterCallback(FMAC_HandleTypeDef *hfmac, HAL_FMAC_CallbackIDTypeDef CallbackID,
546 pFMAC_CallbackTypeDef pCallback)
547 {
548 HAL_StatusTypeDef status = HAL_OK;
549
550 /* Check the FMAC handle allocation */
551 if (hfmac == NULL)
552 {
553 return HAL_ERROR;
554 }
555
556 if (pCallback == NULL)
557 {
558 /* Update the error code */
559 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
560
561 return HAL_ERROR;
562 }
563
564 if (hfmac->State == HAL_FMAC_STATE_READY)
565 {
566 switch (CallbackID)
567 {
568 case HAL_FMAC_ERROR_CB_ID :
569 hfmac->ErrorCallback = pCallback;
570 break;
571
572 case HAL_FMAC_HALF_GET_DATA_CB_ID :
573 hfmac->HalfGetDataCallback = pCallback;
574 break;
575
576 case HAL_FMAC_GET_DATA_CB_ID :
577 hfmac->GetDataCallback = pCallback;
578 break;
579
580 case HAL_FMAC_HALF_OUTPUT_DATA_READY_CB_ID :
581 hfmac->HalfOutputDataReadyCallback = pCallback;
582 break;
583
584 case HAL_FMAC_OUTPUT_DATA_READY_CB_ID :
585 hfmac->OutputDataReadyCallback = pCallback;
586 break;
587
588 case HAL_FMAC_FILTER_CONFIG_CB_ID :
589 hfmac->FilterConfigCallback = pCallback;
590 break;
591
592 case HAL_FMAC_FILTER_PRELOAD_CB_ID :
593 hfmac->FilterPreloadCallback = pCallback;
594 break;
595
596 case HAL_FMAC_MSPINIT_CB_ID :
597 hfmac->MspInitCallback = pCallback;
598 break;
599
600 case HAL_FMAC_MSPDEINIT_CB_ID :
601 hfmac->MspDeInitCallback = pCallback;
602 break;
603
604 default :
605 /* Update the error code */
606 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
607
608 /* Return error status */
609 status = HAL_ERROR;
610 break;
611 }
612 }
613 else if (hfmac->State == HAL_FMAC_STATE_RESET)
614 {
615 switch (CallbackID)
616 {
617 case HAL_FMAC_MSPINIT_CB_ID :
618 hfmac->MspInitCallback = pCallback;
619 break;
620
621 case HAL_FMAC_MSPDEINIT_CB_ID :
622 hfmac->MspDeInitCallback = pCallback;
623 break;
624
625 default :
626 /* Update the error code */
627 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
628
629 /* Return error status */
630 status = HAL_ERROR;
631 break;
632 }
633 }
634 else
635 {
636 /* Update the error code */
637 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
638
639 /* Return error status */
640 status = HAL_ERROR;
641 }
642
643 return status;
644 }
645
646 /**
647 * @brief Unregister a FMAC CallBack.
648 * @note The FMAC callback is redirected to the weak predefined callback.
649 * @note The HAL_FMAC_UnRegisterCallback() may be called before HAL_FMAC_Init() in HAL_FMAC_STATE_RESET to register
650 * callbacks for HAL_FMAC_MSPINIT_CB_ID and HAL_FMAC_MSPDEINIT_CB_ID.
651 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
652 * the configuration information for FMAC module
653 * @param CallbackID ID of the callback to be unregistered.
654 * This parameter can be one of the following values:
655 * @arg @ref HAL_FMAC_ERROR_CB_ID Error Callback ID
656 * @arg @ref HAL_FMAC_HALF_GET_DATA_CB_ID Get Half Data Callback ID
657 * @arg @ref HAL_FMAC_GET_DATA_CB_ID Get Data Callback ID
658 * @arg @ref HAL_FMAC_HALF_OUTPUT_DATA_READY_CB_ID Half Output Data Ready Callback ID
659 * @arg @ref HAL_FMAC_OUTPUT_DATA_READY_CB_ID Output Data Ready Callback ID
660 * @arg @ref HAL_FMAC_FILTER_CONFIG_CB_ID Filter Configuration Callback ID
661 * @arg @ref HAL_FMAC_FILTER_PRELOAD_CB_ID Filter Preload Callback ID
662 * @arg @ref HAL_FMAC_MSPINIT_CB_ID FMAC MspInit ID
663 * @arg @ref HAL_FMAC_MSPDEINIT_CB_ID FMAC MspDeInit ID
664 * @retval HAL_StatusTypeDef HAL status
665 */
HAL_FMAC_UnRegisterCallback(FMAC_HandleTypeDef * hfmac,HAL_FMAC_CallbackIDTypeDef CallbackID)666 HAL_StatusTypeDef HAL_FMAC_UnRegisterCallback(FMAC_HandleTypeDef *hfmac, HAL_FMAC_CallbackIDTypeDef CallbackID)
667 {
668 HAL_StatusTypeDef status = HAL_OK;
669
670 /* Check the FMAC handle allocation */
671 if (hfmac == NULL)
672 {
673 return HAL_ERROR;
674 }
675
676 if (hfmac->State == HAL_FMAC_STATE_READY)
677 {
678 switch (CallbackID)
679 {
680 case HAL_FMAC_ERROR_CB_ID :
681 hfmac->ErrorCallback = HAL_FMAC_ErrorCallback; /* Legacy weak ErrorCallback */
682 break;
683
684 case HAL_FMAC_HALF_GET_DATA_CB_ID :
685 hfmac->HalfGetDataCallback = HAL_FMAC_HalfGetDataCallback; /* Legacy weak HalfGetDataCallback */
686 break;
687
688 case HAL_FMAC_GET_DATA_CB_ID :
689 hfmac->GetDataCallback = HAL_FMAC_GetDataCallback; /* Legacy weak GetDataCallback */
690 break;
691
692 case HAL_FMAC_HALF_OUTPUT_DATA_READY_CB_ID :
693 hfmac->HalfOutputDataReadyCallback = HAL_FMAC_HalfOutputDataReadyCallback; /* Legacy weak
694 HalfOutputDataReadyCallback */
695 break;
696
697 case HAL_FMAC_OUTPUT_DATA_READY_CB_ID :
698 hfmac->OutputDataReadyCallback = HAL_FMAC_OutputDataReadyCallback; /* Legacy weak
699 OutputDataReadyCallback */
700 break;
701
702 case HAL_FMAC_FILTER_CONFIG_CB_ID :
703 hfmac->FilterConfigCallback = HAL_FMAC_FilterConfigCallback; /* Legacy weak
704 FilterConfigCallback */
705 break;
706
707 case HAL_FMAC_FILTER_PRELOAD_CB_ID :
708 hfmac->FilterPreloadCallback = HAL_FMAC_FilterPreloadCallback; /* Legacy weak FilterPreloadCallba */
709 break;
710
711 case HAL_FMAC_MSPINIT_CB_ID :
712 hfmac->MspInitCallback = HAL_FMAC_MspInit; /* Legacy weak MspInitCallback */
713 break;
714
715 case HAL_FMAC_MSPDEINIT_CB_ID :
716 hfmac->MspDeInitCallback = HAL_FMAC_MspDeInit; /* Legacy weak MspDeInitCallback */
717 break;
718
719 default :
720 /* Update the error code */
721 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
722
723 /* Return error status */
724 status = HAL_ERROR;
725 break;
726 }
727 }
728 else if (hfmac->State == HAL_FMAC_STATE_RESET)
729 {
730 switch (CallbackID)
731 {
732 case HAL_FMAC_MSPINIT_CB_ID :
733 hfmac->MspInitCallback = HAL_FMAC_MspInit;
734 break;
735
736 case HAL_FMAC_MSPDEINIT_CB_ID :
737 hfmac->MspDeInitCallback = HAL_FMAC_MspDeInit;
738 break;
739
740 default :
741 /* Update the error code */
742 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
743
744 /* Return error status */
745 status = HAL_ERROR;
746 break;
747 }
748 }
749 else
750 {
751 /* Update the error code */
752 hfmac->ErrorCode |= HAL_FMAC_ERROR_INVALID_CALLBACK;
753
754 /* Return error status */
755 status = HAL_ERROR;
756 }
757
758 return status;
759 }
760 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
761
762 /**
763 * @}
764 */
765
766 /** @defgroup FMAC_Exported_Functions_Group2 Peripheral Control functions
767 * @brief Control functions.
768 *
769 @verbatim
770 ==============================================================================
771 ##### Peripheral Control functions #####
772 ==============================================================================
773 [..] This section provides functions allowing to:
774 (+) Configure the FMAC peripheral: memory area, filter type and parameters,
775 way to access to the input and output memory area (none, polling, IT, DMA).
776 (+) Start the FMAC processing (filter).
777 (+) Handle the input data that will be provided into FMAC.
778 (+) Handle the output data provided by FMAC.
779 (+) Stop the FMAC processing (filter).
780
781 @endverbatim
782 * @{
783 */
784
785 /**
786 * @brief Configure the FMAC filter.
787 * @note The configuration is done according to the parameters
788 * specified in the FMAC_FilterConfigTypeDef structure.
789 * The provided data will be loaded using polling mode.
790 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
791 * the configuration information for FMAC module.
792 * @param pConfig pointer to a FMAC_FilterConfigTypeDef structure that
793 * contains the FMAC configuration information.
794 * @retval HAL_StatusTypeDef HAL status
795 */
HAL_FMAC_FilterConfig(FMAC_HandleTypeDef * hfmac,FMAC_FilterConfigTypeDef * pConfig)796 HAL_StatusTypeDef HAL_FMAC_FilterConfig(FMAC_HandleTypeDef *hfmac, FMAC_FilterConfigTypeDef *pConfig)
797 {
798 return (FMAC_FilterConfig(hfmac, pConfig, PRELOAD_ACCESS_POLLING));
799 }
800
801 /**
802 * @brief Configure the FMAC filter.
803 * @note The configuration is done according to the parameters
804 * specified in the FMAC_FilterConfigTypeDef structure.
805 * The provided data will be loaded using DMA.
806 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
807 * the configuration information for FMAC module.
808 * @param pConfig pointer to a FMAC_FilterConfigTypeDef structure that
809 * contains the FMAC configuration information.
810 * @retval HAL_StatusTypeDef HAL status
811 */
HAL_FMAC_FilterConfig_DMA(FMAC_HandleTypeDef * hfmac,FMAC_FilterConfigTypeDef * pConfig)812 HAL_StatusTypeDef HAL_FMAC_FilterConfig_DMA(FMAC_HandleTypeDef *hfmac, FMAC_FilterConfigTypeDef *pConfig)
813 {
814 return (FMAC_FilterConfig(hfmac, pConfig, PRELOAD_ACCESS_DMA));
815 }
816
817 /**
818 * @brief Preload the input (FIR, IIR) and output data (IIR) of the FMAC filter.
819 * @note The set(s) of data will be used by FMAC as soon as @ref HAL_FMAC_FilterStart is called.
820 * The provided data will be loaded using polling mode.
821 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
822 * the configuration information for FMAC module.
823 * @param pInput Preloading of the first elements of the input buffer (X1).
824 * If not needed (no data available when starting), it should be set to NULL.
825 * @param InputSize Size of the input vector.
826 * As pInput is used for preloading data, it cannot be bigger than the input memory area.
827 * @param pOutput [IIR] Preloading of the first elements of the output vector (Y).
828 * If not needed, it should be set to NULL.
829 * @param OutputSize Size of the output vector.
830 * As pOutput is used for preloading data, it cannot be bigger than the output memory area.
831 * @note The input and the output buffers can be filled by calling several times @ref HAL_FMAC_FilterPreload
832 * (each call filling partly the buffers). In case of overflow (too much data provided through
833 * all these calls), an error will be returned.
834 * @retval HAL_StatusTypeDef HAL status
835 */
HAL_FMAC_FilterPreload(FMAC_HandleTypeDef * hfmac,int16_t * pInput,uint8_t InputSize,int16_t * pOutput,uint8_t OutputSize)836 HAL_StatusTypeDef HAL_FMAC_FilterPreload(FMAC_HandleTypeDef *hfmac, int16_t *pInput, uint8_t InputSize,
837 int16_t *pOutput, uint8_t OutputSize)
838 {
839 return (FMAC_FilterPreload(hfmac, pInput, InputSize, pOutput, OutputSize, PRELOAD_ACCESS_POLLING));
840 }
841
842 /**
843 * @brief Preload the input (FIR, IIR) and output data (IIR) of the FMAC filter.
844 * @note The set(s) of data will be used by FMAC as soon as @ref HAL_FMAC_FilterStart is called.
845 * The provided data will be loaded using DMA.
846 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
847 * the configuration information for FMAC module.
848 * @param pInput Preloading of the first elements of the input buffer (X1).
849 * If not needed (no data available when starting), it should be set to NULL.
850 * @param InputSize Size of the input vector.
851 * As pInput is used for preloading data, it cannot be bigger than the input memory area.
852 * @param pOutput [IIR] Preloading of the first elements of the output vector (Y).
853 * If not needed, it should be set to NULL.
854 * @param OutputSize Size of the output vector.
855 * As pOutput is used for preloading data, it cannot be bigger than the output memory area.
856 * @note The input and the output buffers can be filled by calling several times @ref HAL_FMAC_FilterPreload
857 * (each call filling partly the buffers). In case of overflow (too much data provided through
858 * all these calls), an error will be returned.
859 * @retval HAL_StatusTypeDef HAL status
860 */
HAL_FMAC_FilterPreload_DMA(FMAC_HandleTypeDef * hfmac,int16_t * pInput,uint8_t InputSize,int16_t * pOutput,uint8_t OutputSize)861 HAL_StatusTypeDef HAL_FMAC_FilterPreload_DMA(FMAC_HandleTypeDef *hfmac, int16_t *pInput, uint8_t InputSize,
862 int16_t *pOutput, uint8_t OutputSize)
863 {
864 return (FMAC_FilterPreload(hfmac, pInput, InputSize, pOutput, OutputSize, PRELOAD_ACCESS_DMA));
865 }
866
867
868 /**
869 * @brief Start the FMAC processing according to the existing FMAC configuration.
870 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
871 * the configuration information for FMAC module.
872 * @param pOutput pointer to buffer where output data of FMAC processing will be stored
873 * in the next steps.
874 * If it is set to NULL, the output will not be read and it will be up to
875 * an external IP to empty the output buffer.
876 * @param pOutputSize pointer to the size of the output buffer. The number of read data will be written here.
877 * @retval HAL_StatusTypeDef HAL status
878 */
HAL_FMAC_FilterStart(FMAC_HandleTypeDef * hfmac,int16_t * pOutput,uint16_t * pOutputSize)879 HAL_StatusTypeDef HAL_FMAC_FilterStart(FMAC_HandleTypeDef *hfmac, int16_t *pOutput, uint16_t *pOutputSize)
880 {
881 uint32_t tmpcr = 0U;
882 HAL_StatusTypeDef status;
883
884 /* Check the START bit state */
885 if (FMAC_GET_START_BIT(hfmac) != 0U)
886 {
887 return HAL_ERROR;
888 }
889
890 /* Check that a valid configuration was done previously */
891 if (hfmac->FilterParam == 0U)
892 {
893 return HAL_ERROR;
894 }
895
896 /* Check handle state is ready */
897 if (hfmac->State == HAL_FMAC_STATE_READY)
898 {
899 /* Change the FMAC state */
900 hfmac->State = HAL_FMAC_STATE_BUSY;
901
902 /* CR: Configure the input access (error interruptions enabled only for IT or DMA) */
903 if (hfmac->InputAccess == FMAC_BUFFER_ACCESS_DMA)
904 {
905 tmpcr |= FMAC_DMA_WEN;
906 }
907 else if (hfmac->InputAccess == FMAC_BUFFER_ACCESS_IT)
908 {
909 tmpcr |= FMAC_IT_WIEN;
910 }
911 else
912 {
913 /* nothing to do */
914 }
915
916 /* CR: Configure the output access (error interruptions enabled only for IT or DMA) */
917 if (hfmac->OutputAccess == FMAC_BUFFER_ACCESS_DMA)
918 {
919 tmpcr |= FMAC_DMA_REN;
920 }
921 else if (hfmac->OutputAccess == FMAC_BUFFER_ACCESS_IT)
922 {
923 tmpcr |= FMAC_IT_RIEN;
924 }
925 else
926 {
927 /* nothing to do */
928 }
929
930 /* CR: Write the configuration */
931 MODIFY_REG(hfmac->Instance->CR, \
932 FMAC_IT_RIEN | FMAC_IT_WIEN | FMAC_DMA_REN | FMAC_CR_DMAWEN, \
933 tmpcr);
934
935 /* Register the new output buffer */
936 status = FMAC_ConfigFilterOutputBufferUpdateState(hfmac, pOutput, pOutputSize);
937
938 if (status == HAL_OK)
939 {
940 /* PARAM: Start the filter ( this can generate interrupts before the end of the HAL_FMAC_FilterStart ) */
941 WRITE_REG(hfmac->Instance->PARAM, (uint32_t)(hfmac->FilterParam));
942 }
943
944 /* Reset the busy flag (do not overwrite the possible write and read flag) */
945 hfmac->State = HAL_FMAC_STATE_READY;
946 }
947 else
948 {
949 status = HAL_ERROR;
950 }
951
952 return status;
953 }
954
955 /**
956 * @brief Provide a new input buffer that will be loaded into the FMAC input memory area.
957 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
958 * the configuration information for FMAC module.
959 * @param pInput New input vector (additional input data).
960 * @param pInputSize Size of the input vector (if all the data can't be
961 * written, it will be updated with the number of data read from FMAC).
962 * @retval HAL_StatusTypeDef HAL status
963 */
HAL_FMAC_AppendFilterData(FMAC_HandleTypeDef * hfmac,int16_t * pInput,uint16_t * pInputSize)964 HAL_StatusTypeDef HAL_FMAC_AppendFilterData(FMAC_HandleTypeDef *hfmac, int16_t *pInput, uint16_t *pInputSize)
965 {
966 HAL_StatusTypeDef status;
967
968 /* Check the function parameters */
969 if ((pInput == NULL) || (pInputSize == NULL))
970 {
971 return HAL_ERROR;
972 }
973 if (*pInputSize == 0U)
974 {
975 return HAL_ERROR;
976 }
977
978 /* Check the START bit state */
979 if (FMAC_GET_START_BIT(hfmac) == 0U)
980 {
981 return HAL_ERROR;
982 }
983
984 /* Check the FMAC configuration */
985 if (hfmac->InputAccess == FMAC_BUFFER_ACCESS_NONE)
986 {
987 return HAL_ERROR;
988 }
989
990 /* Check whether the previous input vector has been handled */
991 if ((hfmac->pInputSize != NULL) && (hfmac->InputCurrentSize < * (hfmac->pInputSize)))
992 {
993 return HAL_ERROR;
994 }
995
996 /* Check that FMAC was initialized and that no writing is already ongoing */
997 if (hfmac->WrState == HAL_FMAC_STATE_READY)
998 {
999 /* Register the new input buffer */
1000 status = FMAC_AppendFilterDataUpdateState(hfmac, pInput, pInputSize);
1001 }
1002 else
1003 {
1004 status = HAL_ERROR;
1005 }
1006
1007 return status;
1008 }
1009
1010 /**
1011 * @brief Provide a new output buffer to be filled with the data computed by FMAC unit.
1012 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1013 * the configuration information for FMAC module.
1014 * @param pOutput New output vector.
1015 * @param pOutputSize Size of the output vector (if the vector can't
1016 * be entirely filled, pOutputSize will be updated with the number
1017 * of data read from FMAC).
1018 * @retval HAL_StatusTypeDef HAL status
1019 */
HAL_FMAC_ConfigFilterOutputBuffer(FMAC_HandleTypeDef * hfmac,int16_t * pOutput,uint16_t * pOutputSize)1020 HAL_StatusTypeDef HAL_FMAC_ConfigFilterOutputBuffer(FMAC_HandleTypeDef *hfmac, int16_t *pOutput, uint16_t *pOutputSize)
1021 {
1022 HAL_StatusTypeDef status;
1023
1024 /* Check the function parameters */
1025 if ((pOutput == NULL) || (pOutputSize == NULL))
1026 {
1027 return HAL_ERROR;
1028 }
1029 if (*pOutputSize == 0U)
1030 {
1031 return HAL_ERROR;
1032 }
1033
1034 /* Check the START bit state */
1035 if (FMAC_GET_START_BIT(hfmac) == 0U)
1036 {
1037 return HAL_ERROR;
1038 }
1039
1040 /* Check the FMAC configuration */
1041 if (hfmac->OutputAccess == FMAC_BUFFER_ACCESS_NONE)
1042 {
1043 return HAL_ERROR;
1044 }
1045
1046 /* Check whether the previous output vector has been handled */
1047 if ((hfmac->pOutputSize != NULL) && (hfmac->OutputCurrentSize < * (hfmac->pOutputSize)))
1048 {
1049 return HAL_ERROR;
1050 }
1051
1052 /* Check that FMAC was initialized and that not reading is already ongoing */
1053 if (hfmac->RdState == HAL_FMAC_STATE_READY)
1054 {
1055 /* Register the new output buffer */
1056 status = FMAC_ConfigFilterOutputBufferUpdateState(hfmac, pOutput, pOutputSize);
1057 }
1058 else
1059 {
1060 status = HAL_ERROR;
1061 }
1062
1063 return status;
1064 }
1065
1066 /**
1067 * @brief Handle the input and/or output data in polling mode
1068 * @note This function writes the previously provided user's input data and
1069 * fills the previously provided user's output buffer,
1070 * according to the existing FMAC configuration (polling mode only).
1071 * The function returns when the input data has been handled or
1072 * when the output data is filled. The possible unused data isn't
1073 * kept. It will be up to the user to handle it. The previously
1074 * provided pInputSize and pOutputSize will be used to indicate to the
1075 * size of the read/written data to the user.
1076 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1077 * the configuration information for FMAC module.
1078 * @param Timeout timeout value.
1079 * @retval HAL_StatusTypeDef HAL status
1080 */
HAL_FMAC_PollFilterData(FMAC_HandleTypeDef * hfmac,uint32_t Timeout)1081 HAL_StatusTypeDef HAL_FMAC_PollFilterData(FMAC_HandleTypeDef *hfmac, uint32_t Timeout)
1082 {
1083 uint32_t tickstart;
1084 uint8_t inpolling;
1085 uint8_t inpollingover = POLLING_NOT_STOPPED;
1086 uint8_t outpolling;
1087 uint8_t outpollingover = POLLING_NOT_STOPPED;
1088 HAL_StatusTypeDef status;
1089
1090 /* Check the START bit state */
1091 if (FMAC_GET_START_BIT(hfmac) == 0U)
1092 {
1093 return HAL_ERROR;
1094 }
1095
1096 /* Check the configuration */
1097
1098 /* Get the input and output mode (if no buffer was previously provided, nothing will be read/written) */
1099 if ((hfmac->InputAccess == FMAC_BUFFER_ACCESS_POLLING) && (hfmac->pInput != NULL))
1100 {
1101 inpolling = POLLING_ENABLED;
1102 }
1103 else
1104 {
1105 inpolling = POLLING_DISABLED;
1106 }
1107 if ((hfmac->OutputAccess == FMAC_BUFFER_ACCESS_POLLING) && (hfmac->pOutput != NULL))
1108 {
1109 outpolling = POLLING_ENABLED;
1110 }
1111 else
1112 {
1113 outpolling = POLLING_DISABLED;
1114 }
1115
1116 /* Check the configuration */
1117 if ((inpolling == POLLING_DISABLED) && (outpolling == POLLING_DISABLED))
1118 {
1119 return HAL_ERROR;
1120 }
1121
1122 /* Check handle state is ready */
1123 if (hfmac->State == HAL_FMAC_STATE_READY)
1124 {
1125 /* Change the FMAC state */
1126 hfmac->State = HAL_FMAC_STATE_BUSY;
1127
1128 /* Get tick */
1129 tickstart = HAL_GetTick();
1130
1131 /* Loop on reading and writing until timeout */
1132 while ((HAL_GetTick() - tickstart) < Timeout)
1133 {
1134 /* X1: Check the mode: polling or none */
1135 if (inpolling != POLLING_DISABLED)
1136 {
1137 FMAC_WriteDataIncrementPtr(hfmac, MAX_FILTER_DATA_SIZE_TO_HANDLE);
1138 if (hfmac->InputCurrentSize == *(hfmac->pInputSize))
1139 {
1140 inpollingover = POLLING_STOPPED;
1141 }
1142 }
1143
1144 /* Y: Check the mode: polling or none */
1145 if (outpolling != POLLING_DISABLED)
1146 {
1147 FMAC_ReadDataIncrementPtr(hfmac, MAX_FILTER_DATA_SIZE_TO_HANDLE);
1148 if (hfmac->OutputCurrentSize == *(hfmac->pOutputSize))
1149 {
1150 outpollingover = POLLING_STOPPED;
1151 }
1152 }
1153
1154 /* Exit if there isn't data to handle anymore on one side or another */
1155 if ((inpollingover != POLLING_NOT_STOPPED) || (outpollingover != POLLING_NOT_STOPPED))
1156 {
1157 break;
1158 }
1159 }
1160
1161 /* Change the FMAC state; update the input and output sizes; reset the indexes */
1162 if (inpolling != POLLING_DISABLED)
1163 {
1164 (*(hfmac->pInputSize)) = hfmac->InputCurrentSize;
1165 FMAC_ResetInputStateAndDataPointers(hfmac);
1166 }
1167 if (outpolling != POLLING_DISABLED)
1168 {
1169 (*(hfmac->pOutputSize)) = hfmac->OutputCurrentSize;
1170 FMAC_ResetOutputStateAndDataPointers(hfmac);
1171 }
1172
1173 /* Reset the busy flag (do not overwrite the possible write and read flag) */
1174 hfmac->State = HAL_FMAC_STATE_READY;
1175
1176 if ((HAL_GetTick() - tickstart) >= Timeout)
1177 {
1178 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
1179 status = HAL_ERROR;
1180 }
1181 else
1182 {
1183 status = HAL_OK;
1184 }
1185 }
1186 else
1187 {
1188 status = HAL_ERROR;
1189 }
1190
1191 return status;
1192 }
1193
1194 /**
1195 * @brief Stop the FMAC processing.
1196 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1197 * the configuration information for FMAC module.
1198 * @retval HAL_StatusTypeDef HAL status
1199 */
HAL_FMAC_FilterStop(FMAC_HandleTypeDef * hfmac)1200 HAL_StatusTypeDef HAL_FMAC_FilterStop(FMAC_HandleTypeDef *hfmac)
1201 {
1202 HAL_StatusTypeDef status = HAL_OK;
1203
1204 /* Check handle state is ready */
1205 if (hfmac->State == HAL_FMAC_STATE_READY)
1206 {
1207 /* Change the FMAC state */
1208 hfmac->State = HAL_FMAC_STATE_BUSY;
1209
1210 /* Set the START bit to 0 (stop the previously configured filter) */
1211 CLEAR_BIT(hfmac->Instance->PARAM, FMAC_PARAM_START);
1212
1213 /* Disable the interrupts in order to avoid crossing cases */
1214 CLEAR_BIT(hfmac->Instance->CR, FMAC_DMA_REN | FMAC_DMA_WEN | FMAC_IT_RIEN | FMAC_IT_WIEN);
1215
1216 /* In case of IT, update the sizes */
1217 if ((hfmac->InputAccess == FMAC_BUFFER_ACCESS_IT) && (hfmac->pInput != NULL))
1218 {
1219 (*(hfmac->pInputSize)) = hfmac->InputCurrentSize;
1220 }
1221
1222 if ((hfmac->OutputAccess == FMAC_BUFFER_ACCESS_IT) && (hfmac->pOutput != NULL))
1223 {
1224 (*(hfmac->pOutputSize)) = hfmac->OutputCurrentSize;
1225 }
1226
1227 if (hfmac->InputAccess == FMAC_BUFFER_ACCESS_DMA)
1228 {
1229 /* Disable the DMA stream managing FMAC input data */
1230 status = HAL_DMA_Abort_IT(hfmac->hdmaIn);
1231 }
1232
1233 if ((hfmac->OutputAccess == FMAC_BUFFER_ACCESS_DMA) && (status == HAL_OK))
1234 {
1235 /* Disable the DMA stream managing FMAC output data */
1236 status = HAL_DMA_Abort_IT(hfmac->hdmaOut);
1237 }
1238
1239 /* Reset FMAC unit (internal pointers) */
1240 if (FMAC_Reset(hfmac) == HAL_ERROR)
1241 {
1242 /* Update FMAC error code and FMAC peripheral state */
1243 hfmac->ErrorCode = HAL_FMAC_ERROR_RESET;
1244 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
1245 status = HAL_ERROR;
1246 }
1247 else
1248 {
1249 /* Reset the data pointers */
1250 FMAC_ResetDataPointers(hfmac);
1251 }
1252
1253 /* Reset the busy flag */
1254 hfmac->State = HAL_FMAC_STATE_READY;
1255 }
1256 else
1257 {
1258 status = HAL_ERROR;
1259 }
1260
1261 return status;
1262 }
1263
1264 /**
1265 * @}
1266 */
1267
1268 /** @defgroup FMAC_Exported_Functions_Group3 Callback functions
1269 * @brief Callback functions.
1270 *
1271 @verbatim
1272 ==============================================================================
1273 ##### Callback functions #####
1274 ==============================================================================
1275 [..] This section provides Interruption and DMA callback functions:
1276 (+) DMA or Interrupt: the user's input data is half written (DMA only)
1277 or completely written.
1278 (+) DMA or Interrupt: the user's output buffer is half filled (DMA only)
1279 or completely filled.
1280 (+) DMA or Interrupt: error handling.
1281
1282 @endverbatim
1283 * @{
1284 */
1285
1286 /**
1287 * @brief FMAC error callback.
1288 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1289 * the configuration information for FMAC module.
1290 * @retval None
1291 */
HAL_FMAC_ErrorCallback(FMAC_HandleTypeDef * hfmac)1292 __weak void HAL_FMAC_ErrorCallback(FMAC_HandleTypeDef *hfmac)
1293 {
1294 /* Prevent unused argument(s) compilation warning */
1295 UNUSED(hfmac);
1296
1297 /* NOTE : This function should not be modified; when the callback is needed,
1298 the HAL_FMAC_ErrorCallback can be implemented in the user file.
1299 */
1300 }
1301
1302 /**
1303 * @brief FMAC get half data callback.
1304 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1305 * the configuration information for FMAC module.
1306 * @retval None
1307 */
HAL_FMAC_HalfGetDataCallback(FMAC_HandleTypeDef * hfmac)1308 __weak void HAL_FMAC_HalfGetDataCallback(FMAC_HandleTypeDef *hfmac)
1309 {
1310 /* Prevent unused argument(s) compilation warning */
1311 UNUSED(hfmac);
1312
1313 /* NOTE : This function should not be modified; when the callback is needed,
1314 the HAL_FMAC_HalfGetDataCallback can be implemented in the user file.
1315 */
1316 }
1317
1318 /**
1319 * @brief FMAC get data callback.
1320 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1321 * the configuration information for FMAC module.
1322 * @retval None
1323 */
HAL_FMAC_GetDataCallback(FMAC_HandleTypeDef * hfmac)1324 __weak void HAL_FMAC_GetDataCallback(FMAC_HandleTypeDef *hfmac)
1325 {
1326 /* Prevent unused argument(s) compilation warning */
1327 UNUSED(hfmac);
1328
1329 /* NOTE : This function should not be modified; when the callback is needed,
1330 the HAL_FMAC_GetDataCallback can be implemented in the user file.
1331 */
1332 }
1333
1334 /**
1335 * @brief FMAC half output data ready callback.
1336 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1337 * the configuration information for FMAC module.
1338 * @retval None
1339 */
HAL_FMAC_HalfOutputDataReadyCallback(FMAC_HandleTypeDef * hfmac)1340 __weak void HAL_FMAC_HalfOutputDataReadyCallback(FMAC_HandleTypeDef *hfmac)
1341 {
1342 /* Prevent unused argument(s) compilation warning */
1343 UNUSED(hfmac);
1344
1345 /* NOTE : This function should not be modified; when the callback is needed,
1346 the HAL_FMAC_HalfOutputDataReadyCallback can be implemented in the user file.
1347 */
1348 }
1349
1350 /**
1351 * @brief FMAC output data ready callback.
1352 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1353 * the configuration information for FMAC module.
1354 * @retval None
1355 */
HAL_FMAC_OutputDataReadyCallback(FMAC_HandleTypeDef * hfmac)1356 __weak void HAL_FMAC_OutputDataReadyCallback(FMAC_HandleTypeDef *hfmac)
1357 {
1358 /* Prevent unused argument(s) compilation warning */
1359 UNUSED(hfmac);
1360
1361 /* NOTE : This function should not be modified; when the callback is needed,
1362 the HAL_FMAC_OutputDataReadyCallback can be implemented in the user file.
1363 */
1364 }
1365
1366 /**
1367 * @brief FMAC filter configuration callback.
1368 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1369 * the configuration information for FMAC module.
1370 * @retval None
1371 */
HAL_FMAC_FilterConfigCallback(FMAC_HandleTypeDef * hfmac)1372 __weak void HAL_FMAC_FilterConfigCallback(FMAC_HandleTypeDef *hfmac)
1373 {
1374 /* Prevent unused argument(s) compilation warning */
1375 UNUSED(hfmac);
1376
1377 /* NOTE : This function should not be modified; when the callback is needed,
1378 the HAL_FMAC_FilterConfigCallback can be implemented in the user file.
1379 */
1380 }
1381
1382 /**
1383 * @brief FMAC filter preload callback.
1384 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1385 * the configuration information for FMAC module.
1386 * @retval None
1387 */
HAL_FMAC_FilterPreloadCallback(FMAC_HandleTypeDef * hfmac)1388 __weak void HAL_FMAC_FilterPreloadCallback(FMAC_HandleTypeDef *hfmac)
1389 {
1390 /* Prevent unused argument(s) compilation warning */
1391 UNUSED(hfmac);
1392
1393 /* NOTE : This function should not be modified; when the callback is needed,
1394 the HAL_FMAC_FilterPreloadCallback can be implemented in the user file.
1395 */
1396 }
1397
1398 /**
1399 * @}
1400 */
1401
1402 /** @defgroup FMAC_Exported_Functions_Group4 IRQ handler management
1403 * @brief IRQ handler.
1404 *
1405 @verbatim
1406 ==============================================================================
1407 ##### IRQ handler management #####
1408 ==============================================================================
1409 [..] This section provides IRQ handler function.
1410
1411 @endverbatim
1412 * @{
1413 */
1414
1415 /**
1416 * @brief Handle FMAC interrupt request.
1417 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1418 * the configuration information for FMAC module.
1419 * @retval None
1420 */
HAL_FMAC_IRQHandler(FMAC_HandleTypeDef * hfmac)1421 void HAL_FMAC_IRQHandler(FMAC_HandleTypeDef *hfmac)
1422 {
1423 uint32_t itsource;
1424
1425 /* Check if the read interrupt is enabled and if Y buffer empty flag isn't set */
1426 itsource = __HAL_FMAC_GET_IT_SOURCE(hfmac, FMAC_IT_RIEN);
1427 if ((__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_YEMPTY) == 0U) && (itsource != 0U))
1428 {
1429 /* Read some data if possible (Y size is used as a pseudo timeout in order
1430 to not get stuck too long under IT if FMAC keeps on processing input
1431 data reloaded via DMA for instance). */
1432 if (hfmac->pOutput != NULL)
1433 {
1434 FMAC_ReadDataIncrementPtr(hfmac, (uint16_t)FMAC_GET_Y_SIZE(hfmac));
1435 }
1436
1437 /* Indicate that data is ready to be read */
1438 if ((hfmac->pOutput == NULL) || (hfmac->OutputCurrentSize == *(hfmac->pOutputSize)))
1439 {
1440 /* Reset the pointers to indicate new data will be needed */
1441 FMAC_ResetOutputStateAndDataPointers(hfmac);
1442
1443 /* Call the output data ready callback */
1444 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
1445 hfmac->OutputDataReadyCallback(hfmac);
1446 #else
1447 HAL_FMAC_OutputDataReadyCallback(hfmac);
1448 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
1449 }
1450 }
1451
1452 /* Check if the write interrupt is enabled and if X1 buffer full flag isn't set */
1453 itsource = __HAL_FMAC_GET_IT_SOURCE(hfmac, FMAC_IT_WIEN);
1454 if ((__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_X1FULL) == 0U) && (itsource != 0U))
1455 {
1456 /* Write some data if possible (X1 size is used as a pseudo timeout in order
1457 to not get stuck too long under IT if FMAC keep on processing input
1458 data whereas its output emptied via DMA for instance). */
1459 if (hfmac->pInput != NULL)
1460 {
1461 FMAC_WriteDataIncrementPtr(hfmac, (uint16_t)FMAC_GET_X1_SIZE(hfmac));
1462 }
1463
1464 /* Indicate that new data will be needed */
1465 if ((hfmac->pInput == NULL) || (hfmac->InputCurrentSize == *(hfmac->pInputSize)))
1466 {
1467 /* Reset the pointers to indicate new data will be needed */
1468 FMAC_ResetInputStateAndDataPointers(hfmac);
1469
1470 /* Call the get data callback */
1471 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
1472 hfmac->GetDataCallback(hfmac);
1473 #else
1474 HAL_FMAC_GetDataCallback(hfmac);
1475 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
1476 }
1477 }
1478
1479 /* Check if the overflow error interrupt is enabled and if overflow error flag is raised */
1480 itsource = __HAL_FMAC_GET_IT_SOURCE(hfmac, FMAC_IT_OVFLIEN);
1481 if ((__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_OVFL) != 0U) && (itsource != 0U))
1482 {
1483 hfmac->ErrorCode |= HAL_FMAC_ERROR_OVFL;
1484 }
1485
1486 /* Check if the underflow error interrupt is enabled and if underflow error flag is raised */
1487 itsource = __HAL_FMAC_GET_IT_SOURCE(hfmac, FMAC_IT_UNFLIEN);
1488 if ((__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_UNFL) != 0U) && (itsource != 0U))
1489 {
1490 hfmac->ErrorCode |= HAL_FMAC_ERROR_UNFL;
1491 }
1492
1493 /* Check if the saturation error interrupt is enabled and if saturation error flag is raised */
1494 itsource = __HAL_FMAC_GET_IT_SOURCE(hfmac, FMAC_IT_SATIEN);
1495 if ((__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_SAT) != 0U) && (itsource != 0U))
1496 {
1497 hfmac->ErrorCode |= HAL_FMAC_ERROR_SAT;
1498 }
1499
1500 /* Call the error callback if an error occurred */
1501 if (hfmac->ErrorCode != HAL_FMAC_ERROR_NONE)
1502 {
1503 /* Call the error callback */
1504 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
1505 hfmac->ErrorCallback(hfmac);
1506 #else
1507 HAL_FMAC_ErrorCallback(hfmac);
1508 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
1509 }
1510 }
1511
1512 /**
1513 * @}
1514 */
1515
1516 /** @defgroup FMAC_Exported_Functions_Group5 Peripheral State and Error functions
1517 * @brief Peripheral State and Error functions.
1518 *
1519 @verbatim
1520 ==============================================================================
1521 ##### Peripheral State and Error functions #####
1522 ==============================================================================
1523 [..] This subsection provides functions allowing to
1524 (+) Check the FMAC state
1525 (+) Get error code
1526
1527 @endverbatim
1528 * @{
1529 */
1530
1531 /**
1532 * @brief Return the FMAC state.
1533 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1534 * the configuration information for FMAC module.
1535 * @retval HAL_FMAC_StateTypeDef FMAC state
1536 */
HAL_FMAC_GetState(const FMAC_HandleTypeDef * hfmac)1537 HAL_FMAC_StateTypeDef HAL_FMAC_GetState(const FMAC_HandleTypeDef *hfmac)
1538 {
1539 /* Return FMAC state */
1540 return hfmac->State;
1541 }
1542
1543 /**
1544 * @brief Return the FMAC peripheral error.
1545 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1546 * the configuration information for FMAC module.
1547 * @note The returned error is a bit-map combination of possible errors.
1548 * @retval uint32_t Error bit-map based on @ref FMAC_Error_Code
1549 */
HAL_FMAC_GetError(const FMAC_HandleTypeDef * hfmac)1550 uint32_t HAL_FMAC_GetError(const FMAC_HandleTypeDef *hfmac)
1551 {
1552 /* Return FMAC error code */
1553 return hfmac->ErrorCode;
1554 }
1555
1556 /**
1557 * @}
1558 */
1559
1560 /**
1561 * @}
1562 */
1563
1564 /** @defgroup FMAC_Private_Functions FMAC Private Functions
1565 * @{
1566 */
1567
1568 /**
1569 ==============================================================================
1570 ##### FMAC Private Functions #####
1571 ==============================================================================
1572 */
1573 /**
1574 * @brief Perform a reset of the FMAC unit.
1575 * @param hfmac FMAC handle.
1576 * @retval HAL_StatusTypeDef HAL status
1577 */
FMAC_Reset(FMAC_HandleTypeDef * hfmac)1578 static HAL_StatusTypeDef FMAC_Reset(FMAC_HandleTypeDef *hfmac)
1579 {
1580 uint32_t tickstart;
1581
1582 /* Init tickstart for timeout management*/
1583 tickstart = HAL_GetTick();
1584
1585 /* Perform the reset */
1586 SET_BIT(hfmac->Instance->CR, FMAC_CR_RESET);
1587
1588 /* Wait until flag is reset */
1589 while (READ_BIT(hfmac->Instance->CR, FMAC_CR_RESET) != 0U)
1590 {
1591 if ((HAL_GetTick() - tickstart) > HAL_FMAC_RESET_TIMEOUT_VALUE)
1592 {
1593 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
1594 return HAL_ERROR;
1595 }
1596 }
1597
1598 hfmac->ErrorCode = HAL_FMAC_ERROR_NONE;
1599 return HAL_OK;
1600 }
1601
1602 /**
1603 * @brief Reset the data pointers of the FMAC unit.
1604 * @param hfmac FMAC handle.
1605 * @retval None
1606 */
FMAC_ResetDataPointers(FMAC_HandleTypeDef * hfmac)1607 static void FMAC_ResetDataPointers(FMAC_HandleTypeDef *hfmac)
1608 {
1609 FMAC_ResetInputStateAndDataPointers(hfmac);
1610 FMAC_ResetOutputStateAndDataPointers(hfmac);
1611 }
1612
1613 /**
1614 * @brief Reset the input data pointers of the FMAC unit.
1615 * @param hfmac FMAC handle.
1616 * @retval None
1617 */
FMAC_ResetInputStateAndDataPointers(FMAC_HandleTypeDef * hfmac)1618 static void FMAC_ResetInputStateAndDataPointers(FMAC_HandleTypeDef *hfmac)
1619 {
1620 hfmac->pInput = NULL;
1621 hfmac->pInputSize = NULL;
1622 hfmac->InputCurrentSize = 0U;
1623 hfmac->WrState = HAL_FMAC_STATE_READY;
1624 }
1625
1626 /**
1627 * @brief Reset the output data pointers of the FMAC unit.
1628 * @param hfmac FMAC handle.
1629 * @retval None
1630 */
FMAC_ResetOutputStateAndDataPointers(FMAC_HandleTypeDef * hfmac)1631 static void FMAC_ResetOutputStateAndDataPointers(FMAC_HandleTypeDef *hfmac)
1632 {
1633 hfmac->pOutput = NULL;
1634 hfmac->pOutputSize = NULL;
1635 hfmac->OutputCurrentSize = 0U;
1636 hfmac->RdState = HAL_FMAC_STATE_READY;
1637 }
1638
1639 /**
1640 * @brief Configure the FMAC filter.
1641 * @note The configuration is done according to the parameters
1642 * specified in the FMAC_FilterConfigTypeDef structure.
1643 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1644 * the configuration information for FMAC module.
1645 * @param pConfig pointer to a FMAC_FilterConfigTypeDef structure that
1646 * contains the FMAC configuration information.
1647 * @param PreloadAccess access mode used for the preload (polling or DMA).
1648 * @retval HAL_StatusTypeDef HAL status
1649 */
FMAC_FilterConfig(FMAC_HandleTypeDef * hfmac,FMAC_FilterConfigTypeDef * pConfig,uint8_t PreloadAccess)1650 static HAL_StatusTypeDef FMAC_FilterConfig(FMAC_HandleTypeDef *hfmac, FMAC_FilterConfigTypeDef *pConfig,
1651 uint8_t PreloadAccess)
1652 {
1653 uint32_t tickstart;
1654 uint32_t tmpcr;
1655 #if defined(USE_FULL_ASSERT)
1656 uint32_t x2size;
1657 #endif /* USE_FULL_ASSERT */
1658
1659 /* Check the parameters */
1660 assert_param(IS_FMAC_THRESHOLD(pConfig->InputThreshold));
1661 assert_param(IS_FMAC_THRESHOLD(pConfig->OutputThreshold));
1662 assert_param(IS_FMAC_BUFFER_ACCESS(pConfig->InputAccess));
1663 assert_param(IS_FMAC_BUFFER_ACCESS(pConfig->OutputAccess));
1664 assert_param(IS_FMAC_CLIP_STATE(pConfig->Clip));
1665 assert_param(IS_FMAC_FILTER_FUNCTION(pConfig->Filter));
1666 assert_param(IS_FMAC_PARAM_P(pConfig->Filter, pConfig->P));
1667 assert_param(IS_FMAC_PARAM_Q(pConfig->Filter, pConfig->Q));
1668 assert_param(IS_FMAC_PARAM_R(pConfig->Filter, pConfig->R));
1669
1670 /* Check the START bit state */
1671 if (FMAC_GET_START_BIT(hfmac) != 0U)
1672 {
1673 return HAL_ERROR;
1674 }
1675
1676 /* Check handle state is ready */
1677 if (hfmac->State != HAL_FMAC_STATE_READY)
1678 {
1679 return HAL_ERROR;
1680 }
1681
1682 /* Change the FMAC state */
1683 hfmac->State = HAL_FMAC_STATE_BUSY;
1684
1685 /* Get tick */
1686 tickstart = HAL_GetTick();
1687
1688 /* Indicate that there is no valid configuration done */
1689 hfmac->FilterParam = 0U;
1690
1691 /* FMAC_X1BUFCFG: Configure the input buffer within the internal memory if required */
1692 if (pConfig->InputBufferSize != 0U)
1693 {
1694 MODIFY_REG(hfmac->Instance->X1BUFCFG, \
1695 (FMAC_X1BUFCFG_X1_BASE | FMAC_X1BUFCFG_X1_BUF_SIZE), \
1696 (((((uint32_t)(pConfig->InputBaseAddress)) << FMAC_X1BUFCFG_X1_BASE_Pos) & FMAC_X1BUFCFG_X1_BASE) | \
1697 ((((uint32_t)(pConfig->InputBufferSize)) << FMAC_X1BUFCFG_X1_BUF_SIZE_Pos) & \
1698 FMAC_X1BUFCFG_X1_BUF_SIZE)));
1699 }
1700
1701 /* FMAC_X1BUFCFG: Configure the input threshold if valid when compared to the configured X1 size */
1702 if (pConfig->InputThreshold != FMAC_THRESHOLD_NO_VALUE)
1703 {
1704 /* Check the parameter */
1705 assert_param(IS_FMAC_THRESHOLD_APPLICABLE(FMAC_GET_X1_SIZE(hfmac), pConfig->InputThreshold, pConfig->InputAccess));
1706
1707 MODIFY_REG(hfmac->Instance->X1BUFCFG, \
1708 FMAC_X1BUFCFG_FULL_WM, \
1709 ((pConfig->InputThreshold) & FMAC_X1BUFCFG_FULL_WM));
1710 }
1711
1712 /* FMAC_X2BUFCFG: Configure the coefficient buffer within the internal memory */
1713 if (pConfig->CoeffBufferSize != 0U)
1714 {
1715 MODIFY_REG(hfmac->Instance->X2BUFCFG, \
1716 (FMAC_X2BUFCFG_X2_BASE | FMAC_X2BUFCFG_X2_BUF_SIZE), \
1717 (((((uint32_t)(pConfig->CoeffBaseAddress)) << FMAC_X2BUFCFG_X2_BASE_Pos) & FMAC_X2BUFCFG_X2_BASE) | \
1718 ((((uint32_t)(pConfig->CoeffBufferSize)) << FMAC_X2BUFCFG_X2_BUF_SIZE_Pos) &\
1719 FMAC_X2BUFCFG_X2_BUF_SIZE)));
1720 }
1721
1722 /* FMAC_YBUFCFG: Configure the output buffer within the internal memory if required */
1723 if (pConfig->OutputBufferSize != 0U)
1724 {
1725 MODIFY_REG(hfmac->Instance->YBUFCFG, \
1726 (FMAC_YBUFCFG_Y_BASE | FMAC_YBUFCFG_Y_BUF_SIZE), \
1727 (((((uint32_t)(pConfig->OutputBaseAddress)) << FMAC_YBUFCFG_Y_BASE_Pos) & FMAC_YBUFCFG_Y_BASE) | \
1728 ((((uint32_t)(pConfig->OutputBufferSize)) << FMAC_YBUFCFG_Y_BUF_SIZE_Pos) & FMAC_YBUFCFG_Y_BUF_SIZE)));
1729 }
1730
1731 /* FMAC_YBUFCFG: Configure the output threshold if valid when compared to the configured Y size */
1732 if (pConfig->OutputThreshold != FMAC_THRESHOLD_NO_VALUE)
1733 {
1734 /* Check the parameter */
1735 assert_param(IS_FMAC_THRESHOLD_APPLICABLE(FMAC_GET_Y_SIZE(hfmac), pConfig->OutputThreshold, pConfig->OutputAccess));
1736
1737 MODIFY_REG(hfmac->Instance->YBUFCFG, \
1738 FMAC_YBUFCFG_EMPTY_WM, \
1739 ((pConfig->OutputThreshold) & FMAC_YBUFCFG_EMPTY_WM));
1740 }
1741
1742 /* FMAC_CR: Configure the clip feature */
1743 tmpcr = pConfig->Clip & FMAC_CR_CLIPEN;
1744
1745 /* FMAC_CR: If IT or DMA will be used, enable error interrupts.
1746 * Being more a debugging feature, FMAC_CR_SATIEN isn't enabled by default. */
1747 if ((pConfig->InputAccess == FMAC_BUFFER_ACCESS_DMA) || (pConfig->InputAccess == FMAC_BUFFER_ACCESS_IT) ||
1748 (pConfig->OutputAccess == FMAC_BUFFER_ACCESS_DMA) || (pConfig->OutputAccess == FMAC_BUFFER_ACCESS_IT))
1749 {
1750 tmpcr |= FMAC_IT_UNFLIEN | FMAC_IT_OVFLIEN;
1751 }
1752
1753 /* FMAC_CR: write the value */
1754 WRITE_REG(hfmac->Instance->CR, tmpcr);
1755
1756 /* Save the input/output accesses in order to configure RIEN, WIEN, DMAREN and DMAWEN during filter start */
1757 hfmac->InputAccess = pConfig->InputAccess;
1758 hfmac->OutputAccess = pConfig->OutputAccess;
1759
1760 /* Check whether the configured X2 is big enough for the filter */
1761 #if defined(USE_FULL_ASSERT)
1762 x2size = FMAC_GET_X2_SIZE(hfmac);
1763 #endif /* USE_FULL_ASSERT */
1764 assert_param(((pConfig->Filter == FMAC_FUNC_CONVO_FIR) && (x2size >= pConfig->P)) || \
1765 ((pConfig->Filter == FMAC_FUNC_IIR_DIRECT_FORM_1) && \
1766 (x2size >= ((uint32_t)pConfig->P + (uint32_t)pConfig->Q))));
1767
1768 /* Build the PARAM value that will be used when starting the filter */
1769 hfmac->FilterParam = (FMAC_PARAM_START | pConfig->Filter | \
1770 ((((uint32_t)(pConfig->P)) << FMAC_PARAM_P_Pos) & FMAC_PARAM_P) | \
1771 ((((uint32_t)(pConfig->Q)) << FMAC_PARAM_Q_Pos) & FMAC_PARAM_Q) | \
1772 ((((uint32_t)(pConfig->R)) << FMAC_PARAM_R_Pos) & FMAC_PARAM_R));
1773
1774 /* Initialize the coefficient buffer if required (pCoeffA for FIR only) */
1775 if ((pConfig->pCoeffB != NULL) && (pConfig->CoeffBSize != 0U))
1776 {
1777 /* FIR/IIR: The provided coefficients should match X2 size */
1778 assert_param(((uint32_t)pConfig->CoeffASize + (uint32_t)pConfig->CoeffBSize) <= x2size);
1779 /* FIR/IIR: The size of pCoeffB should match the parameter P */
1780 assert_param(pConfig->CoeffBSize >= pConfig->P);
1781 /* pCoeffA should be provided for IIR but not for FIR */
1782 /* IIR : if pCoeffB is provided, pCoeffA should also be there */
1783 /* IIR: The size of pCoeffA should match the parameter Q */
1784 assert_param(((pConfig->Filter == FMAC_FUNC_CONVO_FIR) &&
1785 (pConfig->pCoeffA == NULL) && (pConfig->CoeffASize == 0U)) ||
1786 ((pConfig->Filter == FMAC_FUNC_IIR_DIRECT_FORM_1) &&
1787 (pConfig->pCoeffA != NULL) && (pConfig->CoeffASize != 0U) &&
1788 (pConfig->CoeffASize >= pConfig->Q)));
1789
1790 /* Write number of values to be loaded, the data load function and start the operation */
1791 WRITE_REG(hfmac->Instance->PARAM, \
1792 (((uint32_t)(pConfig->CoeffBSize) << FMAC_PARAM_P_Pos) | \
1793 ((uint32_t)(pConfig->CoeffASize) << FMAC_PARAM_Q_Pos) | \
1794 FMAC_FUNC_LOAD_X2 | FMAC_PARAM_START));
1795
1796 if (PreloadAccess == PRELOAD_ACCESS_POLLING)
1797 {
1798 /* Load the buffer into the internal memory */
1799 FMAC_WritePreloadDataIncrementPtr(hfmac, &(pConfig->pCoeffB), pConfig->CoeffBSize);
1800
1801 /* Load pCoeffA if needed */
1802 if ((pConfig->pCoeffA != NULL) && (pConfig->CoeffASize != 0U))
1803 {
1804 /* Load the buffer into the internal memory */
1805 FMAC_WritePreloadDataIncrementPtr(hfmac, &(pConfig->pCoeffA), pConfig->CoeffASize);
1806 }
1807
1808 /* Wait for the end of the writing */
1809 if (FMAC_WaitOnStartUntilTimeout(hfmac, tickstart, HAL_FMAC_TIMEOUT_VALUE) != HAL_OK)
1810 {
1811 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
1812 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
1813 return HAL_ERROR;
1814 }
1815
1816 /* Change the FMAC state */
1817 hfmac->State = HAL_FMAC_STATE_READY;
1818 }
1819 else
1820 {
1821 hfmac->pInput = pConfig->pCoeffA;
1822 hfmac->InputCurrentSize = pConfig->CoeffASize;
1823
1824 /* Set the FMAC DMA transfer complete callback */
1825 hfmac->hdmaPreload->XferHalfCpltCallback = NULL;
1826 hfmac->hdmaPreload->XferCpltCallback = FMAC_DMAFilterConfig;
1827 /* Set the DMA error callback */
1828 hfmac->hdmaPreload->XferErrorCallback = FMAC_DMAError;
1829
1830 /* Enable the DMA stream managing FMAC preload data write */
1831 return (HAL_DMA_Start_IT(hfmac->hdmaPreload, (uint32_t)pConfig->pCoeffB, (uint32_t)&hfmac->Instance->WDATA,
1832 pConfig->CoeffBSize));
1833 }
1834 }
1835 else
1836 {
1837 /* Change the FMAC state */
1838 hfmac->State = HAL_FMAC_STATE_READY;
1839 }
1840
1841 return HAL_OK;
1842 }
1843
1844 /**
1845 * @brief Preload the input (FIR, IIR) and output data (IIR) of the FMAC filter.
1846 * @note The set(s) of data will be used by FMAC as soon as @ref HAL_FMAC_FilterStart is called.
1847 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
1848 * the configuration information for FMAC module.
1849 * @param pInput Preloading of the first elements of the input buffer (X1).
1850 * If not needed (no data available when starting), it should be set to NULL.
1851 * @param InputSize Size of the input vector.
1852 * As pInput is used for preloading data, it cannot be bigger than the input memory area.
1853 * @param pOutput [IIR] Preloading of the first elements of the output vector (Y).
1854 * If not needed, it should be set to NULL.
1855 * @param OutputSize Size of the output vector.
1856 * As pOutput is used for preloading data, it cannot be bigger than the output memory area.
1857 * @param PreloadAccess access mode used for the preload (polling or DMA).
1858 * @note The input and the output buffers can be filled by calling several times @ref HAL_FMAC_FilterPreload
1859 * (each call filling partly the buffers). In case of overflow (too much data provided through
1860 * all these calls), an error will be returned.
1861 * @retval HAL_StatusTypeDef HAL status
1862 */
FMAC_FilterPreload(FMAC_HandleTypeDef * hfmac,int16_t * pInput,uint8_t InputSize,int16_t * pOutput,uint8_t OutputSize,uint8_t PreloadAccess)1863 static HAL_StatusTypeDef FMAC_FilterPreload(FMAC_HandleTypeDef *hfmac, int16_t *pInput, uint8_t InputSize,
1864 int16_t *pOutput, uint8_t OutputSize, uint8_t PreloadAccess)
1865 {
1866 uint32_t tickstart;
1867 HAL_StatusTypeDef status;
1868
1869 /* Check the START bit state */
1870 if (FMAC_GET_START_BIT(hfmac) != 0U)
1871 {
1872 return HAL_ERROR;
1873 }
1874
1875 /* Check that a valid configuration was done previously */
1876 if (hfmac->FilterParam == 0U)
1877 {
1878 return HAL_ERROR;
1879 }
1880
1881 /* Check the preload input buffers isn't too big */
1882 if ((InputSize > FMAC_GET_X1_SIZE(hfmac)) && (pInput != NULL))
1883 {
1884 return HAL_ERROR;
1885 }
1886
1887 /* Check the preload output buffer isn't too big */
1888 if ((OutputSize > FMAC_GET_Y_SIZE(hfmac)) && (pOutput != NULL))
1889 {
1890 return HAL_ERROR;
1891 }
1892
1893 /* Check handle state is ready */
1894 if (hfmac->State != HAL_FMAC_STATE_READY)
1895 {
1896 return HAL_ERROR;
1897 }
1898
1899 /* Change the FMAC state */
1900 hfmac->State = HAL_FMAC_STATE_BUSY;
1901
1902 /* Get tick */
1903 tickstart = HAL_GetTick();
1904
1905 /* Preload the input buffer if required */
1906 if ((pInput != NULL) && (InputSize != 0U))
1907 {
1908 /* Write number of values to be loaded, the data load function and start the operation */
1909 WRITE_REG(hfmac->Instance->PARAM, \
1910 (((uint32_t)InputSize << FMAC_PARAM_P_Pos) | FMAC_FUNC_LOAD_X1 | FMAC_PARAM_START));
1911
1912 if (PreloadAccess == PRELOAD_ACCESS_POLLING)
1913 {
1914 /* Load the buffer into the internal memory */
1915 FMAC_WritePreloadDataIncrementPtr(hfmac, &pInput, InputSize);
1916
1917 /* Wait for the end of the writing */
1918 if (FMAC_WaitOnStartUntilTimeout(hfmac, tickstart, HAL_FMAC_TIMEOUT_VALUE) != HAL_OK)
1919 {
1920 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
1921 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
1922 return HAL_ERROR;
1923 }
1924 }
1925 else
1926 {
1927 hfmac->pInput = pOutput;
1928 hfmac->InputCurrentSize = OutputSize;
1929
1930 /* Set the FMAC DMA transfer complete callback */
1931 hfmac->hdmaPreload->XferHalfCpltCallback = NULL;
1932 hfmac->hdmaPreload->XferCpltCallback = FMAC_DMAFilterPreload;
1933 /* Set the DMA error callback */
1934 hfmac->hdmaPreload->XferErrorCallback = FMAC_DMAError;
1935
1936 /* Enable the DMA stream managing FMAC preload data write */
1937 return (HAL_DMA_Start_IT(hfmac->hdmaPreload, (uint32_t)pInput, (uint32_t)&hfmac->Instance->WDATA, InputSize));
1938 }
1939 }
1940
1941 /* Preload the output buffer if required */
1942 if ((pOutput != NULL) && (OutputSize != 0U))
1943 {
1944 /* Write number of values to be loaded, the data load function and start the operation */
1945 WRITE_REG(hfmac->Instance->PARAM, \
1946 (((uint32_t)OutputSize << FMAC_PARAM_P_Pos) | FMAC_FUNC_LOAD_Y | FMAC_PARAM_START));
1947
1948 if (PreloadAccess == PRELOAD_ACCESS_POLLING)
1949 {
1950 /* Load the buffer into the internal memory */
1951 FMAC_WritePreloadDataIncrementPtr(hfmac, &pOutput, OutputSize);
1952
1953 /* Wait for the end of the writing */
1954 if (FMAC_WaitOnStartUntilTimeout(hfmac, tickstart, HAL_FMAC_TIMEOUT_VALUE) != HAL_OK)
1955 {
1956 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
1957 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
1958 return HAL_ERROR;
1959 }
1960 }
1961 else
1962 {
1963 hfmac->pInput = NULL;
1964 hfmac->InputCurrentSize = 0U;
1965
1966 /* Set the FMAC DMA transfer complete callback */
1967 hfmac->hdmaPreload->XferHalfCpltCallback = NULL;
1968 hfmac->hdmaPreload->XferCpltCallback = FMAC_DMAFilterPreload;
1969 /* Set the DMA error callback */
1970 hfmac->hdmaPreload->XferErrorCallback = FMAC_DMAError;
1971
1972 /* Enable the DMA stream managing FMAC preload data write */
1973 return (HAL_DMA_Start_IT(hfmac->hdmaPreload, (uint32_t)pOutput, (uint32_t)&hfmac->Instance->WDATA, OutputSize));
1974 }
1975 }
1976
1977 /* Update the error codes */
1978 if (__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_OVFL))
1979 {
1980 hfmac->ErrorCode |= HAL_FMAC_ERROR_OVFL;
1981 }
1982 if (__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_UNFL))
1983 {
1984 hfmac->ErrorCode |= HAL_FMAC_ERROR_UNFL;
1985 }
1986 if (__HAL_FMAC_GET_FLAG(hfmac, FMAC_FLAG_SAT))
1987 {
1988 hfmac->ErrorCode |= HAL_FMAC_ERROR_SAT;
1989 }
1990
1991 /* Change the FMAC state */
1992 hfmac->State = HAL_FMAC_STATE_READY;
1993
1994 /* Return function status */
1995 if (hfmac->ErrorCode == HAL_FMAC_ERROR_NONE)
1996 {
1997 status = HAL_OK;
1998 }
1999 else
2000 {
2001 status = HAL_ERROR;
2002 }
2003 return status;
2004 }
2005
2006 /**
2007 * @brief Write data into FMAC internal memory through WDATA and increment input buffer pointer.
2008 * @note This function is only used with preload functions.
2009 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
2010 * the configuration information for FMAC module.
2011 * @param ppData pointer to pointer to the data buffer.
2012 * @param Size size of the data buffer.
2013 * @retval None
2014 */
FMAC_WritePreloadDataIncrementPtr(FMAC_HandleTypeDef * hfmac,int16_t ** ppData,uint8_t Size)2015 static void FMAC_WritePreloadDataIncrementPtr(FMAC_HandleTypeDef *hfmac, int16_t **ppData, uint8_t Size)
2016 {
2017 uint8_t index;
2018
2019 /* Load the buffer into the internal memory */
2020 for (index = Size; index > 0U; index--)
2021 {
2022 WRITE_REG(hfmac->Instance->WDATA, (((uint32_t)(*(*ppData))) & FMAC_WDATA_WDATA));
2023 (*ppData)++;
2024 }
2025 }
2026
2027 /**
2028 * @brief Handle FMAC Function Timeout.
2029 * @param hfmac FMAC handle.
2030 * @param Tickstart Tick start value.
2031 * @param Timeout Timeout duration.
2032 * @retval HAL_StatusTypeDef HAL status
2033 */
FMAC_WaitOnStartUntilTimeout(FMAC_HandleTypeDef * hfmac,uint32_t Tickstart,uint32_t Timeout)2034 static HAL_StatusTypeDef FMAC_WaitOnStartUntilTimeout(FMAC_HandleTypeDef *hfmac, uint32_t Tickstart, uint32_t Timeout)
2035 {
2036 /* Wait until flag changes */
2037 while (READ_BIT(hfmac->Instance->PARAM, FMAC_PARAM_START) != 0U)
2038 {
2039 if ((HAL_GetTick() - Tickstart) > Timeout)
2040 {
2041 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
2042
2043 return HAL_ERROR;
2044 }
2045 }
2046 return HAL_OK;
2047 }
2048
2049 /**
2050 * @brief Register the new input buffer, update DMA configuration if needed and change the FMAC state.
2051 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
2052 * the configuration information for FMAC module.
2053 * @param pInput New input vector (additional input data).
2054 * @param pInputSize Size of the input vector (if all the data can't be
2055 * written, it will be updated with the number of data read from FMAC).
2056 * @retval HAL_StatusTypeDef HAL status
2057 */
FMAC_AppendFilterDataUpdateState(FMAC_HandleTypeDef * hfmac,int16_t * pInput,uint16_t * pInputSize)2058 static HAL_StatusTypeDef FMAC_AppendFilterDataUpdateState(FMAC_HandleTypeDef *hfmac, int16_t *pInput,
2059 uint16_t *pInputSize)
2060 {
2061 /* Change the FMAC state */
2062 hfmac->WrState = HAL_FMAC_STATE_BUSY_WR;
2063
2064 /* Reset the current size */
2065 hfmac->InputCurrentSize = 0U;
2066
2067 /* Handle the pointer depending on the input access */
2068 if (hfmac->InputAccess == FMAC_BUFFER_ACCESS_DMA)
2069 {
2070 hfmac->pInput = NULL;
2071 hfmac->pInputSize = NULL;
2072
2073 /* Set the FMAC DMA transfer complete callback */
2074 hfmac->hdmaIn->XferHalfCpltCallback = FMAC_DMAHalfGetData;
2075 hfmac->hdmaIn->XferCpltCallback = FMAC_DMAGetData;
2076 /* Set the DMA error callback */
2077 hfmac->hdmaIn->XferErrorCallback = FMAC_DMAError;
2078
2079 /* Enable the DMA stream managing FMAC input data write */
2080 return (HAL_DMA_Start_IT(hfmac->hdmaIn, (uint32_t)pInput, (uint32_t)&hfmac->Instance->WDATA, *pInputSize));
2081 }
2082 else
2083 {
2084 /* Update the input data information (polling, IT) */
2085 hfmac->pInput = pInput;
2086 hfmac->pInputSize = pInputSize;
2087 }
2088
2089 return HAL_OK;
2090 }
2091
2092 /**
2093 * @brief Register the new output buffer, update DMA configuration if needed and change the FMAC state.
2094 * @param hfmac pointer to a FMAC_HandleTypeDef structure that contains
2095 * the configuration information for FMAC module.
2096 * @param pOutput New output vector.
2097 * @param pOutputSize Size of the output vector (if the vector can't
2098 * be entirely filled, pOutputSize will be updated with the number
2099 * of data read from FMAC).
2100 * @retval HAL_StatusTypeDef HAL status
2101 */
FMAC_ConfigFilterOutputBufferUpdateState(FMAC_HandleTypeDef * hfmac,int16_t * pOutput,uint16_t * pOutputSize)2102 static HAL_StatusTypeDef FMAC_ConfigFilterOutputBufferUpdateState(FMAC_HandleTypeDef *hfmac, int16_t *pOutput,
2103 uint16_t *pOutputSize)
2104 {
2105 /* Reset the current size */
2106 hfmac->OutputCurrentSize = 0U;
2107
2108 /* Check whether a valid pointer was provided */
2109 if ((pOutput == NULL) || (pOutputSize == NULL) || (*pOutputSize == 0U))
2110 {
2111 /* The user will have to provide a valid configuration later */
2112 hfmac->pOutput = NULL;
2113 hfmac->pOutputSize = NULL;
2114 hfmac->RdState = HAL_FMAC_STATE_READY;
2115 }
2116 /* Handle the pointer depending on the input access */
2117 else if (hfmac->OutputAccess == FMAC_BUFFER_ACCESS_DMA)
2118 {
2119 hfmac->pOutput = NULL;
2120 hfmac->pOutputSize = NULL;
2121 hfmac->RdState = HAL_FMAC_STATE_BUSY_RD;
2122
2123 /* Set the FMAC DMA transfer complete callback */
2124 hfmac->hdmaOut->XferHalfCpltCallback = FMAC_DMAHalfOutputDataReady;
2125 hfmac->hdmaOut->XferCpltCallback = FMAC_DMAOutputDataReady;
2126 /* Set the DMA error callback */
2127 hfmac->hdmaOut->XferErrorCallback = FMAC_DMAError;
2128
2129 /* Enable the DMA stream managing FMAC output data read */
2130 return (HAL_DMA_Start_IT(hfmac->hdmaOut, (uint32_t)&hfmac->Instance->RDATA, (uint32_t)pOutput, *pOutputSize));
2131 }
2132 else if (hfmac->OutputAccess == FMAC_BUFFER_ACCESS_NONE)
2133 {
2134 hfmac->pOutput = NULL;
2135 hfmac->pOutputSize = NULL;
2136 hfmac->RdState = HAL_FMAC_STATE_READY;
2137 }
2138 else
2139 {
2140 /* Update the output data information (polling, IT) */
2141 hfmac->pOutput = pOutput;
2142 hfmac->pOutputSize = pOutputSize;
2143 hfmac->RdState = HAL_FMAC_STATE_BUSY_RD;
2144 }
2145
2146 return HAL_OK;
2147 }
2148
2149 /**
2150 * @brief Read available output data until Y EMPTY is set.
2151 * @param hfmac FMAC handle.
2152 * @param MaxSizeToRead Maximum number of data to read (this serves as a timeout
2153 * if FMAC continuously writes into the output buffer).
2154 * @retval None
2155 */
FMAC_ReadDataIncrementPtr(FMAC_HandleTypeDef * hfmac,uint16_t MaxSizeToRead)2156 static void FMAC_ReadDataIncrementPtr(FMAC_HandleTypeDef *hfmac, uint16_t MaxSizeToRead)
2157 {
2158 uint16_t maxsize;
2159 uint16_t threshold;
2160 uint32_t tmpvalue;
2161
2162 /* Check if there is data to read */
2163 if (READ_BIT(hfmac->Instance->SR, FMAC_SR_YEMPTY) != 0U)
2164 {
2165 return;
2166 }
2167
2168 /* Get the maximum index (no wait allowed, no overstepping of the output buffer) */
2169 if ((hfmac->OutputCurrentSize + MaxSizeToRead) > *(hfmac->pOutputSize))
2170 {
2171 maxsize = *(hfmac->pOutputSize);
2172 }
2173 else
2174 {
2175 maxsize = hfmac->OutputCurrentSize + MaxSizeToRead;
2176 }
2177
2178 /* Read until there is no more room or no more data */
2179 do
2180 {
2181 /* If there is no more room, return */
2182 if (!(hfmac->OutputCurrentSize < maxsize))
2183 {
2184 return;
2185 }
2186
2187 /* Read the available data */
2188 tmpvalue = ((READ_REG(hfmac->Instance->RDATA))& FMAC_RDATA_RDATA);
2189 *(hfmac->pOutput) = (int16_t)tmpvalue;
2190 hfmac->pOutput++;
2191 hfmac->OutputCurrentSize++;
2192 } while (READ_BIT(hfmac->Instance->SR, FMAC_SR_YEMPTY) == 0U);
2193
2194 /* Y buffer empty flag has just be raised, read the threshold */
2195 threshold = (uint16_t)FMAC_GET_THRESHOLD_FROM_WM(FMAC_GET_Y_EMPTY_WM(hfmac)) - 1U;
2196
2197 /* Update the maximum size if needed (limited data available) */
2198 if ((hfmac->OutputCurrentSize + threshold) < maxsize)
2199 {
2200 maxsize = hfmac->OutputCurrentSize + threshold;
2201 }
2202
2203 /* Read the available data */
2204 while (hfmac->OutputCurrentSize < maxsize)
2205 {
2206 tmpvalue = ((READ_REG(hfmac->Instance->RDATA))& FMAC_RDATA_RDATA);
2207 *(hfmac->pOutput) = (int16_t)tmpvalue;
2208 hfmac->pOutput++;
2209 hfmac->OutputCurrentSize++;
2210 }
2211 }
2212
2213 /**
2214 * @brief Write available input data until X1 FULL is set.
2215 * @param hfmac FMAC handle.
2216 * @param MaxSizeToWrite Maximum number of data to write (this serves as a timeout
2217 * if FMAC continuously empties the input buffer).
2218 * @retval None
2219 */
FMAC_WriteDataIncrementPtr(FMAC_HandleTypeDef * hfmac,uint16_t MaxSizeToWrite)2220 static void FMAC_WriteDataIncrementPtr(FMAC_HandleTypeDef *hfmac, uint16_t MaxSizeToWrite)
2221 {
2222 uint16_t maxsize;
2223 uint16_t threshold;
2224
2225 /* Check if there is room in FMAC */
2226 if (READ_BIT(hfmac->Instance->SR, FMAC_SR_X1FULL) != 0U)
2227 {
2228 return;
2229 }
2230
2231 /* Get the maximum index (no wait allowed, no overstepping of the output buffer) */
2232 if ((hfmac->InputCurrentSize + MaxSizeToWrite) > *(hfmac->pInputSize))
2233 {
2234 maxsize = *(hfmac->pInputSize);
2235 }
2236 else
2237 {
2238 maxsize = hfmac->InputCurrentSize + MaxSizeToWrite;
2239 }
2240
2241 /* Write until there is no more room or no more data */
2242 do
2243 {
2244 /* If there is no more room, return */
2245 if (!(hfmac->InputCurrentSize < maxsize))
2246 {
2247 return;
2248 }
2249
2250 /* Write the available data */
2251 WRITE_REG(hfmac->Instance->WDATA, (((uint32_t)(*(hfmac->pInput))) & FMAC_WDATA_WDATA));
2252 hfmac->pInput++;
2253 hfmac->InputCurrentSize++;
2254 } while (READ_BIT(hfmac->Instance->SR, FMAC_SR_X1FULL) == 0U);
2255
2256 /* X1 buffer full flag has just be raised, read the threshold */
2257 threshold = (uint16_t)FMAC_GET_THRESHOLD_FROM_WM(FMAC_GET_X1_FULL_WM(hfmac)) - 1U;
2258
2259 /* Update the maximum size if needed (limited data available) */
2260 if ((hfmac->InputCurrentSize + threshold) < maxsize)
2261 {
2262 maxsize = hfmac->InputCurrentSize + threshold;
2263 }
2264
2265 /* Write the available data */
2266 while (hfmac->InputCurrentSize < maxsize)
2267 {
2268 WRITE_REG(hfmac->Instance->WDATA, (((uint32_t)(*(hfmac->pInput))) & FMAC_WDATA_WDATA));
2269 hfmac->pInput++;
2270 hfmac->InputCurrentSize++;
2271 }
2272 }
2273
2274 /**
2275 * @brief DMA FMAC Input Data process half complete callback.
2276 * @param hdma DMA handle.
2277 * @retval None
2278 */
FMAC_DMAHalfGetData(DMA_HandleTypeDef * hdma)2279 static void FMAC_DMAHalfGetData(DMA_HandleTypeDef *hdma)
2280 {
2281 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2282
2283 /* Call half get data callback */
2284 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2285 hfmac->HalfGetDataCallback(hfmac);
2286 #else
2287 HAL_FMAC_HalfGetDataCallback(hfmac);
2288 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2289 }
2290
2291 /**
2292 * @brief DMA FMAC Input Data process complete callback.
2293 * @param hdma DMA handle.
2294 * @retval None
2295 */
FMAC_DMAGetData(DMA_HandleTypeDef * hdma)2296 static void FMAC_DMAGetData(DMA_HandleTypeDef *hdma)
2297 {
2298 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2299
2300 /* Reset the pointers to indicate new data will be needed */
2301 FMAC_ResetInputStateAndDataPointers(hfmac);
2302
2303 /* Call get data callback */
2304 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2305 hfmac->GetDataCallback(hfmac);
2306 #else
2307 HAL_FMAC_GetDataCallback(hfmac);
2308 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2309 }
2310
2311 /**
2312 * @brief DMA FMAC Output Data process half complete callback.
2313 * @param hdma DMA handle.
2314 * @retval None
2315 */
FMAC_DMAHalfOutputDataReady(DMA_HandleTypeDef * hdma)2316 static void FMAC_DMAHalfOutputDataReady(DMA_HandleTypeDef *hdma)
2317 {
2318 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2319
2320 /* Call half output data ready callback */
2321 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2322 hfmac->HalfOutputDataReadyCallback(hfmac);
2323 #else
2324 HAL_FMAC_HalfOutputDataReadyCallback(hfmac);
2325 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2326 }
2327
2328 /**
2329 * @brief DMA FMAC Output Data process complete callback.
2330 * @param hdma DMA handle.
2331 * @retval None
2332 */
FMAC_DMAOutputDataReady(DMA_HandleTypeDef * hdma)2333 static void FMAC_DMAOutputDataReady(DMA_HandleTypeDef *hdma)
2334 {
2335 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2336
2337 /* Reset the pointers to indicate new data will be needed */
2338 FMAC_ResetOutputStateAndDataPointers(hfmac);
2339
2340 /* Call output data ready callback */
2341 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2342 hfmac->OutputDataReadyCallback(hfmac);
2343 #else
2344 HAL_FMAC_OutputDataReadyCallback(hfmac);
2345 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2346 }
2347
2348 /**
2349 * @brief DMA FMAC Filter Configuration process complete callback.
2350 * @param hdma DMA handle.
2351 * @retval None
2352 */
FMAC_DMAFilterConfig(DMA_HandleTypeDef * hdma)2353 static void FMAC_DMAFilterConfig(DMA_HandleTypeDef *hdma)
2354 {
2355 uint8_t index;
2356
2357 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2358
2359 /* If needed, write CoeffA and exit */
2360 if (hfmac->pInput != NULL)
2361 {
2362 /* Set the FMAC DMA transfer complete callback */
2363 hfmac->hdmaPreload->XferHalfCpltCallback = NULL;
2364 hfmac->hdmaPreload->XferCpltCallback = FMAC_DMAFilterConfig;
2365 /* Set the DMA error callback */
2366 hfmac->hdmaPreload->XferErrorCallback = FMAC_DMAError;
2367
2368 /* Enable the DMA stream managing FMAC preload data write */
2369 if (HAL_DMA_Start_IT(hfmac->hdmaPreload, (uint32_t)hfmac->pInput, (uint32_t)&hfmac->Instance->WDATA,
2370 hfmac->InputCurrentSize) == HAL_OK)
2371 {
2372 hfmac->pInput = NULL;
2373 hfmac->InputCurrentSize = 0U;
2374 return;
2375 }
2376
2377 /* If not exited, there was an error: set FMAC handle state to error */
2378 hfmac->State = HAL_FMAC_STATE_ERROR;
2379 }
2380 else
2381 {
2382 /* Wait for the end of the writing */
2383 for (index = 0U; index < MAX_PRELOAD_INDEX; index++)
2384 {
2385 if (READ_BIT(hfmac->Instance->PARAM, FMAC_PARAM_START) == 0U)
2386 {
2387 break;
2388 }
2389 }
2390
2391 /* If 'START' is still set, there was a timeout: set FMAC handle state to timeout */
2392 if (READ_BIT(hfmac->Instance->PARAM, FMAC_PARAM_START) != 0U)
2393 {
2394 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
2395 }
2396 else
2397 {
2398 /* Change the FMAC state */
2399 hfmac->State = HAL_FMAC_STATE_READY;
2400
2401 /* Call output data ready callback */
2402 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2403 hfmac->FilterConfigCallback(hfmac);
2404 #else
2405 HAL_FMAC_FilterConfigCallback(hfmac);
2406 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2407 return;
2408 }
2409 }
2410
2411 /* If not exited, there was an error: set FMAC handle error code to DMA error */
2412 hfmac->ErrorCode |= HAL_FMAC_ERROR_DMA;
2413
2414 /* Call user callback */
2415 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2416 hfmac->ErrorCallback(hfmac);
2417 #else
2418 HAL_FMAC_ErrorCallback(hfmac);
2419 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2420 }
2421
2422 /**
2423 * @brief DMA FMAC Filter Configuration process complete callback.
2424 * @param hdma DMA handle.
2425 * @retval None
2426 */
FMAC_DMAFilterPreload(DMA_HandleTypeDef * hdma)2427 static void FMAC_DMAFilterPreload(DMA_HandleTypeDef *hdma)
2428 {
2429 uint8_t index;
2430
2431 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2432
2433 /* Wait for the end of the X1 writing */
2434 for (index = 0U; index < MAX_PRELOAD_INDEX; index++)
2435 {
2436 if (READ_BIT(hfmac->Instance->PARAM, FMAC_PARAM_START) == 0U)
2437 {
2438 break;
2439 }
2440 }
2441
2442 /* If 'START' is still set, there was an error: set FMAC handle state to error */
2443 if (READ_BIT(hfmac->Instance->PARAM, FMAC_PARAM_START) != 0U)
2444 {
2445 hfmac->State = HAL_FMAC_STATE_TIMEOUT;
2446 hfmac->ErrorCode |= HAL_FMAC_ERROR_TIMEOUT;
2447 }
2448 /* If needed, preload Y buffer */
2449 else if ((hfmac->pInput != NULL) && (hfmac->InputCurrentSize != 0U))
2450 {
2451 /* Write number of values to be loaded, the data load function and start the operation */
2452 WRITE_REG(hfmac->Instance->PARAM, \
2453 (((uint32_t)(hfmac->InputCurrentSize) << FMAC_PARAM_P_Pos) | FMAC_FUNC_LOAD_Y | FMAC_PARAM_START));
2454
2455 /* Set the FMAC DMA transfer complete callback */
2456 hfmac->hdmaPreload->XferHalfCpltCallback = NULL;
2457 hfmac->hdmaPreload->XferCpltCallback = FMAC_DMAFilterPreload;
2458 /* Set the DMA error callback */
2459 hfmac->hdmaPreload->XferErrorCallback = FMAC_DMAError;
2460
2461 /* Enable the DMA stream managing FMAC preload data write */
2462 if (HAL_DMA_Start_IT(hfmac->hdmaPreload, (uint32_t)hfmac->pInput, (uint32_t)&hfmac->Instance->WDATA,
2463 hfmac->InputCurrentSize) == HAL_OK)
2464 {
2465 hfmac->pInput = NULL;
2466 hfmac->InputCurrentSize = 0U;
2467 return;
2468 }
2469
2470 /* If not exited, there was an error */
2471 hfmac->ErrorCode = HAL_FMAC_ERROR_DMA;
2472 hfmac->State = HAL_FMAC_STATE_ERROR;
2473 }
2474 else
2475 {
2476 /* nothing to do */
2477 }
2478
2479 if (hfmac->ErrorCode == HAL_FMAC_ERROR_NONE)
2480 {
2481 /* Change the FMAC state */
2482 hfmac->State = HAL_FMAC_STATE_READY;
2483
2484 /* Call output data ready callback */
2485 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2486 hfmac->FilterPreloadCallback(hfmac);
2487 #else
2488 HAL_FMAC_FilterPreloadCallback(hfmac);
2489 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2490 }
2491 else
2492 {
2493 /* Call user callback */
2494 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2495 hfmac->ErrorCallback(hfmac);
2496 #else
2497 HAL_FMAC_ErrorCallback(hfmac);
2498 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2499 }
2500 }
2501
2502
2503 /**
2504 * @brief DMA FMAC communication error callback.
2505 * @param hdma DMA handle.
2506 * @retval None
2507 */
FMAC_DMAError(DMA_HandleTypeDef * hdma)2508 static void FMAC_DMAError(DMA_HandleTypeDef *hdma)
2509 {
2510 FMAC_HandleTypeDef *hfmac = (FMAC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
2511
2512 /* Set FMAC handle state to error */
2513 hfmac->State = HAL_FMAC_STATE_ERROR;
2514
2515 /* Set FMAC handle error code to DMA error */
2516 hfmac->ErrorCode |= HAL_FMAC_ERROR_DMA;
2517
2518 /* Call user callback */
2519 #if (USE_HAL_FMAC_REGISTER_CALLBACKS == 1)
2520 hfmac->ErrorCallback(hfmac);
2521 #else
2522 HAL_FMAC_ErrorCallback(hfmac);
2523 #endif /* USE_HAL_FMAC_REGISTER_CALLBACKS */
2524 }
2525
2526 /**
2527 * @}
2528 */
2529
2530 /**
2531 * @}
2532 */
2533
2534 /**
2535 * @}
2536 */
2537
2538 #endif /* HAL_FMAC_MODULE_ENABLED */
2539 #endif /* FMAC */
2540