1 /**
2 ******************************************************************************
3 * @file stm32h5xx_hal_rtc.c
4 * @author MCD Application Team
5 * @brief RTC HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Real-Time Clock (RTC) peripheral:
8 * + Initialization/de-initialization functions
9 * + Calendar (Time and Date) configuration
10 * + Alarms (Alarm A and Alarm B) configuration
11 * + WakeUp Timer configuration
12 * + TimeStamp configuration
13 * + Tampers configuration
14 * + Backup Data Registers configuration
15 * + RTC Tamper and TimeStamp Pins Selection
16 * + Interrupts and flags management
17 *
18 ******************************************************************************
19 * @attention
20 *
21 * Copyright (c) 2023 STMicroelectronics.
22 * All rights reserved.
23 *
24 * This software is licensed under terms that can be found in the LICENSE file
25 * in the root directory of this software component.
26 * If no LICENSE file comes with this software, it is provided AS-IS.
27 *
28 ******************************************************************************
29 @verbatim
30 ===============================================================================
31 ##### RTC Operating Condition #####
32 ===============================================================================
33 [..] The real-time clock (RTC) and the RTC backup registers can be powered
34 from the VBAT voltage when the main VDD supply is powered off.
35 To retain the content of the RTC backup registers and supply the RTC
36 when VDD is turned off, VBAT pin can be connected to an optional
37 standby voltage supplied by a battery or by another source.
38
39 ##### Backup Domain Reset #####
40 ===============================================================================
41 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42 to their reset values.
43 A backup domain reset is generated when one of the following events occurs:
44 (#) Software reset, triggered by setting the BDRST bit in the
45 RCC Backup domain control register (RCC_BDCR).
46 (#) VDD or VBAT power on, if both supplies have previously been powered off.
47 (#) Tamper detection event resets all data backup registers.
48
49 ##### Backup Domain Access #####
50 ==================================================================
51 [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52 is protected against possible unwanted write accesses.
53 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
55 (+) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
56 PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
57 (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
58
59 ##### How to use RTC Driver #####
60 ===================================================================
61 [..]
62 (+) Enable the RTC domain access (see description in the section above).
63 (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
64 format using the HAL_RTC_Init() function.
65
66 *** Time and Date configuration ***
67 ===================================
68 [..]
69 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
70 and HAL_RTC_SetDate() functions.
71 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
72
73 *** Alarm configuration ***
74 ===========================
75 [..]
76 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
77 You can also configure the RTC Alarm with interrupt mode using the
78 HAL_RTC_SetAlarm_IT() function.
79 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
80
81 ##### RTC and low power modes #####
82 ==================================================================
83 [..] The MCU can be woken up from a low power mode by an RTC alternate
84 function.
85 [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
86 RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
87 These RTC alternate functions can wake up the system from the Stop and
88 Standby low power modes.
89 [..] The system can also wake up from low power modes without depending
90 on an external interrupt (Auto-wakeup mode), by using the RTC alarm
91 or the RTC wakeup events.
92 [..] The RTC provides a programmable time base for waking up from the
93 Stop or Standby mode at regular intervals.
94 Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
95 is LSE or LSI.
96
97 *** Callback registration ***
98 =============================================
99 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
100 not defined, the callback registration feature is not available and all callbacks
101 are set to the corresponding weak functions. This is the recommended configuration
102 in order to optimize memory/code consumption footprint/performances.
103
104 The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1
105 allows the user to configure dynamically the driver callbacks.
106 Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
107
108 Function HAL_RTC_RegisterCallback() allows to register following callbacks:
109 (+) AlarmAEventCallback : RTC Alarm A Event callback.
110 (+) AlarmBEventCallback : RTC Alarm B Event callback.
111 (+) TimeStampEventCallback : RTC TimeStamp Event callback.
112 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
113 (+) SSRUEventCallback : RTC SSRU Event callback.
114 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
115 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
116 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
117 (+) Tamper4EventCallback : RTC Tamper 4 Event callback.
118 (+) Tamper5EventCallback : RTC Tamper 5 Event callback.
119 (+) Tamper6EventCallback : RTC Tamper 6 Event callback.
120 (+) Tamper7EventCallback : RTC Tamper 7 Event callback.
121 (+) Tamper8EventCallback : RTC Tamper 8 Event callback.
122 (+) InternalTamper1EventCallback : RTC InternalTamper 1 Event callback.
123 (+) InternalTamper2EventCallback : RTC InternalTamper 2 Event callback.
124 (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback.
125 (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback.
126 (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback.
127 (+) InternalTamper6EventCallback : RTC InternalTamper 6 Event callback.
128 (+) InternalTamper7EventCallback : RTC InternalTamper 7 Event callback.
129 (+) InternalTamper8EventCallback : RTC InternalTamper 8 Event callback.
130 (+) InternalTamper9EventCallback : RTC InternalTamper 9 Event callback.
131 (+) InternalTamper11EventCallback : RTC InternalTamper 11 Event callback.
132 (+) InternalTamper12EventCallback : RTC InternalTamper 12 Event callback.
133 (+) InternalTamper13EventCallback : RTC InternalTamper 13 Event callback.
134 (+) InternalTamper15EventCallback : RTC InternalTamper 15 Event callback.
135 (+) MspInitCallback : RTC MspInit callback.
136 (+) MspDeInitCallback : RTC MspDeInit callback.
137 This function takes as parameters the HAL peripheral handle, the Callback ID
138 and a pointer to the user callback function.
139
140 Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
141 weak function.
142 HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
143 and the Callback ID.
144 This function allows to reset following callbacks:
145 (+) AlarmAEventCallback : RTC Alarm A Event callback.
146 (+) AlarmBEventCallback : RTC Alarm B Event callback.
147 (+) TimeStampEventCallback : RTC TimeStamp Event callback.
148 (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
149 (+) SSRUEventCallback : RTC SSRU Event callback.
150 (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
151 (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
152 (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
153 (+) Tamper4EventCallback : RTC Tamper 4 Event callback.
154 (+) Tamper5EventCallback : RTC Tamper 5 Event callback.
155 (+) Tamper6EventCallback : RTC Tamper 6 Event callback.
156 (+) Tamper7EventCallback : RTC Tamper 7 Event callback.
157 (+) Tamper8EventCallback : RTC Tamper 8 Event callback.
158 (+) InternalTamper1EventCallback : RTC InternalTamper 1 Event callback.
159 (+) InternalTamper2EventCallback : RTC InternalTamper 2 Event callback.
160 (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback.
161 (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback.
162 (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback.
163 (+) InternalTamper6EventCallback : RTC InternalTamper 6 Event callback.
164 (+) InternalTamper7EventCallback : RTC InternalTamper 7 Event callback.
165 (+) InternalTamper8EventCallback : RTC InternalTamper 8 Event callback.
166 (+) InternalTamper9EventCallback : RTC InternalTamper 9 Event callback.
167 (+) InternalTamper11EventCallback : RTC InternalTamper 11 Event callback.
168 (+) InternalTamper12EventCallback : RTC InternalTamper 12 Event callback.
169 (+) InternalTamper13EventCallback : RTC InternalTamper 13 Event callback.
170 (+) InternalTamper15EventCallback : RTC InternalTamper 15 Event callback.
171 (+) MspInitCallback : RTC MspInit callback.
172 (+) MspDeInitCallback : RTC MspDeInit callback.
173
174 By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
175 all callbacks are set to the corresponding weak functions :
176 examples AlarmAEventCallback(), TimeStampEventCallback().
177 Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
178 in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
179 (not registered beforehand).
180 If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
181 keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
182
183 Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
184 Exception done MspInit/MspDeInit that can be registered/unregistered
185 in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
186 thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
187 In that case first register the MspInit/MspDeInit user callbacks
188 using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
189 or HAL_RTC_Init() function.
190
191 When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
192 not defined, the callback registration feature is not available and all callbacks
193 are set to the corresponding weak functions.
194
195 @endverbatim
196 */
197
198 /* Includes ------------------------------------------------------------------*/
199 #include "stm32h5xx_hal.h"
200
201 /** @addtogroup STM32H5xx_HAL_Driver
202 * @{
203 */
204
205
206 /** @addtogroup RTC
207 * @brief RTC HAL module driver
208 * @{
209 */
210
211 #ifdef HAL_RTC_MODULE_ENABLED
212
213 /* Private typedef -----------------------------------------------------------*/
214 /* Private define ------------------------------------------------------------*/
215 /* Private macro -------------------------------------------------------------*/
216 /* Private variables ---------------------------------------------------------*/
217 /* Private function prototypes -----------------------------------------------*/
218 /* Exported functions --------------------------------------------------------*/
219
220 /** @addtogroup RTC_Exported_Functions
221 * @{
222 */
223
224 /** @addtogroup RTC_Exported_Functions_Group1
225 * @brief Initialization and Configuration functions
226 *
227 @verbatim
228 ===============================================================================
229 ##### Initialization and de-initialization functions #####
230 ===============================================================================
231 [..] This section provides functions allowing to initialize and configure the
232 RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
233 RTC registers Write protection, enter and exit the RTC initialization mode,
234 RTC registers synchronization check and reference clock detection enable.
235 (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
236 It is split into 2 programmable prescalers to minimize power consumption.
237 (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
238 (++) When both prescalers are used, it is recommended to configure the
239 asynchronous prescaler to a high value to minimize power consumption.
240 (#) All RTC registers are Write protected. Writing to the RTC registers
241 is enabled by writing a key into the Write Protection register, RTC_WPR.
242 (#) To configure the RTC Calendar, user application should enter
243 initialization mode. In this mode, the calendar counter is stopped
244 and its value can be updated. When the initialization sequence is
245 complete, the calendar restarts counting after 4 RTCCLK cycles.
246 (#) To read the calendar through the shadow registers after Calendar
247 initialization, calendar update or after wakeup from low power modes
248 the software must first clear the RSF flag. The software must then
249 wait until it is set again before reading the calendar, which means
250 that the calendar registers have been correctly copied into the
251 RTC_TR and RTC_DR shadow registers. The HAL_RTC_WaitForSynchro() function
252 implements the above software sequence (RSF clear and RSF check).
253
254 @endverbatim
255 * @{
256 */
257
258 /**
259 * @brief Initialize the RTC peripheral
260 * @param hrtc RTC handle
261 * @retval HAL status
262 */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)263 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
264 {
265 HAL_StatusTypeDef status = HAL_ERROR;
266
267 /* Check the RTC peripheral state */
268 if (hrtc != NULL)
269 {
270 /* Check the parameters */
271 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
272 assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
273 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
274 assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
275 #if defined(RTC_CR_OSEL)
276 assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
277 assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
278 assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
279 assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
280 #endif /* RTC_CR_OSEL */
281 #if defined(RTC_CR_OUT2EN)
282 assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
283 #endif /* RTC_CR_OUT2EN */
284 assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
285 assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
286
287 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
288 if (hrtc->State == HAL_RTC_STATE_RESET)
289 {
290 /* Allocate lock resource and initialize it */
291 hrtc->Lock = HAL_UNLOCKED;
292
293 /* Legacy weak AlarmAEventCallback */
294 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;
295 /* Legacy weak AlarmBEventCallback */
296 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;
297 /* Legacy weak TimeStampEventCallback */
298 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;
299 /* Legacy weak WakeUpTimerEventCallback */
300 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback;
301 /* Legacy weak SSRUEventCallback */
302 hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;
303 /* Legacy weak Tamper1EventCallback */
304 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;
305 /* Legacy weak Tamper2EventCallback */
306 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;
307 /* Legacy weak Tamper3EventCallback */
308 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;
309 /* Legacy weak Tamper4EventCallback */
310 hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback;
311 /* Legacy weak Tamper5EventCallback */
312 hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback;
313 /* Legacy weak Tamper6EventCallback */
314 hrtc->Tamper6EventCallback = HAL_RTCEx_Tamper6EventCallback;
315 /* Legacy weak Tamper7EventCallback */
316 hrtc->Tamper7EventCallback = HAL_RTCEx_Tamper7EventCallback;
317 /* Legacy weak Tamper8EventCallback */
318 hrtc->Tamper8EventCallback = HAL_RTCEx_Tamper8EventCallback;
319 /* Legacy weak InternalTamper1EventCallback */
320 hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;
321 /* Legacy weak InternalTamper2EventCallback */
322 hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;
323 /* Legacy weak InternalTamper3EventCallback */
324 hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;
325 /* Legacy weak InternalTamper4EventCallback */
326 hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback;
327 /* Legacy weak InternalTamper5EventCallback */
328 hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;
329 /* Legacy weak InternalTamper6EventCallback */
330 hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback;
331 /* Legacy weak InternalTamper7EventCallback */
332 hrtc->InternalTamper7EventCallback = HAL_RTCEx_InternalTamper7EventCallback;
333 /* Legacy weak InternalTamper8EventCallback */
334 hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;
335 /* Legacy weak InternalTamper9EventCallback */
336 hrtc->InternalTamper9EventCallback = HAL_RTCEx_InternalTamper9EventCallback;
337 /* Legacy weak InternalTamper11EventCallback */
338 hrtc->InternalTamper11EventCallback = HAL_RTCEx_InternalTamper11EventCallback;
339 /* Legacy weak InternalTamper12EventCallback */
340 hrtc->InternalTamper12EventCallback = HAL_RTCEx_InternalTamper12EventCallback;
341 /* Legacy weak InternalTamper13EventCallback */
342 hrtc->InternalTamper13EventCallback = HAL_RTCEx_InternalTamper13EventCallback;
343 /* Legacy weak InternalTamper15EventCallback */
344 hrtc->InternalTamper15EventCallback = HAL_RTCEx_InternalTamper15EventCallback;
345
346 if (hrtc->MspInitCallback == NULL)
347 {
348 hrtc->MspInitCallback = HAL_RTC_MspInit;
349 }
350 /* Init the low level hardware */
351 hrtc->MspInitCallback(hrtc);
352
353 if (hrtc->MspDeInitCallback == NULL)
354 {
355 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
356 }
357 }
358 #else
359 if (hrtc->State == HAL_RTC_STATE_RESET)
360 {
361 /* Allocate lock resource and initialize it */
362 hrtc->Lock = HAL_UNLOCKED;
363
364 /* Initialize RTC MSP */
365 HAL_RTC_MspInit(hrtc);
366 }
367 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
368
369 /* Set RTC state */
370 hrtc->State = HAL_RTC_STATE_BUSY;
371
372 /* Check if the calendar has been not initialized */
373 if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
374 {
375 /* Disable the write protection for RTC registers */
376 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
377
378 /* Enter Initialization mode */
379 status = RTC_EnterInitMode(hrtc);
380 if (status == HAL_OK)
381 {
382 #if defined(RTC_CR_OSEL)
383 /* Clear RTC_CR FMT, OSEL and POL Bits */
384 CLEAR_BIT(RTC->CR, (RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE));
385
386 /* Set RTC_CR register */
387 SET_BIT(RTC->CR, (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity));
388 #else
389 /* Clear RTC_CR FMT Bits */
390 CLEAR_BIT(RTC->CR, RTC_CR_FMT);
391
392 /* Set RTC_CR register */
393 SET_BIT(RTC->CR, hrtc->Init.HourFormat);
394 #endif /* RTC_CR_OSEL */
395
396 /* Configure the RTC PRER */
397 WRITE_REG(RTC->PRER, ((hrtc->Init.SynchPrediv) | (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos)));
398
399 /* Configure the Binary mode */
400 MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
401
402 /* Exit Initialization mode */
403 status = RTC_ExitInitMode(hrtc);
404
405 #if defined(RTC_CR_OSEL)
406 if (status == HAL_OK)
407 {
408 #if defined(RTC_CR_OUT2EN)
409 MODIFY_REG(RTC->CR, \
410 RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN, \
411 hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
412 #else
413 MODIFY_REG(RTC->CR, \
414 RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE, \
415 hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType);
416 #endif /* RTC_CR_OUT2EN */
417 }
418 #endif /* RTC_CR_OSEL */
419 }
420
421 /* Enable the write protection for RTC registers */
422 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
423
424 }
425 else
426 {
427 /* Calendar is already initialized */
428 /* Set flag to OK */
429 status = HAL_OK;
430 }
431
432 if (status == HAL_OK)
433 {
434 /* Change RTC state */
435 hrtc->State = HAL_RTC_STATE_READY;
436 }
437 }
438
439 return status;
440 }
441
442 /**
443 * @brief DeInitialize the RTC peripheral.
444 * @note This function does not reset the RTC Backup Data registers.
445 * @param hrtc RTC handle
446 * @retval HAL status
447 */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)448 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
449 {
450 HAL_StatusTypeDef status;
451
452 /* Set RTC state */
453 hrtc->State = HAL_RTC_STATE_BUSY;
454
455 /* Disable the write protection for RTC registers */
456 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
457
458 /* Enter Initialization mode */
459 status = RTC_EnterInitMode(hrtc);
460 if (status == HAL_OK)
461 {
462 /* Reset all RTC CR register bits */
463 CLEAR_REG(RTC->CR);
464 WRITE_REG(RTC->DR, (uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
465 CLEAR_REG(RTC->TR);
466 WRITE_REG(RTC->WUTR, RTC_WUTR_WUT);
467 WRITE_REG(RTC->PRER, ((uint32_t)(RTC_PRER_PREDIV_A | 0xFFU)));
468 CLEAR_REG(RTC->ALRMAR);
469 CLEAR_REG(RTC->ALRMBR);
470 CLEAR_REG(RTC->SHIFTR);
471 CLEAR_REG(RTC->CALR);
472 CLEAR_REG(RTC->ALRMASSR);
473 CLEAR_REG(RTC->ALRMBSSR);
474 CLEAR_BIT(RTC->ICSR, (RTC_ICSR_BCDU_Msk | RTC_ICSR_BIN_Msk));
475 WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSOVF | RTC_SCR_CTSF | RTC_SCR_CWUTF | RTC_SCR_CALRBF | \
476 RTC_SCR_CALRAF);
477 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
478 CLEAR_REG(RTC->SECCFGR);
479 #endif /* (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
480 #if defined (RTC_PRIVCFGR_ALRAPRIV)
481 CLEAR_REG(RTC->PRIVCFGR);
482 #endif /* RTC_PRIVCFGR_ALRAPRIV */
483
484 /* Exit initialization mode */
485 status = RTC_ExitInitMode(hrtc);
486 if (status == HAL_OK)
487 {
488 /* Reset TAMP registers */
489 CLEAR_REG(TAMP->CR1);
490 CLEAR_REG(TAMP->CR2);
491 CLEAR_REG(TAMP->CR3);
492 CLEAR_REG(TAMP->FLTCR);
493 WRITE_REG(TAMP->ATCR1, TAMP_ATCR1_ATCKSEL);
494 CLEAR_REG(TAMP->ATOR);
495 CLEAR_REG(TAMP->ATCR2);
496 CLEAR_REG(TAMP->SECCFGR);
497 #if defined (TAMP_PRIVCFGR_TAMPPRIV)
498 CLEAR_REG(TAMP->PRIVCFGR);
499 #endif /* TAMP_PRIVCFGR_TAMPPRIV */
500 }
501 }
502
503 /* Enable the write protection for RTC registers */
504 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
505
506 if (status == HAL_OK)
507 {
508 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
509 if (hrtc->MspDeInitCallback == NULL)
510 {
511 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
512 }
513
514 /* DeInit the low level hardware: CLOCK, NVIC.*/
515 hrtc->MspDeInitCallback(hrtc);
516
517 #else
518 /* De-Initialize RTC MSP */
519 HAL_RTC_MspDeInit(hrtc);
520 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
521
522 /* Change RTC state */
523 hrtc->State = HAL_RTC_STATE_RESET;
524 }
525
526 /* Release Lock */
527 __HAL_UNLOCK(hrtc);
528
529 return status;
530 }
531
532 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
533 /**
534 * @brief Register a User RTC Callback
535 * To be used instead of the weak predefined callback
536 * @param hrtc RTC handle
537 * @param CallbackID ID of the callback to be registered
538 * This parameter can be one of the following values:
539 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
540 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
541 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
542 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
543 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
544 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
545 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
546 * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID
547 * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID
548 * @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID Tamper 6 Callback ID
549 * @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID Tamper 7 Callback ID
550 * @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID Tamper 8 Callback ID
551 * @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
552 * @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
553 * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
554 * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
555 * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
556 * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
557 * @arg @ref HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID Internal Tamper 7 Callback ID
558 * @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
559 * @arg @ref HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID Internal Tamper 9 Callback ID
560 * @arg @ref HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID Internal Tamper 11 Callback ID
561 * @arg @ref HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID Internal Tamper 12 Callback ID
562 * @arg @ref HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID Internal Tamper 13 Callback ID
563 * @arg @ref HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID Internal Tamper 15 Callback ID
564 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
565 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
566 * @param pCallback pointer to the Callback function
567 * @note The HAL_RTC_RegisterCallback() may be called before HAL_RTC_Init() in HAL_RTC_STATE_RESET
568 * to register callbacks for HAL_RTC_MSPINIT_CB_ID and HAL_RTC_MSPDEINIT_CB_ID.
569 * @retval HAL status
570 */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)571 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID,
572 pRTC_CallbackTypeDef pCallback)
573 {
574 HAL_StatusTypeDef status = HAL_OK;
575
576 if (pCallback == NULL)
577 {
578 return HAL_ERROR;
579 }
580
581 if (HAL_RTC_STATE_READY == hrtc->State)
582 {
583 switch (CallbackID)
584 {
585 case HAL_RTC_ALARM_A_EVENT_CB_ID :
586 hrtc->AlarmAEventCallback = pCallback;
587 break;
588
589 case HAL_RTC_ALARM_B_EVENT_CB_ID :
590 hrtc->AlarmBEventCallback = pCallback;
591 break;
592
593 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
594 hrtc->TimeStampEventCallback = pCallback;
595 break;
596
597 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
598 hrtc->WakeUpTimerEventCallback = pCallback;
599 break;
600
601 case HAL_RTC_SSRU_EVENT_CB_ID :
602 hrtc->SSRUEventCallback = pCallback;
603 break;
604
605 case HAL_RTC_TAMPER1_EVENT_CB_ID :
606 hrtc->Tamper1EventCallback = pCallback;
607 break;
608
609 case HAL_RTC_TAMPER2_EVENT_CB_ID :
610 hrtc->Tamper2EventCallback = pCallback;
611 break;
612
613 case HAL_RTC_TAMPER3_EVENT_CB_ID :
614 hrtc->Tamper3EventCallback = pCallback;
615 break;
616
617 case HAL_RTC_TAMPER4_EVENT_CB_ID :
618 hrtc->Tamper4EventCallback = pCallback;
619 break;
620
621 case HAL_RTC_TAMPER5_EVENT_CB_ID :
622 hrtc->Tamper5EventCallback = pCallback;
623 break;
624
625 case HAL_RTC_TAMPER6_EVENT_CB_ID :
626 hrtc->Tamper6EventCallback = pCallback;
627 break;
628
629 case HAL_RTC_TAMPER7_EVENT_CB_ID :
630 hrtc->Tamper7EventCallback = pCallback;
631 break;
632
633 case HAL_RTC_TAMPER8_EVENT_CB_ID :
634 hrtc->Tamper8EventCallback = pCallback;
635 break;
636
637 case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
638 hrtc->InternalTamper1EventCallback = pCallback;
639 break;
640
641 case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
642 hrtc->InternalTamper2EventCallback = pCallback;
643 break;
644
645 case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
646 hrtc->InternalTamper3EventCallback = pCallback;
647 break;
648
649 case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
650 hrtc->InternalTamper4EventCallback = pCallback;
651 break;
652
653 case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
654 hrtc->InternalTamper5EventCallback = pCallback;
655 break;
656
657 case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
658 hrtc->InternalTamper6EventCallback = pCallback;
659 break;
660
661 case HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID :
662 hrtc->InternalTamper7EventCallback = pCallback;
663 break;
664
665 case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
666 hrtc->InternalTamper8EventCallback = pCallback;
667 break;
668
669 case HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID :
670 hrtc->InternalTamper9EventCallback = pCallback;
671 break;
672
673 case HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID :
674 hrtc->InternalTamper11EventCallback = pCallback;
675 break;
676
677 case HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID :
678 hrtc->InternalTamper12EventCallback = pCallback;
679 break;
680
681 case HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID :
682 hrtc->InternalTamper13EventCallback = pCallback;
683 break;
684
685 case HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID :
686 hrtc->InternalTamper15EventCallback = pCallback;
687 break;
688
689 case HAL_RTC_MSPINIT_CB_ID :
690 hrtc->MspInitCallback = pCallback;
691 break;
692
693 case HAL_RTC_MSPDEINIT_CB_ID :
694 hrtc->MspDeInitCallback = pCallback;
695 break;
696
697 default :
698 /* Return error status */
699 status = HAL_ERROR;
700 break;
701 }
702 }
703 else if (HAL_RTC_STATE_RESET == hrtc->State)
704 {
705 switch (CallbackID)
706 {
707 case HAL_RTC_MSPINIT_CB_ID :
708 hrtc->MspInitCallback = pCallback;
709 break;
710
711 case HAL_RTC_MSPDEINIT_CB_ID :
712 hrtc->MspDeInitCallback = pCallback;
713 break;
714
715 default :
716 /* Return error status */
717 status = HAL_ERROR;
718 break;
719 }
720 }
721 else
722 {
723 /* Return error status */
724 status = HAL_ERROR;
725 }
726
727 return status;
728 }
729
730 /**
731 * @brief Unregister an RTC Callback
732 * RTC callback is redirected to the weak predefined callback
733 * @param hrtc RTC handle
734 * @param CallbackID ID of the callback to be unregistered
735 * This parameter can be one of the following values:
736 * This parameter can be one of the following values:
737 * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
738 * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
739 * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
740 * @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Callback ID
741 * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
742 * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
743 * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
744 * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
745 * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID
746 * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID
747 * @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID Tamper 6 Callback ID
748 * @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID Tamper 7 Callback ID
749 * @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID Tamper 8 Callback ID
750 * @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID Internal Tamper 1 Callback ID
751 * @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID Internal Tamper 2 Callback ID
752 * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
753 * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
754 * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
755 * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
756 * @arg @ref HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID Internal Tamper 7 Callback ID
757 * @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID Internal Tamper 8 Callback ID
758 * @arg @ref HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID Internal Tamper 9 Callback ID
759 * @arg @ref HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID Internal Tamper 11 Callback ID
760 * @arg @ref HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID Internal Tamper 12 Callback ID
761 * @arg @ref HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID Internal Tamper 13 Callback ID
762 * @arg @ref HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID Internal Tamper 15 Callback ID
763 * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
764 * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
765 * @note The HAL_RTC_UnRegisterCallback() may be called before HAL_RTC_Init() in HAL_RTC_STATE_RESET
766 * to un-register callbacks for HAL_RTC_MSPINIT_CB_ID and HAL_RTC_MSPDEINIT_CB_ID.
767 * @retval HAL status
768 */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)769 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
770 {
771 HAL_StatusTypeDef status = HAL_OK;
772
773 if (HAL_RTC_STATE_READY == hrtc->State)
774 {
775 switch (CallbackID)
776 {
777 case HAL_RTC_ALARM_A_EVENT_CB_ID :
778 /* Legacy weak AlarmAEventCallback */
779 hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;
780 break;
781
782 case HAL_RTC_ALARM_B_EVENT_CB_ID :
783 /* Legacy weak AlarmBEventCallback */
784 hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;
785 break;
786
787 case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
788 /* Legacy weak TimeStampEventCallback */
789 hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;
790 break;
791
792 case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
793 /* Legacy weak WakeUpTimerEventCallback */
794 hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback;
795 break;
796
797 case HAL_RTC_SSRU_EVENT_CB_ID :
798 /* Legacy weak SSRUEventCallback */
799 hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;
800 break;
801
802 case HAL_RTC_TAMPER1_EVENT_CB_ID :
803 /* Legacy weak Tamper1EventCallback */
804 hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;
805 break;
806
807 case HAL_RTC_TAMPER2_EVENT_CB_ID :
808 /* Legacy weak Tamper2EventCallback */
809 hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;
810 break;
811
812 case HAL_RTC_TAMPER3_EVENT_CB_ID :
813 /* Legacy weak Tamper3EventCallback */
814 hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;
815 break;
816
817 case HAL_RTC_TAMPER4_EVENT_CB_ID :
818 /* Legacy weak Tamper4EventCallback */
819 hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback;
820 break;
821
822 case HAL_RTC_TAMPER5_EVENT_CB_ID :
823 /* Legacy weak Tamper5EventCallback */
824 hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback;
825 break;
826
827 case HAL_RTC_TAMPER6_EVENT_CB_ID :
828 /* Legacy weak Tamper6EventCallback */
829 hrtc->Tamper6EventCallback = HAL_RTCEx_Tamper6EventCallback;
830 break;
831
832 case HAL_RTC_TAMPER7_EVENT_CB_ID :
833 /* Legacy weak Tamper7EventCallback */
834 hrtc->Tamper7EventCallback = HAL_RTCEx_Tamper7EventCallback;
835 break;
836
837 case HAL_RTC_TAMPER8_EVENT_CB_ID :
838 /* Legacy weak Tamper8EventCallback */
839 hrtc->Tamper8EventCallback = HAL_RTCEx_Tamper8EventCallback;
840 break;
841
842 case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
843 /* Legacy weak InternalTamper1EventCallback */
844 hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;
845 break;
846
847 case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
848 /* Legacy weak InternalTamper2EventCallback */
849 hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;
850 break;
851
852 case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
853 /* Legacy weak InternalTamper3EventCallback */
854 hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;
855 break;
856
857 case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
858 /* Legacy weak InternalTamper4EventCallback */
859 hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback;
860 break;
861
862 case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
863 /* Legacy weak InternalTamper5EventCallback */
864 hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;
865 break;
866
867 case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
868 /* Legacy weak InternalTamper6EventCallback */
869 hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback;
870 break;
871
872 case HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID :
873 /* Legacy weak InternalTamper7EventCallback */
874 hrtc->InternalTamper7EventCallback = HAL_RTCEx_InternalTamper7EventCallback;
875 break;
876
877 case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
878 /* Legacy weak InternalTamper8EventCallback */
879 hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;
880 break;
881
882 case HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID :
883 /* Legacy weak InternalTamper9EventCallback */
884 hrtc->InternalTamper9EventCallback = HAL_RTCEx_InternalTamper9EventCallback;
885 break;
886
887 case HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID :
888 /* Legacy weak InternalTamper11EventCallback */
889 hrtc->InternalTamper11EventCallback = HAL_RTCEx_InternalTamper11EventCallback;
890 break;
891
892 case HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID :
893 /* Legacy weak InternalTamper12EventCallback */
894 hrtc->InternalTamper12EventCallback = HAL_RTCEx_InternalTamper12EventCallback;
895 break;
896
897 case HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID :
898 /* Legacy weak InternalTamper13EventCallback */
899 hrtc->InternalTamper13EventCallback = HAL_RTCEx_InternalTamper13EventCallback;
900 break;
901
902 case HAL_RTC_INTERNAL_TAMPER15_EVENT_CB_ID :
903 /* Legacy weak InternalTamper15EventCallback */
904 hrtc->InternalTamper15EventCallback = HAL_RTCEx_InternalTamper15EventCallback;
905 break;
906
907 case HAL_RTC_MSPINIT_CB_ID :
908 hrtc->MspInitCallback = HAL_RTC_MspInit;
909 break;
910
911 case HAL_RTC_MSPDEINIT_CB_ID :
912 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
913 break;
914
915 default :
916 /* Return error status */
917 status = HAL_ERROR;
918 break;
919 }
920 }
921 else if (HAL_RTC_STATE_RESET == hrtc->State)
922 {
923 switch (CallbackID)
924 {
925 case HAL_RTC_MSPINIT_CB_ID :
926 hrtc->MspInitCallback = HAL_RTC_MspInit;
927 break;
928
929 case HAL_RTC_MSPDEINIT_CB_ID :
930 hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
931 break;
932
933 default :
934 /* Return error status */
935 status = HAL_ERROR;
936 break;
937 }
938 }
939 else
940 {
941 /* Return error status */
942 status = HAL_ERROR;
943 }
944
945 return status;
946 }
947 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
948
949 /**
950 * @brief Initialize the RTC MSP.
951 * @param hrtc RTC handle
952 * @retval None
953 */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)954 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
955 {
956 /* Prevent unused argument(s) compilation warning */
957 UNUSED(hrtc);
958
959 /* NOTE : This function should not be modified, when the callback is needed,
960 the HAL_RTC_MspInit could be implemented in the user file
961 */
962 }
963
964 /**
965 * @brief DeInitialize the RTC MSP.
966 * @param hrtc RTC handle
967 * @retval None
968 */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)969 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
970 {
971 /* Prevent unused argument(s) compilation warning */
972 UNUSED(hrtc);
973
974 /* NOTE : This function should not be modified, when the callback is needed,
975 the HAL_RTC_MspDeInit could be implemented in the user file
976 */
977 }
978
979 /**
980 * @}
981 */
982
983 /** @addtogroup RTC_Exported_Functions_Group2
984 * @brief RTC Time and Date functions
985 *
986 @verbatim
987 ===============================================================================
988 ##### RTC Time and Date functions #####
989 ===============================================================================
990
991 [..] This section provides functions allowing to configure Time and Date features
992
993 @endverbatim
994 * @{
995 */
996
997 /**
998 * @brief Set RTC current time.
999 * @param hrtc RTC handle
1000 * @param sTime Pointer to Time structure
1001 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically
1002 * reset to 0xFFFFFFFF
1003 * else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the
1004 * A 7-bit async prescaler (RTC_PRER_PREDIV_A)
1005 * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
1006 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1007 * else this parameter can be one of the following values
1008 * @arg RTC_FORMAT_BIN: Binary format
1009 * @arg RTC_FORMAT_BCD: BCD format
1010 * @retval HAL status
1011 */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1012 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1013 {
1014 uint32_t tmpreg;
1015 HAL_StatusTypeDef status;
1016
1017 #ifdef USE_FULL_ASSERT
1018 /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration */
1019 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1020 {
1021 /* Check the parameters */
1022 assert_param(IS_RTC_FORMAT(Format));
1023 }
1024 #endif /* USE_FULL_ASSERT */
1025
1026 /* Process Locked */
1027 __HAL_LOCK(hrtc);
1028
1029 /* Change RTC state */
1030 hrtc->State = HAL_RTC_STATE_BUSY;
1031
1032 /* Disable the write protection for RTC registers */
1033 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1034
1035 /* Enter Initialization mode */
1036 status = RTC_EnterInitMode(hrtc);
1037 if (status == HAL_OK)
1038 {
1039 /* Check Binary mode ((32-bit free-running counter) */
1040 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
1041 {
1042 if (Format == RTC_FORMAT_BIN)
1043 {
1044 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1045 {
1046 assert_param(IS_RTC_HOUR12(sTime->Hours));
1047 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1048 }
1049 else
1050 {
1051 sTime->TimeFormat = 0x00U;
1052 assert_param(IS_RTC_HOUR24(sTime->Hours));
1053 }
1054 assert_param(IS_RTC_MINUTES(sTime->Minutes));
1055 assert_param(IS_RTC_SECONDS(sTime->Seconds));
1056
1057 tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
1058 ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1059 ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
1060 (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
1061 }
1062 else
1063 {
1064 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1065 {
1066 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
1067 assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1068 }
1069 else
1070 {
1071 sTime->TimeFormat = 0x00U;
1072 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
1073 }
1074 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
1075 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
1076 tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
1077 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1078 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
1079 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
1080 }
1081
1082 /* Set the RTC_TR register */
1083 WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
1084
1085 /* Clear the bits to be configured */
1086 CLEAR_BIT(RTC->CR, RTC_CR_BKP);
1087 }
1088
1089 /* Exit Initialization mode */
1090 status = RTC_ExitInitMode(hrtc);
1091 }
1092
1093 /* Enable the write protection for RTC registers */
1094 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1095
1096 if (status == HAL_OK)
1097 {
1098 /* Change RTC state */
1099 hrtc->State = HAL_RTC_STATE_READY;
1100 }
1101
1102 /* Process Unlocked */
1103 __HAL_UNLOCK(hrtc);
1104
1105 return status;
1106 }
1107
1108 /**
1109 * @brief Get RTC current time.
1110 * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
1111 * value in second fraction ratio with time unit following generic formula:
1112 * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
1113 * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
1114 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1115 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1116 * Reading RTC current time locks the values in calendar shadow registers until Current date is read
1117 * to ensure consistency between the time and date values.
1118 * @param hrtc RTC handle
1119 * @param sTime
1120 * if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
1121 * else
1122 * Pointer to Time structure with Hours, Minutes and Seconds fields returned
1123 * with input format (BIN or BCD), also SubSeconds field returning the
1124 * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
1125 * factor to be used for second fraction ratio computation.
1126 * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
1127 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1128 * else this parameter can be one of the following values:
1129 * @arg RTC_FORMAT_BIN: Binary format
1130 * @arg RTC_FORMAT_BCD: BCD format
1131 * @retval HAL status
1132 */
HAL_RTC_GetTime(const RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1133 HAL_StatusTypeDef HAL_RTC_GetTime(const RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1134 {
1135 uint32_t tmpreg;
1136
1137 /* Prevent unused argument(s) compilation warning */
1138 UNUSED(hrtc);
1139
1140 /* Get subseconds structure field from the corresponding register */
1141 sTime->SubSeconds = READ_REG(RTC->SSR);
1142
1143 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
1144 {
1145 /* Check the parameters */
1146 assert_param(IS_RTC_FORMAT(Format));
1147
1148 /* Get SecondFraction structure field from the corresponding register field */
1149 sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
1150
1151 /* Get the TR register */
1152 tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
1153
1154 /* Fill the structure fields with the read parameters */
1155 sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
1156 sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
1157 sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
1158 sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
1159
1160 /* Check the input parameters format */
1161 if (Format == RTC_FORMAT_BIN)
1162 {
1163 /* Convert the time structure parameters to Binary format */
1164 sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
1165 sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
1166 sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
1167 }
1168 }
1169
1170 return HAL_OK;
1171 }
1172
1173 /**
1174 * @brief Set RTC current date.
1175 * @param hrtc RTC handle
1176 * @param sDate Pointer to date structure
1177 * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1178 * This parameter can be one of the following values:
1179 * @arg RTC_FORMAT_BIN: Binary format
1180 * @arg RTC_FORMAT_BCD: BCD format
1181 * @retval HAL status
1182 */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1183 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1184 {
1185 uint32_t datetmpreg;
1186 HAL_StatusTypeDef status;
1187
1188 /* Check the parameters */
1189 assert_param(IS_RTC_FORMAT(Format));
1190
1191 /* Process Locked */
1192 __HAL_LOCK(hrtc);
1193
1194 /* Change RTC state */
1195 hrtc->State = HAL_RTC_STATE_BUSY;
1196
1197 if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
1198 {
1199 sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
1200 }
1201
1202 assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
1203
1204 if (Format == RTC_FORMAT_BIN)
1205 {
1206 assert_param(IS_RTC_YEAR(sDate->Year));
1207 assert_param(IS_RTC_MONTH(sDate->Month));
1208 assert_param(IS_RTC_DATE(sDate->Date));
1209
1210 datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
1211 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
1212 ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
1213 ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
1214 }
1215 else
1216 {
1217 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
1218 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
1219 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
1220
1221 datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
1222 (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
1223 (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
1224 (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
1225 }
1226
1227 /* Disable the write protection for RTC registers */
1228 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1229
1230 /* Enter Initialization mode */
1231 status = RTC_EnterInitMode(hrtc);
1232 if (status == HAL_OK)
1233 {
1234 /* Set the RTC_DR register */
1235 WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
1236
1237 /* Exit Initialization mode */
1238 status = RTC_ExitInitMode(hrtc);
1239 }
1240
1241 /* Enable the write protection for RTC registers */
1242 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1243
1244 if (status == HAL_OK)
1245 {
1246 /* Change RTC state */
1247 hrtc->State = HAL_RTC_STATE_READY;
1248 }
1249
1250 /* Process Unlocked */
1251 __HAL_UNLOCK(hrtc);
1252
1253 return status;
1254 }
1255
1256 /**
1257 * @brief Get RTC current date.
1258 * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1259 * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1260 * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1261 * @param hrtc RTC handle
1262 * @param sDate Pointer to Date structure
1263 * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1264 * This parameter can be one of the following values:
1265 * @arg RTC_FORMAT_BIN: Binary format
1266 * @arg RTC_FORMAT_BCD: BCD format
1267 * @retval HAL status
1268 */
HAL_RTC_GetDate(const RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1269 HAL_StatusTypeDef HAL_RTC_GetDate(const RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1270 {
1271 uint32_t datetmpreg;
1272
1273 /* Prevent unused argument(s) compilation warning */
1274 UNUSED(hrtc);
1275
1276 /* Check the parameters */
1277 assert_param(IS_RTC_FORMAT(Format));
1278
1279 /* Get the DR register */
1280 datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
1281
1282 /* Fill the structure fields with the read parameters */
1283 sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1284 sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1285 sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1286 sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1287
1288 /* Check the input parameters format */
1289 if (Format == RTC_FORMAT_BIN)
1290 {
1291 /* Convert the date structure parameters to Binary format */
1292 sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1293 sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1294 sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1295 }
1296 return HAL_OK;
1297 }
1298
1299 /**
1300 * @brief Daylight Saving Time, Add one hour to the calendar in one single operation
1301 * without going through the initialization procedure.
1302 * @param hrtc RTC handle
1303 * @retval None
1304 */
HAL_RTC_DST_Add1Hour(const RTC_HandleTypeDef * hrtc)1305 void HAL_RTC_DST_Add1Hour(const RTC_HandleTypeDef *hrtc)
1306 {
1307 /* Prevent unused argument(s) compilation warning */
1308 UNUSED(hrtc);
1309
1310 /* Disable the write protection for RTC registers */
1311 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1312
1313 /* Set RTC_CR_ADD1H Bit */
1314 SET_BIT(RTC->CR, RTC_CR_ADD1H);
1315
1316 /* Enable the write protection for RTC registers */
1317 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1318 }
1319
1320 /**
1321 * @brief Daylight Saving Time, Subtract one hour from the calendar in one
1322 * single operation without going through the initialization procedure.
1323 * @param hrtc RTC handle
1324 * @retval None
1325 */
HAL_RTC_DST_Sub1Hour(const RTC_HandleTypeDef * hrtc)1326 void HAL_RTC_DST_Sub1Hour(const RTC_HandleTypeDef *hrtc)
1327 {
1328 /* Prevent unused argument(s) compilation warning */
1329 UNUSED(hrtc);
1330
1331 /* Disable the write protection for RTC registers */
1332 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1333
1334 /* Set RTC_CR_SUB1H Bit */
1335 SET_BIT(RTC->CR, RTC_CR_SUB1H);
1336
1337 /* Enable the write protection for RTC registers */
1338 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1339 }
1340
1341 /**
1342 * @brief Daylight Saving Time, Set the store operation bit.
1343 * @note It can be used by the software in order to memorize the DST status.
1344 * @param hrtc RTC handle
1345 * @retval None
1346 */
HAL_RTC_DST_SetStoreOperation(const RTC_HandleTypeDef * hrtc)1347 void HAL_RTC_DST_SetStoreOperation(const RTC_HandleTypeDef *hrtc)
1348 {
1349 /* Prevent unused argument(s) compilation warning */
1350 UNUSED(hrtc);
1351
1352 /* Set RTC_CR_BKP Bit */
1353 SET_BIT(RTC->CR, RTC_CR_BKP);
1354 }
1355
1356 /**
1357 * @brief Daylight Saving Time, Clear the store operation bit.
1358 * @param hrtc RTC handle
1359 * @retval None
1360 */
HAL_RTC_DST_ClearStoreOperation(const RTC_HandleTypeDef * hrtc)1361 void HAL_RTC_DST_ClearStoreOperation(const RTC_HandleTypeDef *hrtc)
1362 {
1363 /* Prevent unused argument(s) compilation warning */
1364 UNUSED(hrtc);
1365
1366 /* Clear RTC_CR_BKP Bit */
1367 CLEAR_BIT(RTC->CR, RTC_CR_BKP);
1368 }
1369
1370 /**
1371 * @brief Daylight Saving Time, Read the store operation bit.
1372 * @param hrtc RTC handle
1373 * @retval operation see RTC_StoreOperation_Definitions
1374 */
HAL_RTC_DST_ReadStoreOperation(const RTC_HandleTypeDef * hrtc)1375 uint32_t HAL_RTC_DST_ReadStoreOperation(const RTC_HandleTypeDef *hrtc)
1376 {
1377 /* Prevent unused argument(s) compilation warning */
1378 UNUSED(hrtc);
1379
1380 /* Get RTC_CR_BKP Bit */
1381 return READ_BIT(RTC->CR, RTC_CR_BKP);
1382 }
1383
1384
1385 /**
1386 * @}
1387 */
1388
1389 /** @addtogroup RTC_Exported_Functions_Group3
1390 * @brief RTC Alarm functions
1391 *
1392 @verbatim
1393 ===============================================================================
1394 ##### RTC Alarm functions #####
1395 ===============================================================================
1396
1397 [..] This section provides functions allowing to configure Alarm feature
1398
1399 @endverbatim
1400 * @{
1401 */
1402 /**
1403 * @brief Set the specified RTC Alarm.
1404 * @param hrtc RTC handle
1405 * @param sAlarm Pointer to Alarm structure
1406 * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1407 * sAlarm->AlarmTime.SubSeconds
1408 * sAlarm->AlarmSubSecondMask
1409 * sAlarm->BinaryAutoClr
1410 * @param Format of the entered parameters.
1411 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1412 * else this parameter can be one of the following values
1413 * @arg RTC_FORMAT_BIN: Binary format
1414 * @arg RTC_FORMAT_BCD: BCD format
1415 * @retval HAL status
1416 */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1417 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1418 {
1419 uint32_t tmpreg = 0;
1420 uint32_t binary_mode;
1421
1422 /* Process Locked */
1423 __HAL_LOCK(hrtc);
1424
1425 /* Change RTC state */
1426 hrtc->State = HAL_RTC_STATE_BUSY;
1427
1428 #ifdef USE_FULL_ASSERT
1429 /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration) */
1430 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1431 {
1432 assert_param(IS_RTC_FORMAT(Format));
1433 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1434 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1435 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1436 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1437 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1438 }
1439 else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1440 {
1441 assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1442 assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1443 }
1444 else /* RTC_BINARY_MIX */
1445 {
1446 assert_param(IS_RTC_FORMAT(Format));
1447 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1448 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1449 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1450 /* In Binary Mix Mode, the RTC can not generate an alarm on a match
1451 involving all calendar items + the upper SSR bits */
1452 assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <=
1453 (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1454 }
1455 #endif /* USE_FULL_ASSERT */
1456
1457 /* Get Binary mode (32-bit free-running counter configuration) */
1458 binary_mode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1459
1460 if (binary_mode != RTC_BINARY_ONLY)
1461 {
1462 if (Format == RTC_FORMAT_BIN)
1463 {
1464 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1465 {
1466 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1467 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1468 }
1469 else
1470 {
1471 sAlarm->AlarmTime.TimeFormat = 0x00U;
1472 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1473 }
1474 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1475 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1476
1477 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1478 {
1479 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1480 }
1481 else
1482 {
1483 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1484 }
1485 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1486 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1487 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1488 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1489 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1490 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1491 ((uint32_t)sAlarm->AlarmMask));
1492 }
1493 else /* format BCD */
1494 {
1495 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1496 {
1497 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1498 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1499 }
1500 else
1501 {
1502 sAlarm->AlarmTime.TimeFormat = 0x00U;
1503 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1504 }
1505
1506 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1507 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1508
1509 #ifdef USE_FULL_ASSERT
1510 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1511 {
1512 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1513 }
1514 else
1515 {
1516 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1517 }
1518
1519 #endif /* USE_FULL_ASSERT */
1520 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1521 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1522 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1523 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1524 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1525 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1526 ((uint32_t)sAlarm->AlarmMask));
1527 }
1528 }
1529
1530 /* Configure the Alarm register */
1531 if (sAlarm->Alarm == RTC_ALARM_A)
1532 {
1533 /* Disable the Alarm A interrupt */
1534
1535 /* In case of interrupt mode is used, the interrupt source must disabled */
1536 CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1537
1538 /* Clear flag alarm A */
1539 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1540
1541 if (binary_mode == RTC_BINARY_ONLY)
1542 {
1543 WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1544 }
1545 else
1546 {
1547 WRITE_REG(RTC->ALRMAR, tmpreg);
1548 WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1549 }
1550
1551 WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1552
1553 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1554 {
1555 /* Configure the Alarm A output clear */
1556 SET_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1557 }
1558 else
1559 {
1560 /* Disable the Alarm A output clear */
1561 CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1562 }
1563 /* Configure the Alarm state: Enable Alarm */
1564 SET_BIT(RTC->CR, RTC_CR_ALRAE);
1565 }
1566 else
1567 {
1568 /* Disable the Alarm B interrupt */
1569
1570 /* In case of interrupt mode is used, the interrupt source must disabled */
1571 CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1572
1573 /* Clear flag alarm B */
1574 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1575
1576 if (binary_mode == RTC_BINARY_ONLY)
1577 {
1578 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1579 }
1580 else
1581 {
1582 WRITE_REG(RTC->ALRMBR, tmpreg);
1583
1584 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1585 }
1586
1587 WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1588
1589 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1590 {
1591 /* Configure the Alarm B output clear */
1592 SET_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1593 }
1594 else
1595 {
1596 /* Disable the Alarm B output clear */
1597 CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1598 }
1599
1600 /* Configure the Alarm state: Enable Alarm */
1601 SET_BIT(RTC->CR, RTC_CR_ALRBE);
1602 }
1603
1604 /* Change RTC state */
1605 hrtc->State = HAL_RTC_STATE_READY;
1606
1607 /* Process Unlocked */
1608 __HAL_UNLOCK(hrtc);
1609
1610 return HAL_OK;
1611 }
1612
1613 /**
1614 * @brief Set the specified RTC Alarm with Interrupt.
1615 * @note The application must ensure that the EXTI RTC interrupt line is enabled.
1616 * @param hrtc RTC handle
1617 * @param sAlarm Pointer to Alarm structure
1618 * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1619 * sAlarm->AlarmTime.SubSeconds
1620 * sAlarm->AlarmSubSecondMask
1621 * sAlarm->BinaryAutoClr
1622 * @param Format Specifies the format of the entered parameters.
1623 * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1624 * else this parameter can be one of the following values
1625 * @arg RTC_FORMAT_BIN: Binary format
1626 * @arg RTC_FORMAT_BCD: BCD format
1627 * @retval HAL status
1628 */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1629 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1630 {
1631 uint32_t tmpreg = 0;
1632 uint32_t binary_mode;
1633
1634 /* Process Locked */
1635 __HAL_LOCK(hrtc);
1636
1637 /* Change RTC state */
1638 hrtc->State = HAL_RTC_STATE_BUSY;
1639
1640 #ifdef USE_FULL_ASSERT
1641 /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration) */
1642 if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1643 {
1644 assert_param(IS_RTC_FORMAT(Format));
1645 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1646 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1647 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1648 assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1649 assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1650 }
1651 else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1652 {
1653 assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1654 assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1655 }
1656 else /* RTC_BINARY_MIX */
1657 {
1658 assert_param(IS_RTC_FORMAT(Format));
1659 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1660 assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1661 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1662 /* In Binary Mix Mode, the RTC can not generate an alarm on a match
1663 involving all calendar items + the upper SSR bits */
1664 assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <=
1665 (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1666 }
1667 #endif /* USE_FULL_ASSERT */
1668
1669 /* Get Binary mode (32-bit free-running counter configuration) */
1670 binary_mode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1671
1672 if (binary_mode != RTC_BINARY_ONLY)
1673 {
1674 if (Format == RTC_FORMAT_BIN)
1675 {
1676 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1677 {
1678 assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1679 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1680 }
1681 else
1682 {
1683 sAlarm->AlarmTime.TimeFormat = 0x00U;
1684 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1685 }
1686 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1687 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1688
1689 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1690 {
1691 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1692 }
1693 else
1694 {
1695 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1696 }
1697 tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1698 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1699 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1700 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1701 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1702 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1703 ((uint32_t)sAlarm->AlarmMask));
1704 }
1705 else /* Format BCD */
1706 {
1707 if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1708 {
1709 assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1710 assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1711 }
1712 else
1713 {
1714 sAlarm->AlarmTime.TimeFormat = 0x00U;
1715 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1716 }
1717
1718 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1719 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1720
1721 #ifdef USE_FULL_ASSERT
1722 if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1723 {
1724 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1725 }
1726 else
1727 {
1728 assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1729 }
1730
1731 #endif /* USE_FULL_ASSERT */
1732 tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1733 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1734 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1735 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1736 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1737 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1738 ((uint32_t)sAlarm->AlarmMask));
1739
1740 }
1741 }
1742
1743 /* Configure the Alarm registers */
1744 if (sAlarm->Alarm == RTC_ALARM_A)
1745 {
1746 /* Disable the Alarm A interrupt */
1747 CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1748
1749 /* Clear flag alarm A */
1750 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1751
1752 if (binary_mode == RTC_BINARY_ONLY)
1753 {
1754 RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
1755 }
1756 else
1757 {
1758 WRITE_REG(RTC->ALRMAR, tmpreg);
1759
1760 WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1761 }
1762
1763 WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1764
1765 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1766 {
1767 /* Configure the Alarm A output clear */
1768 SET_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1769 }
1770 else
1771 {
1772 /* Disable the Alarm A output clear */
1773 CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR);
1774 }
1775
1776 /* Configure the Alarm interrupt */
1777 SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1778 }
1779 else
1780 {
1781 /* Disable the Alarm B interrupt */
1782 CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1783
1784 /* Clear flag alarm B */
1785 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1786
1787 if (binary_mode == RTC_BINARY_ONLY)
1788 {
1789 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1790 }
1791 else
1792 {
1793 WRITE_REG(RTC->ALRMBR, tmpreg);
1794
1795 WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1796 }
1797
1798 WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1799
1800 if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1801 {
1802 /* Configure the Alarm B Output clear */
1803 SET_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1804 }
1805 else
1806 {
1807 /* Disable the Alarm B Output clear */
1808 CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR);
1809 }
1810
1811 /* Configure the Alarm interrupt */
1812 SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1813 }
1814
1815 /* Change RTC state */
1816 hrtc->State = HAL_RTC_STATE_READY;
1817
1818 /* Process Unlocked */
1819 __HAL_UNLOCK(hrtc);
1820
1821 return HAL_OK;
1822 }
1823
1824 /**
1825 * @brief Deactivate the specified RTC Alarm.
1826 * @param hrtc RTC handle
1827 * @param Alarm Specifies the Alarm.
1828 * This parameter can be one of the following values:
1829 * @arg RTC_ALARM_A: AlarmA
1830 * @arg RTC_ALARM_B: AlarmB
1831 * @retval HAL status
1832 */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1833 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1834 {
1835 /* Check the parameters */
1836 assert_param(IS_RTC_ALARM(Alarm));
1837
1838 /* Process Locked */
1839 __HAL_LOCK(hrtc);
1840
1841 /* Change RTC state */
1842 hrtc->State = HAL_RTC_STATE_BUSY;
1843
1844 /* In case of interrupt mode is used, the interrupt source must disabled */
1845 if (Alarm == RTC_ALARM_A)
1846 {
1847 CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1848
1849 /* AlarmA, Clear SSCLR */
1850 CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
1851 }
1852 else
1853 {
1854 CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1855
1856 /* AlarmB, Clear SSCLR */
1857 CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMBSSR_SSCLR);
1858 }
1859
1860 /* Change RTC state */
1861 hrtc->State = HAL_RTC_STATE_READY;
1862
1863 /* Process Unlocked */
1864 __HAL_UNLOCK(hrtc);
1865
1866 return HAL_OK;
1867 }
1868
1869 /**
1870 * @brief Get the RTC Alarm value and masks.
1871 * @param hrtc RTC handle
1872 * @param sAlarm Pointer to Date structure
1873 * @param Alarm Specifies the Alarm.
1874 * This parameter can be one of the following values:
1875 * @arg RTC_ALARM_A: AlarmA
1876 * @arg RTC_ALARM_B: AlarmB
1877 * @param Format Specifies the format of the entered parameters.
1878 * This parameter can be one of the following values:
1879 * @arg RTC_FORMAT_BIN: Binary format
1880 * @arg RTC_FORMAT_BCD: BCD format
1881 * @retval HAL status
1882 */
HAL_RTC_GetAlarm(const RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1883 HAL_StatusTypeDef HAL_RTC_GetAlarm(const RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm,
1884 uint32_t Format)
1885 {
1886 uint32_t tmpreg;
1887 uint32_t subsecondtmpreg;
1888
1889 /* Prevent unused argument(s) compilation warning */
1890 UNUSED(hrtc);
1891
1892 /* Check the parameters */
1893 assert_param(IS_RTC_FORMAT(Format));
1894 assert_param(IS_RTC_ALARM(Alarm));
1895
1896 if (Alarm == RTC_ALARM_A)
1897 {
1898 /* AlarmA */
1899 sAlarm->Alarm = RTC_ALARM_A;
1900
1901 tmpreg = READ_REG(RTC->ALRMAR);
1902 subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMASSR) & RTC_ALRMASSR_SS);
1903
1904 /* Fill the structure with the read parameters */
1905 sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1906 sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1907 sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
1908 sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
1909 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1910 sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1911 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
1912 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1913 }
1914 else
1915 {
1916 sAlarm->Alarm = RTC_ALARM_B;
1917
1918 tmpreg = READ_REG(RTC->ALRMBR);
1919 subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMBSSR) & RTC_ALRMBSSR_SS);
1920
1921 /* Fill the structure with the read parameters */
1922 sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
1923 sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
1924 sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
1925 sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
1926 sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1927 sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
1928 sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
1929 sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1930 }
1931
1932 if (Format == RTC_FORMAT_BIN)
1933 {
1934 sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1935 sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1936 sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1937 sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1938 }
1939
1940 return HAL_OK;
1941 }
1942
1943 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
1944 /**
1945 * @brief Handle Alarm secure interrupt request.
1946 * @param hrtc RTC handle
1947 * @retval None
1948 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1949 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1950 {
1951 /* Get interrupt status */
1952 uint32_t tmp = READ_REG(RTC->SMISR);
1953
1954 if ((tmp & RTC_SMISR_ALRAMF) != 0U)
1955 {
1956 /* Clear the AlarmA interrupt pending bit */
1957 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1958
1959 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1960 /* Call Compare Match registered Callback */
1961 hrtc->AlarmAEventCallback(hrtc);
1962 #else
1963 HAL_RTC_AlarmAEventCallback(hrtc);
1964 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1965 }
1966
1967 if ((tmp & RTC_SMISR_ALRBMF) != 0U)
1968 {
1969 /* Clear the AlarmB interrupt pending bit */
1970 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1971
1972 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1973 /* Call Compare Match registered Callback */
1974 hrtc->AlarmBEventCallback(hrtc);
1975 #else
1976 HAL_RTCEx_AlarmBEventCallback(hrtc);
1977 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1978
1979 }
1980
1981 /* Change RTC state */
1982 hrtc->State = HAL_RTC_STATE_READY;
1983 }
1984
1985 #else /* #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
1986
1987 /**
1988 * @brief Handle Alarm non-secure interrupt request.
1989 * @note Alarm non-secure is available in non-secure driver.
1990 * @param hrtc RTC handle
1991 * @retval None
1992 */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1993 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1994 {
1995 /* Get interrupt status */
1996 uint32_t tmp = READ_REG(RTC->MISR);
1997
1998 if ((tmp & RTC_MISR_ALRAMF) != 0U)
1999 {
2000 /* Clear the AlarmA interrupt pending bit */
2001 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
2002
2003 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2004 /* Call Compare Match registered Callback */
2005 hrtc->AlarmAEventCallback(hrtc);
2006 #else
2007 HAL_RTC_AlarmAEventCallback(hrtc);
2008 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
2009 }
2010
2011 if ((tmp & RTC_MISR_ALRBMF) != 0U)
2012 {
2013 /* Clear the AlarmB interrupt pending bit */
2014 WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
2015
2016 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2017 /* Call Compare Match registered Callback */
2018 hrtc->AlarmBEventCallback(hrtc);
2019 #else
2020 HAL_RTCEx_AlarmBEventCallback(hrtc);
2021 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
2022 }
2023
2024 /* Change RTC state */
2025 hrtc->State = HAL_RTC_STATE_READY;
2026 }
2027 #endif /* #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
2028
2029 /**
2030 * @brief Alarm A secure callback.
2031 * @param hrtc RTC handle
2032 * @retval None
2033 */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)2034 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
2035 {
2036 /* Prevent unused argument(s) compilation warning */
2037 UNUSED(hrtc);
2038
2039 /* NOTE : This function should not be modified, when the secure callback is needed,
2040 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
2041 */
2042 }
2043
2044 /**
2045 * @brief Handle Alarm A Polling request.
2046 * @param hrtc RTC handle
2047 * @param Timeout Timeout duration
2048 * @retval HAL status
2049 */
HAL_RTC_PollForAlarmAEvent(const RTC_HandleTypeDef * hrtc,uint32_t Timeout)2050 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(const RTC_HandleTypeDef *hrtc, uint32_t Timeout)
2051 {
2052 /* Prevent unused argument(s) compilation warning */
2053 UNUSED(hrtc);
2054
2055 uint32_t tickstart = HAL_GetTick();
2056
2057 while (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
2058 {
2059 if (Timeout != HAL_MAX_DELAY)
2060 {
2061 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2062 {
2063 /* New check to avoid false timeout detection in case of preemption */
2064 if (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
2065 {
2066 return HAL_TIMEOUT;
2067 }
2068 else
2069 {
2070 break;
2071 }
2072 }
2073 }
2074 }
2075
2076 /* Clear the Alarm interrupt pending bit */
2077 WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
2078
2079 return HAL_OK;
2080 }
2081
2082 /**
2083 * @}
2084 */
2085
2086 /** @addtogroup RTC_Exported_Functions_Group4
2087 * @brief Peripheral Control functions
2088 *
2089 @verbatim
2090 ===============================================================================
2091 ##### Peripheral Control functions #####
2092 ===============================================================================
2093 [..]
2094 This subsection provides functions allowing to
2095 (+) Wait for RTC Time and Date Synchronization
2096
2097 @endverbatim
2098 * @{
2099 */
2100
2101 /**
2102 * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
2103 * synchronized with RTC APB clock.
2104 * @note The RTC Resynchronization mode is write protected, use the
2105 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2106 * @note To read the calendar through the shadow registers after Calendar
2107 * initialization, calendar update or after wakeup from low power modes
2108 * the software must first clear the RSF flag.
2109 * The software must then wait until it is set again before reading
2110 * the calendar, which means that the calendar registers have been
2111 * correctly copied into the RTC_TR and RTC_DR shadow registers.
2112 * @param hrtc RTC handle
2113 * @retval HAL status
2114 */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)2115 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
2116 {
2117 uint32_t tickstart;
2118
2119 /* Clear RSF flag */
2120 CLEAR_BIT(RTC->ICSR, RTC_ICSR_RSF);
2121
2122 tickstart = HAL_GetTick();
2123
2124 /* Wait the registers to be synchronised */
2125 while (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
2126 {
2127 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2128 {
2129 /* New check to avoid false timeout detection in case of preemption */
2130 if (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
2131 {
2132 /* Change RTC state */
2133 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2134 return HAL_TIMEOUT;
2135 }
2136 else
2137 {
2138 break;
2139 }
2140 }
2141 }
2142
2143 return HAL_OK;
2144 }
2145
2146 /**
2147 * @}
2148 */
2149
2150 /** @addtogroup RTC_Exported_Functions_Group5
2151 * @brief Peripheral State functions
2152 *
2153 @verbatim
2154 ===============================================================================
2155 ##### Peripheral State functions #####
2156 ===============================================================================
2157 [..]
2158 This subsection provides functions allowing to
2159 (+) Get RTC state
2160
2161 @endverbatim
2162 * @{
2163 */
2164 /**
2165 * @brief Return the RTC handle state.
2166 * @param hrtc RTC handle
2167 * @retval HAL state
2168 */
HAL_RTC_GetState(const RTC_HandleTypeDef * hrtc)2169 HAL_RTCStateTypeDef HAL_RTC_GetState(const RTC_HandleTypeDef *hrtc)
2170 {
2171 /* Return RTC handle state */
2172 return hrtc->State;
2173 }
2174
2175 /**
2176 * @}
2177 */
2178 /**
2179 * @}
2180 */
2181
2182 /** @addtogroup RTC_Private_Functions
2183 * @{
2184 */
2185 /**
2186 * @brief Enter the RTC Initialization mode.
2187 * @note The RTC Initialization mode is write protected, use the
2188 * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2189 * @param hrtc RTC handle
2190 * @retval HAL status
2191 */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)2192 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
2193 {
2194 uint32_t tickstart;
2195 HAL_StatusTypeDef status = HAL_OK;
2196
2197 /* Check if the Initialization mode is set */
2198 if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
2199 {
2200 /* Set the Initialization mode */
2201 SET_BIT(RTC->ICSR, RTC_ICSR_INIT);
2202
2203 tickstart = HAL_GetTick();
2204 /* Wait till RTC is in INIT state and if Time out is reached exit */
2205 while ((READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
2206 {
2207 if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2208 {
2209 /* New check to avoid false timeout detection in case of preemption */
2210 if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
2211 {
2212 status = HAL_TIMEOUT;
2213
2214 /* Change RTC state */
2215 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2216 }
2217 else
2218 {
2219 break;
2220 }
2221 }
2222 }
2223 }
2224
2225 return status;
2226 }
2227
2228 /**
2229 * @brief Exit the RTC Initialization mode.
2230 * @param hrtc RTC handle
2231 * @retval HAL status
2232 */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)2233 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
2234 {
2235 HAL_StatusTypeDef status = HAL_OK;
2236
2237 /* Exit Initialization mode */
2238 CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
2239
2240 /* If CR_BYPSHAD bit = 0, wait for synchro */
2241 if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
2242 {
2243 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2244 {
2245 /* Change RTC state */
2246 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2247 status = HAL_TIMEOUT;
2248 }
2249 }
2250 else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry. */
2251 {
2252 /* Clear BYPSHAD bit */
2253 CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
2254 if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2255 {
2256 /* Change RTC state */
2257 hrtc->State = HAL_RTC_STATE_TIMEOUT;
2258 status = HAL_TIMEOUT;
2259 }
2260 /* Restore BYPSHAD bit */
2261 SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
2262 }
2263 return status;
2264 }
2265
2266 /**
2267 * @brief Convert a 2 digit decimal to BCD format.
2268 * @param Value Byte to be converted
2269 * @retval Converted byte
2270 */
RTC_ByteToBcd2(uint8_t Value)2271 uint8_t RTC_ByteToBcd2(uint8_t Value)
2272 {
2273 uint32_t bcd_high = 0U;
2274 uint8_t tmp_value = Value;
2275
2276 while (tmp_value >= 10U)
2277 {
2278 bcd_high++;
2279 tmp_value -= 10U;
2280 }
2281
2282 return ((uint8_t)(bcd_high << 4U) | tmp_value);
2283 }
2284
2285 /**
2286 * @brief Convert from 2 digit BCD to Binary.
2287 * @param Value BCD value to be converted
2288 * @retval Converted word
2289 */
RTC_Bcd2ToByte(uint8_t Value)2290 uint8_t RTC_Bcd2ToByte(uint8_t Value)
2291 {
2292 uint32_t tmp;
2293
2294 tmp = (((uint32_t)Value & 0xF0U) >> 4) * 10U;
2295
2296 return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU));
2297 }
2298
2299 /**
2300 * @}
2301 */
2302
2303 #endif /* HAL_RTC_MODULE_ENABLED */
2304 /**
2305 * @}
2306 */
2307
2308 /**
2309 * @}
2310 */
2311