1 /**
2   ******************************************************************************
3   * @file    stm32h7xx_hal.c
4   * @author  MCD Application Team
5   * @brief   HAL module driver.
6   *          This is the common part of the HAL initialization
7   *
8   ******************************************************************************
9   * @attention
10   *
11   * Copyright (c) 2017 STMicroelectronics.
12   * All rights reserved.
13   *
14   * This software is licensed under terms that can be found in the LICENSE file
15   * in the root directory of this software component.
16   * If no LICENSE file comes with this software, it is provided AS-IS.
17   *
18   ******************************************************************************
19   @verbatim
20   ==============================================================================
21                      ##### How to use this driver #####
22   ==============================================================================
23     [..]
24     The common HAL driver contains a set of generic and common APIs that can be
25     used by the PPP peripheral drivers and the user to start using the HAL.
26     [..]
27     The HAL contains two APIs' categories:
28          (+) Common HAL APIs
29          (+) Services HAL APIs
30 
31   @endverbatim
32   ******************************************************************************
33   */
34 
35 /* Includes ------------------------------------------------------------------*/
36 #include "stm32h7xx_hal.h"
37 
38 /** @addtogroup STM32H7xx_HAL_Driver
39   * @{
40   */
41 
42 /** @defgroup HAL  HAL
43   * @brief HAL module driver.
44   * @{
45   */
46 
47 /* Private typedef -----------------------------------------------------------*/
48 /* Private define ------------------------------------------------------------*/
49 /**
50  * @brief STM32H7xx HAL Driver version number
51    */
52 #define __STM32H7xx_HAL_VERSION_MAIN   (0x01UL) /*!< [31:24] main version */
53 #define __STM32H7xx_HAL_VERSION_SUB1   (0x0BUL) /*!< [23:16] sub1 version */
54 #define __STM32H7xx_HAL_VERSION_SUB2   (0x04UL) /*!< [15:8]  sub2 version */
55 #define __STM32H7xx_HAL_VERSION_RC     (0x00UL) /*!< [7:0]  release candidate */
56 #define __STM32H7xx_HAL_VERSION         ((__STM32H7xx_HAL_VERSION_MAIN << 24)\
57                                         |(__STM32H7xx_HAL_VERSION_SUB1 << 16)\
58                                         |(__STM32H7xx_HAL_VERSION_SUB2 << 8 )\
59                                         |(__STM32H7xx_HAL_VERSION_RC))
60 
61 #define IDCODE_DEVID_MASK    ((uint32_t)0x00000FFF)
62 #define VREFBUF_TIMEOUT_VALUE     (uint32_t)10   /* 10 ms  */
63 
64 /* Private macro -------------------------------------------------------------*/
65 /* Private variables ---------------------------------------------------------*/
66 /* Exported variables --------------------------------------------------------*/
67 
68 /** @defgroup HAL_Exported_Variables HAL Exported Variables
69   * @{
70   */
71 __IO uint32_t uwTick;
72 uint32_t uwTickPrio   = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
73 HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT;  /* 1KHz */
74 /**
75   * @}
76   */
77 
78 /* Private function prototypes -----------------------------------------------*/
79 /* Private functions ---------------------------------------------------------*/
80 
81 /** @addtogroup HAL_Exported_Functions
82   * @{
83   */
84 
85 /** @addtogroup HAL_Group1
86  *  @brief    Initialization and de-initialization functions
87  *
88 @verbatim
89  ===============================================================================
90               ##### Initialization and de-initialization functions #####
91  ===============================================================================
92     [..]  This section provides functions allowing to:
93       (+) Initializes the Flash interface the NVIC allocation and initial clock
94           configuration. It initializes the systick also when timeout is needed
95           and the backup domain when enabled.
96       (+) De-Initializes common part of the HAL.
97       (+) Configure The time base source to have 1ms time base with a dedicated
98           Tick interrupt priority.
99         (++) SysTick timer is used by default as source of time base, but user
100              can eventually implement his proper time base source (a general purpose
101              timer for example or other time source), keeping in mind that Time base
102              duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
103              handled in milliseconds basis.
104         (++) Time base configuration function (HAL_InitTick ()) is called automatically
105              at the beginning of the program after reset by HAL_Init() or at any time
106              when clock is configured, by HAL_RCC_ClockConfig().
107         (++) Source of time base is configured  to generate interrupts at regular
108              time intervals. Care must be taken if HAL_Delay() is called from a
109              peripheral ISR process, the Tick interrupt line must have higher priority
110             (numerically lower) than the peripheral interrupt. Otherwise the caller
111             ISR process will be blocked.
112        (++) functions affecting time base configurations are declared as __weak
113              to make  override possible  in case of other  implementations in user file.
114 @endverbatim
115   * @{
116   */
117 
118 /**
119   * @brief  This function is used to initialize the HAL Library; it must be the first
120   *         instruction to be executed in the main program (before to call any other
121   *         HAL function), it performs the following:
122   *           Configures the SysTick to generate an interrupt each 1 millisecond,
123   *           which is clocked by the HSI (at this stage, the clock is not yet
124   *           configured and thus the system is running from the internal HSI at 16 MHz).
125   *           Set NVIC Group Priority to 4.
126   *           Calls the HAL_MspInit() callback function defined in user file
127   *           "stm32h7xx_hal_msp.c" to do the global low level hardware initialization
128   *
129   * @note   SysTick is used as time base for the HAL_Delay() function, the application
130   *         need to ensure that the SysTick time base is always set to 1 millisecond
131   *         to have correct HAL operation.
132   * @retval HAL status
133   */
HAL_Init(void)134 HAL_StatusTypeDef HAL_Init(void)
135 {
136 
137 uint32_t common_system_clock;
138 
139 #if defined(DUAL_CORE) && defined(CORE_CM4)
140    /* Configure Cortex-M4 Instruction cache through ART accelerator */
141    __HAL_RCC_ART_CLK_ENABLE();                   /* Enable the Cortex-M4 ART Clock */
142    __HAL_ART_CONFIG_BASE_ADDRESS(0x08100000UL);  /* Configure the Cortex-M4 ART Base address to the Flash Bank 2 : */
143    __HAL_ART_ENABLE();                           /* Enable the Cortex-M4 ART */
144 #endif /* DUAL_CORE &&  CORE_CM4 */
145 
146   /* Set Interrupt Group Priority */
147   HAL_NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
148 
149   /* Update the SystemCoreClock global variable */
150 #if defined(RCC_D1CFGR_D1CPRE)
151   common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_D1CPRE)>> RCC_D1CFGR_D1CPRE_Pos]) & 0x1FU);
152 #else
153   common_system_clock = HAL_RCC_GetSysClockFreq() >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_CDCPRE)>> RCC_CDCFGR1_CDCPRE_Pos]) & 0x1FU);
154 #endif
155 
156   /* Update the SystemD2Clock global variable */
157 #if defined(RCC_D1CFGR_HPRE)
158   SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->D1CFGR & RCC_D1CFGR_HPRE)>> RCC_D1CFGR_HPRE_Pos]) & 0x1FU));
159 #else
160   SystemD2Clock = (common_system_clock >> ((D1CorePrescTable[(RCC->CDCFGR1 & RCC_CDCFGR1_HPRE)>> RCC_CDCFGR1_HPRE_Pos]) & 0x1FU));
161 #endif
162 
163 #if defined(DUAL_CORE) && defined(CORE_CM4)
164   SystemCoreClock = SystemD2Clock;
165 #else
166   SystemCoreClock = common_system_clock;
167 #endif /* DUAL_CORE && CORE_CM4 */
168 
169   /* Use systick as time base source and configure 1ms tick (default clock after Reset is HSI) */
170   if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
171   {
172     return HAL_ERROR;
173   }
174 
175   /* Init the low level hardware */
176   HAL_MspInit();
177 
178   /* Return function status */
179   return HAL_OK;
180 }
181 
182 /**
183   * @brief  This function de-Initializes common part of the HAL and stops the systick.
184   *         This function is optional.
185   * @retval HAL status
186   */
HAL_DeInit(void)187 HAL_StatusTypeDef HAL_DeInit(void)
188 {
189   /* Reset of all peripherals */
190   __HAL_RCC_AHB3_FORCE_RESET();
191   __HAL_RCC_AHB3_RELEASE_RESET();
192 
193   __HAL_RCC_AHB1_FORCE_RESET();
194   __HAL_RCC_AHB1_RELEASE_RESET();
195 
196   __HAL_RCC_AHB2_FORCE_RESET();
197   __HAL_RCC_AHB2_RELEASE_RESET();
198 
199   __HAL_RCC_AHB4_FORCE_RESET();
200  __HAL_RCC_AHB4_RELEASE_RESET();
201 
202   __HAL_RCC_APB3_FORCE_RESET();
203   __HAL_RCC_APB3_RELEASE_RESET();
204 
205   __HAL_RCC_APB1L_FORCE_RESET();
206   __HAL_RCC_APB1L_RELEASE_RESET();
207 
208   __HAL_RCC_APB1H_FORCE_RESET();
209   __HAL_RCC_APB1H_RELEASE_RESET();
210 
211    __HAL_RCC_APB2_FORCE_RESET();
212    __HAL_RCC_APB2_RELEASE_RESET();
213 
214   __HAL_RCC_APB4_FORCE_RESET();
215   __HAL_RCC_APB4_RELEASE_RESET();
216 
217   /* De-Init the low level hardware */
218   HAL_MspDeInit();
219 
220   /* Return function status */
221   return HAL_OK;
222 }
223 
224 /**
225   * @brief  Initializes the MSP.
226   * @retval None
227   */
HAL_MspInit(void)228 __weak void HAL_MspInit(void)
229 {
230   /* NOTE : This function Should not be modified, when the callback is needed,
231             the HAL_MspInit could be implemented in the user file
232    */
233 }
234 
235 /**
236   * @brief  DeInitializes the MSP.
237   * @retval None
238   */
HAL_MspDeInit(void)239 __weak void HAL_MspDeInit(void)
240 {
241   /* NOTE : This function Should not be modified, when the callback is needed,
242             the HAL_MspDeInit could be implemented in the user file
243    */
244 }
245 
246 /**
247   * @brief This function configures the source of the time base.
248   *        The time source is configured  to have 1ms time base with a dedicated
249   *        Tick interrupt priority.
250   * @note This function is called  automatically at the beginning of program after
251   *       reset by HAL_Init() or at any time when clock is reconfigured  by HAL_RCC_ClockConfig().
252   * @note In the default implementation, SysTick timer is the source of time base.
253   *       It is used to generate interrupts at regular time intervals.
254   *       Care must be taken if HAL_Delay() is called from a peripheral ISR process,
255   *       the SysTick interrupt must have higher priority (numerically lower)
256   *       than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
257   *       The function is declared as __weak  to be overwritten  in case of other
258   *       implementation  in user file.
259   * @param TickPriority: Tick interrupt priority.
260   * @retval HAL status
261   */
HAL_InitTick(uint32_t TickPriority)262 __weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
263 {
264   /* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that don't take the value zero)*/
265   if((uint32_t)uwTickFreq == 0UL)
266   {
267     return HAL_ERROR;
268   }
269 
270     /* Configure the SysTick to have interrupt in 1ms time basis*/
271     if (HAL_SYSTICK_Config(SystemCoreClock / (1000UL / (uint32_t)uwTickFreq)) > 0U)
272     {
273       return HAL_ERROR;
274     }
275 
276   /* Configure the SysTick IRQ priority */
277   if (TickPriority < (1UL << __NVIC_PRIO_BITS))
278   {
279     HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
280     uwTickPrio = TickPriority;
281   }
282   else
283   {
284     return HAL_ERROR;
285   }
286 
287   /* Return function status */
288   return HAL_OK;
289 }
290 
291 /**
292   * @}
293   */
294 
295 /** @addtogroup HAL_Group2
296  *  @brief    HAL Control functions
297  *
298 @verbatim
299  ===============================================================================
300                       ##### HAL Control functions #####
301  ===============================================================================
302     [..]  This section provides functions allowing to:
303       (+) Provide a tick value in millisecond
304       (+) Provide a blocking delay in millisecond
305       (+) Suspend the time base source interrupt
306       (+) Resume the time base source interrupt
307       (+) Get the HAL API driver version
308       (+) Get the device identifier
309       (+) Get the device revision identifier
310       (+) Enable/Disable Debug module during SLEEP mode
311       (+) Enable/Disable Debug module during STOP mode
312       (+) Enable/Disable Debug module during STANDBY mode
313 
314 @endverbatim
315   * @{
316   */
317 
318 /**
319   * @brief This function is called to increment  a global variable "uwTick"
320   *        used as application time base.
321   * @note In the default implementation, this variable is incremented each 1ms
322   *       in Systick ISR.
323  * @note This function is declared as __weak to be overwritten in case of other
324   *      implementations in user file.
325   * @retval None
326   */
HAL_IncTick(void)327 __weak void HAL_IncTick(void)
328 {
329   uwTick += (uint32_t)uwTickFreq;
330 }
331 
332 /**
333   * @brief Provides a tick value in millisecond.
334   * @note This function is declared as __weak to be overwritten in case of other
335   *       implementations in user file.
336   * @retval tick value
337   */
HAL_GetTick(void)338 __weak uint32_t HAL_GetTick(void)
339 {
340   return uwTick;
341 }
342 
343 /**
344   * @brief This function returns a tick priority.
345   * @retval tick priority
346   */
HAL_GetTickPrio(void)347 uint32_t HAL_GetTickPrio(void)
348 {
349   return uwTickPrio;
350 }
351 
352 /**
353   * @brief Set new tick Freq.
354   * @retval Status
355   */
HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)356 HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
357 {
358   HAL_StatusTypeDef status  = HAL_OK;
359   HAL_TickFreqTypeDef prevTickFreq;
360 
361   assert_param(IS_TICKFREQ(Freq));
362 
363   if (uwTickFreq != Freq)
364   {
365 
366     /* Back up uwTickFreq frequency */
367     prevTickFreq = uwTickFreq;
368 
369     /* Update uwTickFreq global variable used by HAL_InitTick() */
370     uwTickFreq = Freq;
371 
372     /* Apply the new tick Freq  */
373     status = HAL_InitTick(uwTickPrio);
374     if (status != HAL_OK)
375     {
376       /* Restore previous tick frequency */
377       uwTickFreq = prevTickFreq;
378     }
379   }
380 
381   return status;
382 }
383 
384 /**
385   * @brief Return tick frequency.
386   * @retval Tick frequency.
387   *         Value of @ref HAL_TickFreqTypeDef.
388   */
HAL_GetTickFreq(void)389 HAL_TickFreqTypeDef HAL_GetTickFreq(void)
390 {
391   return uwTickFreq;
392 }
393 
394 /**
395   * @brief This function provides minimum delay (in milliseconds) based
396   *        on variable incremented.
397   * @note In the default implementation , SysTick timer is the source of time base.
398   *       It is used to generate interrupts at regular time intervals where uwTick
399   *       is incremented.
400   * @note This function is declared as __weak to be overwritten in case of other
401   *       implementations in user file.
402   * @param Delay  specifies the delay time length, in milliseconds.
403   * @retval None
404   */
HAL_Delay(uint32_t Delay)405 __weak void HAL_Delay(uint32_t Delay)
406 {
407   uint32_t tickstart = HAL_GetTick();
408   uint32_t wait = Delay;
409 
410   /* Add a freq to guarantee minimum wait */
411   if (wait < HAL_MAX_DELAY)
412   {
413     wait += (uint32_t)(uwTickFreq);
414   }
415 
416   while ((HAL_GetTick() - tickstart) < wait)
417   {
418   }
419 }
420 
421 /**
422   * @brief Suspend Tick increment.
423   * @note In the default implementation , SysTick timer is the source of time base. It is
424   *       used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
425   *       is called, the SysTick interrupt will be disabled and so Tick increment
426   *       is suspended.
427   * @note This function is declared as __weak to be overwritten in case of other
428   *       implementations in user file.
429   * @retval None
430   */
HAL_SuspendTick(void)431 __weak void HAL_SuspendTick(void)
432 {
433   /* Disable SysTick Interrupt */
434   SysTick->CTRL &= ~SysTick_CTRL_TICKINT_Msk;
435 }
436 
437 /**
438   * @brief Resume Tick increment.
439   * @note In the default implementation , SysTick timer is the source of time base. It is
440   *       used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
441   *       is called, the SysTick interrupt will be enabled and so Tick increment
442   *       is resumed.
443   * @note This function is declared as __weak to be overwritten in case of other
444   *       implementations in user file.
445   * @retval None
446   */
HAL_ResumeTick(void)447 __weak void HAL_ResumeTick(void)
448 {
449   /* Enable SysTick Interrupt */
450   SysTick->CTRL  |= SysTick_CTRL_TICKINT_Msk;
451 }
452 
453 /**
454   * @brief  Returns the HAL revision
455   * @retval version : 0xXYZR (8bits for each decimal, R for RC)
456   */
HAL_GetHalVersion(void)457 uint32_t HAL_GetHalVersion(void)
458 {
459  return __STM32H7xx_HAL_VERSION;
460 }
461 
462 /**
463   * @brief  Returns the device revision identifier.
464   * @retval Device revision identifier
465   */
HAL_GetREVID(void)466 uint32_t HAL_GetREVID(void)
467 {
468    return((DBGMCU->IDCODE) >> 16);
469 }
470 
471 /**
472   * @brief  Returns the device identifier.
473   * @retval Device identifier
474   */
HAL_GetDEVID(void)475 uint32_t HAL_GetDEVID(void)
476 {
477    return((DBGMCU->IDCODE) & IDCODE_DEVID_MASK);
478 }
479 
480 /**
481   * @brief  Return the first word of the unique device identifier (UID based on 96 bits)
482   * @retval Device identifier
483   */
HAL_GetUIDw0(void)484 uint32_t HAL_GetUIDw0(void)
485 {
486   return(READ_REG(*((uint32_t *)UID_BASE)));
487 }
488 
489 /**
490   * @brief  Return the second word of the unique device identifier (UID based on 96 bits)
491   * @retval Device identifier
492   */
HAL_GetUIDw1(void)493 uint32_t HAL_GetUIDw1(void)
494 {
495   return(READ_REG(*((uint32_t *)(UID_BASE + 4U))));
496 }
497 
498 /**
499   * @brief  Return the third word of the unique device identifier (UID based on 96 bits)
500   * @retval Device identifier
501   */
HAL_GetUIDw2(void)502 uint32_t HAL_GetUIDw2(void)
503 {
504   return(READ_REG(*((uint32_t *)(UID_BASE + 8U))));
505 }
506 
507 /**
508   * @brief Configure the internal voltage reference buffer voltage scale.
509   * @param VoltageScaling  specifies the output voltage to achieve
510   *          This parameter can be one of the following values:
511   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE0: VREF_OUT1 around 2.5 V.
512   *                                                This requires VDDA equal to or higher than 2.8 V.
513   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE1: VREF_OUT2 around 2.048 V.
514   *                                                This requires VDDA equal to or higher than 2.4 V.
515   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE2: VREF_OUT3 around 1.8 V.
516   *                                                This requires VDDA equal to or higher than 2.1 V.
517   *            @arg SYSCFG_VREFBUF_VOLTAGE_SCALE3: VREF_OUT4 around 1.5 V.
518   *                                                This requires VDDA equal to or higher than 1.8 V.
519   * @retval None
520   */
HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)521 void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
522 {
523   /* Check the parameters */
524   assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
525 
526   MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
527 }
528 
529 /**
530   * @brief Configure the internal voltage reference buffer high impedance mode.
531   * @param Mode  specifies the high impedance mode
532   *          This parameter can be one of the following values:
533   *            @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_DISABLE: VREF+ pin is internally connect to VREFINT output.
534   *            @arg SYSCFG_VREFBUF_HIGH_IMPEDANCE_ENABLE: VREF+ pin is high impedance.
535   * @retval None
536   */
HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)537 void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
538 {
539   /* Check the parameters */
540   assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
541 
542   MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
543 }
544 
545 /**
546   * @brief  Tune the Internal Voltage Reference buffer (VREFBUF).
547   * @retval None
548   */
HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)549 void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
550 {
551   /* Check the parameters */
552   assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
553 
554   MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
555 }
556 
557 /**
558   * @brief  Enable the Internal Voltage Reference buffer (VREFBUF).
559   * @retval HAL_OK/HAL_TIMEOUT
560   */
HAL_SYSCFG_EnableVREFBUF(void)561 HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
562 {
563   uint32_t  tickstart;
564 
565   SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
566 
567   /* Get Start Tick*/
568   tickstart = HAL_GetTick();
569 
570   /* Wait for VRR bit  */
571   while(READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0UL)
572   {
573     if((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
574     {
575       return HAL_TIMEOUT;
576     }
577   }
578 
579   return HAL_OK;
580 }
581 
582 /**
583   * @brief  Disable the Internal Voltage Reference buffer (VREFBUF).
584   *
585   * @retval None
586   */
HAL_SYSCFG_DisableVREFBUF(void)587 void HAL_SYSCFG_DisableVREFBUF(void)
588 {
589   CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
590 }
591 
592 #if defined(SYSCFG_PMCR_EPIS_SEL)
593 /**
594   * @brief  Ethernet PHY Interface Selection either MII or RMII
595   * @param  SYSCFG_ETHInterface: Selects the Ethernet PHY interface
596   *   This parameter can be one of the following values:
597   *   @arg SYSCFG_ETH_MII : Select the Media Independent Interface
598   *   @arg SYSCFG_ETH_RMII: Select the Reduced Media Independent Interface
599   * @retval None
600   */
HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)601 void HAL_SYSCFG_ETHInterfaceSelect(uint32_t SYSCFG_ETHInterface)
602 {
603   /* Check the parameter */
604   assert_param(IS_SYSCFG_ETHERNET_CONFIG(SYSCFG_ETHInterface));
605 
606   MODIFY_REG(SYSCFG->PMCR, SYSCFG_PMCR_EPIS_SEL, (uint32_t)(SYSCFG_ETHInterface));
607 }
608 #endif /* SYSCFG_PMCR_EPIS_SEL */
609 
610 /**
611   * @brief  Analog Switch control for dual analog pads.
612   * @param  SYSCFG_AnalogSwitch: Selects the analog pad
613   *   This parameter can be one or a combination of the following values:
614   *   @arg SYSCFG_SWITCH_PA0 : Select PA0 analog switch
615   *   @arg SYSCFG_SWITCH_PA1:  Select PA1 analog switch
616   *   @arg SYSCFG_SWITCH_PC2 : Select PC2 analog switch
617   *   @arg SYSCFG_SWITCH_PC3:  Select PC3 analog switch
618   * @param  SYSCFG_SwitchState: Open or Close the analog switch between dual pads (PXn and PXn_C)
619   *   This parameter can be one or a combination of the following values:
620   *   @arg SYSCFG_SWITCH_PA0_OPEN
621   *   @arg SYSCFG_SWITCH_PA0_CLOSE
622   *   @arg SYSCFG_SWITCH_PA1_OPEN
623   *   @arg SYSCFG_SWITCH_PA1_CLOSE
624   *   @arg SYSCFG_SWITCH_PC2_OPEN
625   *   @arg SYSCFG_SWITCH_PC2_CLOSE
626   *   @arg SYSCFG_SWITCH_PC3_OPEN
627   *   @arg SYSCFG_SWITCH_PC3_CLOSE
628   * @retval None
629   */
630 
HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch,uint32_t SYSCFG_SwitchState)631 void HAL_SYSCFG_AnalogSwitchConfig(uint32_t SYSCFG_AnalogSwitch , uint32_t SYSCFG_SwitchState )
632 {
633   /* Check the parameter */
634   assert_param(IS_SYSCFG_ANALOG_SWITCH(SYSCFG_AnalogSwitch));
635   assert_param(IS_SYSCFG_SWITCH_STATE(SYSCFG_SwitchState));
636 
637   MODIFY_REG(SYSCFG->PMCR, (uint32_t) SYSCFG_AnalogSwitch, (uint32_t)(SYSCFG_SwitchState));
638 }
639 
640 #if defined(SYSCFG_PMCR_BOOSTEN)
641 /**
642   * @brief  Enables the booster to reduce the total harmonic distortion of the analog
643   *         switch when the supply voltage is lower than 2.7 V.
644   * @note   Activating the booster allows to guaranty the analog switch AC performance
645   *         when the supply voltage is below 2.7 V: in this case, the analog switch
646   *         performance is the same on the full voltage range
647   * @retval None
648   */
HAL_SYSCFG_EnableBOOST(void)649 void HAL_SYSCFG_EnableBOOST(void)
650 {
651  SET_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
652 }
653 
654 /**
655   * @brief  Disables the booster
656   * @note   Activating the booster allows to guaranty the analog switch AC performance
657   *         when the supply voltage is below 2.7 V: in this case, the analog switch
658   *         performance is the same on the full voltage range
659   * @retval None
660   */
HAL_SYSCFG_DisableBOOST(void)661 void HAL_SYSCFG_DisableBOOST(void)
662 {
663  CLEAR_BIT(SYSCFG->PMCR, SYSCFG_PMCR_BOOSTEN) ;
664 }
665 #endif /* SYSCFG_PMCR_BOOSTEN */
666 
667 #if defined (SYSCFG_UR2_BOOT_ADD0) ||  defined (SYSCFG_UR2_BCM7_ADD0)
668 /**
669   * @brief  BootCM7 address 0 configuration
670   * @param  BootRegister :Specifies the Boot Address register (Address0 or Address1)
671   *   This parameter can be one of the following values:
672   *   @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
673   *   @arg SYSCFG_BOOT_ADDR1:  Select the boot address1
674   * @param  BootAddress :Specifies the CM7 Boot Address to be loaded in Address0 or Address1
675   * @retval None
676   */
HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister,uint32_t BootAddress)677 void HAL_SYSCFG_CM7BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
678 {
679   /* Check the parameters */
680   assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
681   assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
682   if ( BootRegister == SYSCFG_BOOT_ADDR0 )
683   {
684     /* Configure CM7 BOOT ADD0 */
685 #if defined(DUAL_CORE)
686     MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BCM7_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BCM7_ADD0_Pos));
687 #else
688     MODIFY_REG(SYSCFG->UR2, SYSCFG_UR2_BOOT_ADD0, ((BootAddress >> 16) << SYSCFG_UR2_BOOT_ADD0_Pos));
689 #endif /*DUAL_CORE*/
690   }
691   else
692   {
693     /* Configure CM7 BOOT ADD1 */
694 #if defined(DUAL_CORE)
695     MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM7_ADD1, (BootAddress >> 16));
696 #else
697     MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BOOT_ADD1, (BootAddress >> 16));
698 #endif /*DUAL_CORE*/
699   }
700 }
701 #endif /* SYSCFG_UR2_BOOT_ADD0 || SYSCFG_UR2_BCM7_ADD0 */
702 
703 #if defined(DUAL_CORE)
704 /**
705   * @brief  BootCM4 address 0 configuration
706   * @param  BootRegister :Specifies the Boot Address register (Address0 or Address1)
707   *   This parameter can be one of the following values:
708   *   @arg SYSCFG_BOOT_ADDR0 : Select the boot address0
709   *   @arg SYSCFG_BOOT_ADDR1:  Select the boot address1
710   * @param  BootAddress :Specifies the CM4 Boot Address to be loaded in Address0 or Address1
711   * @retval None
712   */
HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister,uint32_t BootAddress)713 void HAL_SYSCFG_CM4BootAddConfig(uint32_t BootRegister, uint32_t BootAddress)
714 {
715   /* Check the parameters */
716   assert_param(IS_SYSCFG_BOOT_REGISTER(BootRegister));
717   assert_param(IS_SYSCFG_BOOT_ADDRESS(BootAddress));
718 
719   if ( BootRegister == SYSCFG_BOOT_ADDR0 )
720   {
721     /* Configure CM4 BOOT ADD0 */
722     MODIFY_REG(SYSCFG->UR3, SYSCFG_UR3_BCM4_ADD0, ((BootAddress >> 16)<< SYSCFG_UR3_BCM4_ADD0_Pos));
723   }
724 
725   else
726   {
727     /* Configure CM4 BOOT ADD1 */
728     MODIFY_REG(SYSCFG->UR4, SYSCFG_UR4_BCM4_ADD1, (BootAddress >> 16));
729   }
730 }
731 
732 /**
733   * @brief  Enables the Cortex-M7 boot
734   * @retval None
735   */
HAL_SYSCFG_EnableCM7BOOT(void)736 void HAL_SYSCFG_EnableCM7BOOT(void)
737 {
738  SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7);
739 }
740 
741 /**
742   * @brief  Disables the Cortex-M7 boot
743   * @note   Disabling the boot will gate the CPU clock
744   * @retval None
745   */
HAL_SYSCFG_DisableCM7BOOT(void)746 void HAL_SYSCFG_DisableCM7BOOT(void)
747 {
748  CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM7) ;
749 }
750 
751 /**
752   * @brief  Enables the Cortex-M4 boot
753   * @retval None
754   */
HAL_SYSCFG_EnableCM4BOOT(void)755 void HAL_SYSCFG_EnableCM4BOOT(void)
756 {
757  SET_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
758 }
759 
760 /**
761   * @brief  Disables the Cortex-M4 boot
762   * @note   Disabling the boot will gate the CPU clock
763   * @retval None
764   */
HAL_SYSCFG_DisableCM4BOOT(void)765 void HAL_SYSCFG_DisableCM4BOOT(void)
766 {
767   CLEAR_BIT(SYSCFG->UR1, SYSCFG_UR1_BCM4);
768 }
769 #endif /*DUAL_CORE*/
770 /**
771   * @brief  Enables the I/O Compensation Cell.
772   * @note   The I/O compensation cell can be used only when the device supply
773   *         voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
774   * @retval None
775   */
HAL_EnableCompensationCell(void)776 void HAL_EnableCompensationCell(void)
777 {
778   SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN) ;
779 }
780 
781 /**
782   * @brief  Power-down the I/O Compensation Cell.
783   * @note   The I/O compensation cell can be used only when the device supply
784   *         voltage ranges from 1.62 to 2.0 V and from 2.7 to 3.6 V.
785   * @retval None
786   */
HAL_DisableCompensationCell(void)787 void HAL_DisableCompensationCell(void)
788 {
789   CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_EN);
790 }
791 
792 
793 /**
794   * @brief  To Enable optimize the I/O speed when the product voltage is low.
795   * @note   This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
796   *         used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
797   *         higher than 2.5 V might be destructive.
798   * @retval None
799   */
HAL_SYSCFG_EnableIOSpeedOptimize(void)800 void HAL_SYSCFG_EnableIOSpeedOptimize(void)
801 {
802 #if defined(SYSCFG_CCCSR_HSLV)
803   SET_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
804 #else
805   SET_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2  | SYSCFG_CCCSR_HSLV3));
806 #endif   /* SYSCFG_CCCSR_HSLV */
807 }
808 
809 /**
810   * @brief  To Disable optimize the I/O speed when the product voltage is low.
811   * @note   This bit is active only if PRODUCT_BELOW_25V user option bit is set. It must be
812   *         used only if the product supply voltage is below 2.5 V. Setting this bit when VDD is
813   *         higher than 2.5 V might be destructive.
814   * @retval None
815   */
HAL_SYSCFG_DisableIOSpeedOptimize(void)816 void HAL_SYSCFG_DisableIOSpeedOptimize(void)
817 {
818 #if defined(SYSCFG_CCCSR_HSLV)
819   CLEAR_BIT(SYSCFG->CCCSR, SYSCFG_CCCSR_HSLV);
820 #else
821   CLEAR_BIT(SYSCFG->CCCSR, (SYSCFG_CCCSR_HSLV0| SYSCFG_CCCSR_HSLV1 | SYSCFG_CCCSR_HSLV2  | SYSCFG_CCCSR_HSLV3));
822 #endif   /* SYSCFG_CCCSR_HSLV */
823 }
824 
825 /**
826   * @brief  Code selection for the I/O Compensation cell
827   * @param  SYSCFG_CompCode: Selects the code to be applied for the I/O compensation cell
828   *   This parameter can be one of the following values:
829   *   @arg SYSCFG_CELL_CODE : Select Code from the cell (available in the SYSCFG_CCVR)
830   *   @arg SYSCFG_REGISTER_CODE: Select Code from the SYSCFG compensation cell code register (SYSCFG_CCCR)
831   * @retval None
832   */
HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)833 void HAL_SYSCFG_CompensationCodeSelect(uint32_t SYSCFG_CompCode)
834 {
835   /* Check the parameter */
836   assert_param(IS_SYSCFG_CODE_SELECT(SYSCFG_CompCode));
837   MODIFY_REG(SYSCFG->CCCSR, SYSCFG_CCCSR_CS, (uint32_t)(SYSCFG_CompCode));
838 }
839 
840 /**
841   * @brief  Code selection for the I/O Compensation cell
842   * @param  SYSCFG_PMOSCode: PMOS compensation code
843   *         This code is applied to the I/O compensation cell when the CS bit of the
844   *          SYSCFG_CMPCR is set
845   * @param  SYSCFG_NMOSCode: NMOS compensation code
846   *         This code is applied to the I/O compensation cell when the CS bit of the
847   *          SYSCFG_CMPCR is set
848   * @retval None
849   */
HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode,uint32_t SYSCFG_NMOSCode)850 void HAL_SYSCFG_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
851 {
852   /* Check the parameter */
853   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
854   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
855   MODIFY_REG(SYSCFG->CCCR, SYSCFG_CCCR_NCC|SYSCFG_CCCR_PCC, (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
856 }
857 
858 #if defined(SYSCFG_CCCR_NCC_MMC)
859 /**
860   * @brief  Code selection for the I/O Compensation cell
861   * @param  SYSCFG_PMOSCode: VDDMMC PMOS compensation code
862   *         This code is applied to the I/O compensation cell when the CS bit of the
863   *          SYSCFG_CMPCR is set
864   * @param  SYSCFG_NMOSCode: VDDMMC NMOS compensation code
865   *         This code is applied to the I/O compensation cell when the CS bit of the
866   *          SYSCFG_CMPCR is set
867   * @retval None
868   */
HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode,uint32_t SYSCFG_NMOSCode)869 void HAL_SYSCFG_VDDMMC_CompensationCodeConfig(uint32_t SYSCFG_PMOSCode, uint32_t SYSCFG_NMOSCode )
870 {
871   /* Check the parameter */
872   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_PMOSCode));
873   assert_param(IS_SYSCFG_CODE_CONFIG(SYSCFG_NMOSCode));
874   MODIFY_REG(SYSCFG->CCCR, (SYSCFG_CCCR_NCC_MMC | SYSCFG_CCCR_PCC_MMC), (((uint32_t)(SYSCFG_PMOSCode)<< 4)|(uint32_t)(SYSCFG_NMOSCode)) );
875 }
876 #endif /* SYSCFG_CCCR_NCC_MMC */
877 
878 #if defined(SYSCFG_ADC2ALT_ADC2_ROUT0)
879 /** @brief  SYSCFG ADC2 internal input alternate connection macros
880   * @param Adc2AltRout0 This parameter can be a value of :
881   *     @arg @ref SYSCFG_ADC2_ROUT0_DAC1_1   DAC1_out1 connected to ADC2 VINP[16]
882   *     @arg @ref SYSCFG_ADC2_ROUT0_VBAT4    VBAT/4 connected to ADC2 VINP[16]
883   */
HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0)884 void HAL_SYSCFG_ADC2ALT_Rout0Config(uint32_t Adc2AltRout0)
885 {
886   /* Check the parameters */
887   assert_param(IS_SYSCFG_ADC2ALT_ROUT0(Adc2AltRout0));
888 
889   MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT0, Adc2AltRout0);
890 }
891 #endif /*SYSCFG_ADC2ALT_ADC2_ROUT0*/
892 
893 #if defined(SYSCFG_ADC2ALT_ADC2_ROUT1)
894 /** @brief  SYSCFG ADC2 internal input alternate connection macros
895   * @param Adc2AltRout1  This parameter can be a value of :
896   *     @arg @ref SYSCFG_ADC2_ROUT1_DAC1_2   DAC1_out2 connected to ADC2 VINP[17]
897   *     @arg @ref SYSCFG_ADC2_ROUT1_VREFINT  VREFINT connected to ADC2 VINP[17]
898   */
HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1)899 void HAL_SYSCFG_ADC2ALT_Rout1Config(uint32_t Adc2AltRout1)
900 {
901   /* Check the parameters */
902   assert_param(IS_SYSCFG_ADC2ALT_ROUT1(Adc2AltRout1));
903 
904   MODIFY_REG(SYSCFG->ADC2ALT, SYSCFG_ADC2ALT_ADC2_ROUT1, Adc2AltRout1);
905 }
906 #endif /*SYSCFG_ADC2ALT_ADC2_ROUT1*/
907 
908 /**
909   * @brief  Enable the Debug Module during Domain1/CDomain SLEEP mode
910   * @retval None
911   */
HAL_DBGMCU_EnableDBGSleepMode(void)912 void HAL_DBGMCU_EnableDBGSleepMode(void)
913 {
914   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
915 }
916 
917 /**
918   * @brief  Disable the Debug Module during Domain1/CDomain SLEEP mode
919   * @retval None
920   */
HAL_DBGMCU_DisableDBGSleepMode(void)921 void HAL_DBGMCU_DisableDBGSleepMode(void)
922 {
923   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD1);
924 }
925 
926 
927 /**
928   * @brief  Enable the Debug Module during Domain1/CDomain STOP mode
929   * @retval None
930   */
HAL_DBGMCU_EnableDBGStopMode(void)931 void HAL_DBGMCU_EnableDBGStopMode(void)
932 {
933   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
934 }
935 
936 /**
937   * @brief  Disable the Debug Module during Domain1/CDomain STOP mode
938   * @retval None
939   */
HAL_DBGMCU_DisableDBGStopMode(void)940 void HAL_DBGMCU_DisableDBGStopMode(void)
941 {
942   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD1);
943 }
944 
945 /**
946   * @brief  Enable the Debug Module during Domain1/CDomain STANDBY mode
947   * @retval None
948   */
HAL_DBGMCU_EnableDBGStandbyMode(void)949 void HAL_DBGMCU_EnableDBGStandbyMode(void)
950 {
951   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
952 }
953 
954 /**
955   * @brief  Disable the Debug Module during Domain1/CDomain STANDBY mode
956   * @retval None
957   */
HAL_DBGMCU_DisableDBGStandbyMode(void)958 void HAL_DBGMCU_DisableDBGStandbyMode(void)
959 {
960   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD1);
961 }
962 
963 #if defined(DUAL_CORE)
964 /**
965   * @brief  Enable the Debug Module during Domain1 SLEEP mode
966   * @retval None
967   */
HAL_EnableDomain2DBGSleepMode(void)968 void HAL_EnableDomain2DBGSleepMode(void)
969 {
970   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
971 }
972 
973 /**
974   * @brief  Disable the Debug Module during Domain2 SLEEP mode
975   * @retval None
976   */
HAL_DisableDomain2DBGSleepMode(void)977 void HAL_DisableDomain2DBGSleepMode(void)
978 {
979   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_SLEEPD2);
980 }
981 
982 /**
983   * @brief  Enable the Debug Module during Domain2 STOP mode
984   * @retval None
985   */
HAL_EnableDomain2DBGStopMode(void)986 void HAL_EnableDomain2DBGStopMode(void)
987 {
988   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
989 }
990 
991 /**
992   * @brief  Disable the Debug Module during Domain2 STOP mode
993   * @retval None
994   */
HAL_DisableDomain2DBGStopMode(void)995 void HAL_DisableDomain2DBGStopMode(void)
996 {
997   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD2);
998 }
999 
1000 /**
1001   * @brief  Enable the Debug Module during Domain2 STANDBY mode
1002   * @retval None
1003   */
HAL_EnableDomain2DBGStandbyMode(void)1004 void HAL_EnableDomain2DBGStandbyMode(void)
1005 {
1006   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
1007 }
1008 
1009 /**
1010   * @brief  Disable the Debug Module during Domain2 STANDBY mode
1011   * @retval None
1012   */
HAL_DisableDomain2DBGStandbyMode(void)1013 void HAL_DisableDomain2DBGStandbyMode(void)
1014 {
1015   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD2);
1016 }
1017 #endif /*DUAL_CORE*/
1018 
1019 #if defined(DBGMCU_CR_DBG_STOPD3)
1020 /**
1021   * @brief  Enable the Debug Module during Domain3/SRDomain STOP mode
1022   * @retval None
1023   */
HAL_EnableDomain3DBGStopMode(void)1024 void HAL_EnableDomain3DBGStopMode(void)
1025 {
1026   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
1027 }
1028 
1029 /**
1030   * @brief  Disable the Debug Module during Domain3/SRDomain STOP mode
1031   * @retval None
1032   */
HAL_DisableDomain3DBGStopMode(void)1033 void HAL_DisableDomain3DBGStopMode(void)
1034 {
1035   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STOPD3);
1036 }
1037 #endif /*DBGMCU_CR_DBG_STOPD3*/
1038 
1039 #if defined(DBGMCU_CR_DBG_STANDBYD3)
1040 /**
1041   * @brief  Enable the Debug Module during Domain3/SRDomain STANDBY mode
1042   * @retval None
1043   */
HAL_EnableDomain3DBGStandbyMode(void)1044 void HAL_EnableDomain3DBGStandbyMode(void)
1045 {
1046   SET_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
1047 }
1048 
1049 /**
1050   * @brief  Disable the Debug Module during Domain3/SRDomain STANDBY mode
1051   * @retval None
1052   */
HAL_DisableDomain3DBGStandbyMode(void)1053 void HAL_DisableDomain3DBGStandbyMode(void)
1054 {
1055   CLEAR_BIT(DBGMCU->CR, DBGMCU_CR_DBG_STANDBYD3);
1056 }
1057 #endif /*DBGMCU_CR_DBG_STANDBYD3*/
1058 
1059 /**
1060   * @brief  Set the FMC Memory Mapping Swapping config.
1061   * @param  BankMapConfig: Defines the FMC Bank mapping configuration. This parameter can be
1062             FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
1063   * @retval HAL state
1064   */
HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)1065 void HAL_SetFMCMemorySwappingConfig(uint32_t BankMapConfig)
1066 {
1067   /* Check the parameter */
1068   assert_param(IS_FMC_SWAPBMAP_MODE(BankMapConfig));
1069   MODIFY_REG(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP, BankMapConfig);
1070 }
1071 
1072 /**
1073   * @brief  Get FMC Bank mapping mode.
1074   * @retval The FMC Bank mapping mode. This parameter can be
1075             FMC_SWAPBMAP_DISABLE, FMC_SWAPBMAP_SDRAM_SRAM, FMC_SWAPBMAP_SDRAMB2
1076 */
HAL_GetFMCMemorySwappingConfig(void)1077 uint32_t HAL_GetFMCMemorySwappingConfig(void)
1078 {
1079   return READ_BIT(FMC_Bank1_R->BTCR[0], FMC_BCR1_BMAP);
1080 }
1081 
1082 /**
1083   * @brief  Configure the EXTI input event line edge
1084   * @note    No edge configuration for direct lines but for configurable lines:(EXTI_LINE0..EXTI_LINE21),
1085   *          EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
1086   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1087   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1088   * @param   EXTI_Edge: Specifies  EXTI line Edge used.
1089   *          This parameter can be one of the following values :
1090   *   @arg EXTI_RISING_EDGE : Configurable line, with Rising edge trigger detection
1091   *   @arg EXTI_FALLING_EDGE: Configurable line, with Falling edge trigger detection
1092   * @retval None
1093   */
HAL_EXTI_EdgeConfig(uint32_t EXTI_Line,uint32_t EXTI_Edge)1094 void HAL_EXTI_EdgeConfig(uint32_t EXTI_Line , uint32_t EXTI_Edge )
1095 {
1096   /* Check the parameter */
1097   assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
1098   assert_param(IS_EXTI_EDGE_LINE(EXTI_Edge));
1099 
1100   /* Clear Rising Falling edge configuration */
1101   CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1102   CLEAR_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1103 
1104   if( (EXTI_Edge & EXTI_RISING_EDGE) == EXTI_RISING_EDGE)
1105   {
1106    SET_BIT( *(__IO uint32_t *) (((uint32_t) &(EXTI->RTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1107   }
1108   if( (EXTI_Edge & EXTI_FALLING_EDGE) == EXTI_FALLING_EDGE)
1109   {
1110    SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->FTSR1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1111   }
1112 }
1113 
1114 /**
1115   * @brief  Generates a Software interrupt on selected EXTI line.
1116   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1117   *          (EXTI_LINE0..EXTI_LINE21),EXTI_LINE49,EXTI_LINE51,EXTI_LINE82,EXTI_LINE84,EXTI_LINE85 and EXTI_LINE86.
1118   * @retval None
1119   */
HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)1120 void HAL_EXTI_GenerateSWInterrupt(uint32_t EXTI_Line)
1121 {
1122   /* Check the parameters */
1123   assert_param(IS_HAL_EXTI_CONFIG_LINE(EXTI_Line));
1124 
1125   SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->SWIER1)) + ((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1126 }
1127 
1128 
1129 /**
1130   * @brief  Clears the EXTI's line pending flags for Domain D1
1131   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1132   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1133   * @retval None
1134   */
HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)1135 void HAL_EXTI_D1_ClearFlag(uint32_t EXTI_Line)
1136 {
1137   /* Check the parameters */
1138  assert_param(IS_EXTI_D1_LINE(EXTI_Line));
1139  WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1140 
1141 }
1142 
1143 #if defined(DUAL_CORE)
1144 /**
1145   * @brief  Clears the EXTI's line pending flags for Domain D2
1146   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1147   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1148   * @retval None
1149   */
HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)1150 void HAL_EXTI_D2_ClearFlag(uint32_t EXTI_Line)
1151 {
1152   /* Check the parameters */
1153  assert_param(IS_EXTI_D2_LINE(EXTI_Line));
1154  WRITE_REG(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->PR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1155 }
1156 
1157 #endif /*DUAL_CORE*/
1158 /**
1159   * @brief  Configure the EXTI input event line for Domain D1
1160   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1161   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1162   * @param   EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
1163   *          This parameter can be one or a combination of the following values :
1164   *   @arg EXTI_MODE_IT :  Interrupt Mode selected
1165   *   @arg EXTI_MODE_EVT : Event Mode selected
1166   * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
1167 
1168   * @retval None
1169   */
HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line,uint32_t EXTI_Mode,uint32_t EXTI_LineCmd)1170 void HAL_EXTI_D1_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode,  uint32_t EXTI_LineCmd )
1171 {
1172   /* Check the parameter */
1173   assert_param(IS_EXTI_D1_LINE(EXTI_Line));
1174   assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
1175 
1176   if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
1177   {
1178      if( EXTI_LineCmd == 0UL)
1179      {
1180        /* Clear EXTI line configuration */
1181         CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
1182      }
1183      else
1184      {
1185         SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D1->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1186      }
1187   }
1188 
1189   if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
1190   {
1191     if( EXTI_LineCmd == 0UL)
1192     {
1193       /* Clear EXTI line configuration */
1194       CLEAR_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1195     }
1196     else
1197     {
1198       SET_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D1->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1199     }
1200   }
1201 }
1202 
1203 #if defined(DUAL_CORE)
1204 /**
1205   * @brief  Configure the EXTI input event line for Domain D2
1206   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1207   *         (EXTI_LINE0....EXTI_LINE87)excluding :line45, line81,line83 which are reserved
1208   * @param   EXTI_Mode: Specifies which EXTI line is used as interrupt or an event.
1209   *          This parameter can be one or a combination of the following values :
1210   *   @arg EXTI_MODE_IT :  Interrupt Mode selected
1211   *   @arg EXTI_MODE_EVT : Event Mode selected
1212   * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
1213 
1214   * @retval None
1215   */
HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line,uint32_t EXTI_Mode,uint32_t EXTI_LineCmd)1216 void HAL_EXTI_D2_EventInputConfig(uint32_t EXTI_Line , uint32_t EXTI_Mode,  uint32_t EXTI_LineCmd )
1217 {
1218   /* Check the parameter */
1219   assert_param(IS_EXTI_D2_LINE(EXTI_Line));
1220   assert_param(IS_EXTI_MODE_LINE(EXTI_Mode));
1221 
1222   if( (EXTI_Mode & EXTI_MODE_IT) == EXTI_MODE_IT)
1223   {
1224     if( EXTI_LineCmd == 0UL)
1225     {
1226     /* Clear EXTI line configuration */
1227      CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
1228     }
1229     else
1230     {
1231      SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI_D2->IMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1232     }
1233   }
1234 
1235   if( (EXTI_Mode & EXTI_MODE_EVT) == EXTI_MODE_EVT)
1236   {
1237     if( EXTI_LineCmd == 0UL)
1238     {
1239       /* Clear EXTI line configuration */
1240       CLEAR_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1241     }
1242     else
1243     {
1244       SET_BIT(  *(__IO uint32_t *) (((uint32_t) &(EXTI_D2->EMR1)) + ((EXTI_Line >> 5 ) * 0x10UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1245     }
1246   }
1247 }
1248 #endif /*DUAL_CORE*/
1249 
1250 /**
1251   * @brief  Configure the EXTI input event line for Domain D3
1252   * @param   EXTI_Line: Specifies the EXTI LINE, it can be one of the following values,
1253   *         (EXTI_LINE0...EXTI_LINE15),(EXTI_LINE19...EXTI_LINE21),EXTI_LINE25, EXTI_LINE34,
1254   *          EXTI_LINE35,EXTI_LINE41,(EXTI_LINE48...EXTI_LINE53)
1255   * @param   EXTI_LineCmd controls (Enable/Disable) the EXTI line.
1256   * @param   EXTI_ClearSrc: Specifies the clear source of D3 pending event.
1257   *          This parameter can be one of the following values :
1258   *   @arg BDMA_CH6_CLEAR : BDMA ch6 event selected as D3 domain pendclear source
1259   *   @arg BDMA_CH7_CLEAR : BDMA ch7 event selected as D3 domain pendclear source
1260   *   @arg LPTIM4_OUT_CLEAR : LPTIM4 out selected as D3 domain pendclear source
1261   *   @arg LPTIM5_OUT_CLEAR : LPTIM5 out selected as D3 domain pendclear source
1262   * @retval None
1263   */
HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line,uint32_t EXTI_LineCmd,uint32_t EXTI_ClearSrc)1264 void HAL_EXTI_D3_EventInputConfig(uint32_t EXTI_Line, uint32_t EXTI_LineCmd , uint32_t EXTI_ClearSrc  )
1265 {
1266   __IO uint32_t *pRegv;
1267 
1268   /* Check the parameter */
1269   assert_param(IS_EXTI_D3_LINE(EXTI_Line));
1270   assert_param(IS_EXTI_D3_CLEAR(EXTI_ClearSrc));
1271 
1272   if( EXTI_LineCmd == 0UL)
1273   {
1274     /* Clear EXTI line configuration */
1275     CLEAR_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) + ((EXTI_Line >> 5 ) * 0x20UL)),(uint32_t)(1UL << (EXTI_Line & 0x1FUL)) );
1276   }
1277   else
1278   {
1279     SET_BIT(*(__IO uint32_t *) (((uint32_t) &(EXTI->D3PMR1)) +((EXTI_Line >> 5 ) * 0x20UL)), (uint32_t)(1UL << (EXTI_Line & 0x1FUL)));
1280   }
1281 
1282   if(((EXTI_Line>>4)%2UL) == 0UL)
1283   {
1284     pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1L)) + ((EXTI_Line >> 5 ) * 0x20UL));
1285   }
1286   else
1287   {
1288     pRegv = (__IO uint32_t *) (((uint32_t) &(EXTI->D3PCR1H)) + ((EXTI_Line >> 5 ) * 0x20UL));
1289   }
1290   MODIFY_REG(*pRegv, (uint32_t)(3UL << ((EXTI_Line*2UL) & 0x1FUL)), (uint32_t)(EXTI_ClearSrc << ((EXTI_Line*2UL) & 0x1FUL)));
1291 
1292 }
1293 
1294 
1295 
1296 /**
1297   * @}
1298   */
1299 
1300 /**
1301   * @}
1302   */
1303 
1304 /**
1305   * @}
1306   */
1307 
1308 /**
1309   * @}
1310   */
1311 
1312