1 /**
2 ******************************************************************************
3 * @file stm32f7xx_hal_hash.c
4 * @author MCD Application Team
5 * @brief HASH HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the HASH peripheral:
8 * + Initialization and de-initialization methods
9 * + HASH or HMAC processing in polling mode
10 * + HASH or HMAC processing in interrupt mode
11 * + HASH or HMAC processing in DMA mode
12 * + Peripheral State methods
13 * + HASH or HMAC processing suspension/resumption
14 *
15 ******************************************************************************
16 * @attention
17 *
18 * Copyright (c) 2017 STMicroelectronics.
19 * All rights reserved.
20 *
21 * This software is licensed under terms that can be found in the LICENSE file
22 * in the root directory of this software component.
23 * If no LICENSE file comes with this software, it is provided AS-IS.
24 *
25 ******************************************************************************
26 @verbatim
27 ===============================================================================
28 ##### How to use this driver #####
29 ===============================================================================
30 [..]
31 The HASH HAL driver can be used as follows:
32
33 (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
34 (##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
35 (##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
36 (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
37 (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
38 (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
39 (##) When resorting to DMA-based APIs (e.g. HAL_HASH_xxx_Start_DMA())
40 (+++) Enable the DMAx interface clock using
41 __DMAx_CLK_ENABLE()
42 (+++) Configure and enable one DMA stream to manage data transfer from
43 memory to peripheral (input stream). Managing data transfer from
44 peripheral to memory can be performed only using CPU.
45 (+++) Associate the initialized DMA handle to the HASH DMA handle
46 using __HAL_LINKDMA()
47 (+++) Configure the priority and enable the NVIC for the transfer complete
48 interrupt on the DMA stream: use
49 HAL_NVIC_SetPriority() and
50 HAL_NVIC_EnableIRQ()
51
52 (#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
53 (##) resorts to HAL_HASH_MspInit() for low-level initialization,
54 (##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
55
56 (#)Three processing schemes are available:
57 (##) Polling mode: processing APIs are blocking functions
58 i.e. they process the data and wait till the digest computation is finished,
59 e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
60 (##) Interrupt mode: processing APIs are not blocking functions
61 i.e. they process the data under interrupt,
62 e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
63 (##) DMA mode: processing APIs are not blocking functions and the CPU is
64 not used for data transfer i.e. the data transfer is ensured by DMA,
65 e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
66 for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
67 is then required to retrieve the digest.
68
69 (#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
70 initialized and processes the buffer fed in input. When the input data have all been
71 fed to the Peripheral, the digest computation can start.
72
73 (#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
74 (##) In polling mode, only multi-buffer HASH processing is possible.
75 API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
76 User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
77 well the computed digest.
78
79 (##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
80 except for the last one.
81 User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
82 well the computed digest.
83
84 (##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
85 (+++) HASH processing: once initialization is done, MDMAT bit must be set
86 through __HAL_HASH_SET_MDMAT() macro.
87 From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
88 Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
89 macro then wrap-up the HASH processing in feeding the last input buffer through the
90 same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
91 API HAL_HASH_xxx_Finish().
92 (+++) HMAC processing (requires to resort to extended functions):
93 after initialization, the key and the first input buffer are entered
94 in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
95 starts step 2.
96 The following buffers are next entered with the API HAL_HMACEx_xxx_Step2_DMA(). At this
97 point, the HMAC processing is still carrying out step 2.
98 Then, step 2 for the last input buffer and step 3 are carried out by a single call
99 to HAL_HMACEx_xxx_Step2_3_DMA().
100
101 The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
102
103
104 (#)Context swapping.
105 (##) Two APIs are available to suspend HASH or HMAC processing:
106 (+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
107 (+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
108
109 (##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
110 to save in memory the Peripheral context. This context can be restored afterwards
111 to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
112
113 (##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
114 time, processing can be restarted with the same API call (same API, same handle,
115 same parameters) as done before the suspension. Relevant parameters to restart at
116 the proper location are internally saved in the HASH handle.
117
118 (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
119
120 *** Remarks on message length ***
121 ===================================
122 [..]
123 (#) HAL in interruption mode (interruptions driven)
124
125 (##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
126 This is why, for driver implementation simplicity s sake, user is requested to enter a message the
127 length of which is a multiple of 4 bytes.
128
129 (##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
130 to specify which bits to discard at the end of the complete message to process only the message bits
131 and not extra bits.
132
133 (##) If user needs to perform a hash computation of a large input buffer that is spread around various places
134 in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
135 necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
136 It is advised to the user to
137 (+++) achieve the first formatting operation by software then enter the data
138 (+++) while the Peripheral is processing the first input set, carry out the second formatting
139 operation by software, to be ready when DINIS occurs.
140 (+++) repeat step 2 until the whole message is processed.
141
142 [..]
143 (#) HAL in DMA mode
144
145 (##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
146 The same field described above in HASH_STR is used to specify which bits to discard at the end of the
147 DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
148 this is possible only at the end of the complete message. When several DMA transfers are needed to
149 enter the message, this is not applicable at the end of the intermediary transfers.
150
151 (##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
152 chunks of data by software while the DMA transfer and processing is on-going for the first parts of
153 the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
154 software formatting operation is more complex than in the IT mode.
155
156 *** Callback registration ***
157 ===================================
158 [..]
159 (#) The compilation define USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
160 allows the user to configure dynamically the driver callbacks.
161 Use function HAL_HASH_RegisterCallback() to register a user callback.
162
163 (#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
164 (+) InCpltCallback : callback for input completion.
165 (+) DgstCpltCallback : callback for digest computation completion.
166 (+) ErrorCallback : callback for error.
167 (+) MspInitCallback : HASH MspInit.
168 (+) MspDeInitCallback : HASH MspDeInit.
169 This function takes as parameters the HAL peripheral handle, the Callback ID
170 and a pointer to the user callback function.
171
172 (#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
173 weak (surcharged) function.
174 HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
175 and the Callback ID.
176 This function allows to reset following callbacks:
177 (+) InCpltCallback : callback for input completion.
178 (+) DgstCpltCallback : callback for digest computation completion.
179 (+) ErrorCallback : callback for error.
180 (+) MspInitCallback : HASH MspInit.
181 (+) MspDeInitCallback : HASH MspDeInit.
182
183 (#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
184 all callbacks are reset to the corresponding legacy weak (surcharged) functions:
185 examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
186 Exception done for MspInit and MspDeInit callbacks that are respectively
187 reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
188 and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
189 If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
190 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
191
192 Callbacks can be registered/unregistered in READY state only.
193 Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
194 in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
195 during the Init/DeInit.
196 In that case first register the MspInit/MspDeInit user callbacks
197 using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
198 or HAL_HASH_Init function.
199
200 When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
201 not defined, the callback registering feature is not available
202 and weak (surcharged) callbacks are used.
203
204 @endverbatim
205 ******************************************************************************
206 */
207
208 /* Includes ------------------------------------------------------------------*/
209 #include "stm32f7xx_hal.h"
210
211
212 /** @addtogroup STM32F7xx_HAL_Driver
213 * @{
214 */
215 #if defined (HASH)
216
217 /** @defgroup HASH HASH
218 * @brief HASH HAL module driver.
219 * @{
220 */
221
222 #ifdef HAL_HASH_MODULE_ENABLED
223
224 /* Private typedef -----------------------------------------------------------*/
225 /* Private define ------------------------------------------------------------*/
226 /** @defgroup HASH_Private_Constants HASH Private Constants
227 * @{
228 */
229
230 /** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
231 * @{
232 */
233 #define HASH_DIGEST_CALCULATION_NOT_STARTED ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
234 #define HASH_DIGEST_CALCULATION_STARTED ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register */
235 /**
236 * @}
237 */
238
239 /** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
240 * @{
241 */
242 #define HASH_NUMBER_OF_CSR_REGISTERS 54U /*!< Number of Context Swap Registers */
243 /**
244 * @}
245 */
246
247 /** @defgroup HASH_TimeOut_Value HASH TimeOut Value
248 * @{
249 */
250 #define HASH_TIMEOUTVALUE 1000U /*!< Time-out value */
251 /**
252 * @}
253 */
254
255 /** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
256 * @{
257 */
258 #define HASH_DMA_SUSPENSION_WORDS_LIMIT 20U /*!< Number of words below which DMA suspension is aborted */
259 /**
260 * @}
261 */
262
263 /**
264 * @}
265 */
266
267 /* Private macro -------------------------------------------------------------*/
268 /* Private variables ---------------------------------------------------------*/
269 /* Private function prototypes -----------------------------------------------*/
270 /** @defgroup HASH_Private_Functions HASH Private Functions
271 * @{
272 */
273 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
274 static void HASH_DMAError(DMA_HandleTypeDef *hdma);
275 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
276 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
277 uint32_t Timeout);
278 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
279 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
280 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
281 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
282 /**
283 * @}
284 */
285
286 /** @defgroup HASH_Exported_Functions HASH Exported Functions
287 * @{
288 */
289
290 /** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
291 * @brief Initialization, configuration and call-back functions.
292 *
293 @verbatim
294 ===============================================================================
295 ##### Initialization and de-initialization functions #####
296 ===============================================================================
297 [..] This section provides functions allowing to:
298 (+) Initialize the HASH according to the specified parameters
299 in the HASH_InitTypeDef and create the associated handle
300 (+) DeInitialize the HASH peripheral
301 (+) Initialize the HASH MCU Specific Package (MSP)
302 (+) DeInitialize the HASH MSP
303
304 [..] This section provides as well call back functions definitions for user
305 code to manage:
306 (+) Input data transfer to Peripheral completion
307 (+) Calculated digest retrieval completion
308 (+) Error management
309
310
311
312 @endverbatim
313 * @{
314 */
315
316 /**
317 * @brief Initialize the HASH according to the specified parameters in the
318 HASH_HandleTypeDef and create the associated handle.
319 * @note Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
320 * other configuration bits are set by HASH or HMAC processing APIs.
321 * @note MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
322 * multi-buffer HASH processing, user needs to resort to
323 * __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
324 * relevant APIs manage themselves the MDMAT bit.
325 * @param hhash HASH handle
326 * @retval HAL status
327 */
HAL_HASH_Init(HASH_HandleTypeDef * hhash)328 HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
329 {
330 /* Check the hash handle allocation */
331 if (hhash == NULL)
332 {
333 return HAL_ERROR;
334 }
335
336 /* Check the parameters */
337 assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
338
339 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
340 if (hhash->State == HAL_HASH_STATE_RESET)
341 {
342 /* Allocate lock resource and initialize it */
343 hhash->Lock = HAL_UNLOCKED;
344
345 /* Reset Callback pointers in HAL_HASH_STATE_RESET only */
346 hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
347 hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
348 completion callback */
349 hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
350 if (hhash->MspInitCallback == NULL)
351 {
352 hhash->MspInitCallback = HAL_HASH_MspInit;
353 }
354
355 /* Init the low level hardware */
356 hhash->MspInitCallback(hhash);
357 }
358 #else
359 if (hhash->State == HAL_HASH_STATE_RESET)
360 {
361 /* Allocate lock resource and initialize it */
362 hhash->Lock = HAL_UNLOCKED;
363
364 /* Init the low level hardware */
365 HAL_HASH_MspInit(hhash);
366 }
367 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
368
369 /* Change the HASH state */
370 hhash->State = HAL_HASH_STATE_BUSY;
371
372 /* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
373 hhash->HashInCount = 0;
374 hhash->HashBuffSize = 0;
375 hhash->HashITCounter = 0;
376 hhash->NbWordsAlreadyPushed = 0;
377 /* Reset digest calculation bridle (MDMAT bit control) */
378 hhash->DigestCalculationDisable = RESET;
379 /* Set phase to READY */
380 hhash->Phase = HAL_HASH_PHASE_READY;
381 /* Reset suspension request flag */
382 hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
383
384 /* Set the data type bit */
385 MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
386 /* Reset MDMAT bit */
387 __HAL_HASH_RESET_MDMAT();
388 /* Reset HASH handle status */
389 hhash->Status = HAL_OK;
390
391 /* Set the HASH state to Ready */
392 hhash->State = HAL_HASH_STATE_READY;
393
394 /* Initialise the error code */
395 hhash->ErrorCode = HAL_HASH_ERROR_NONE;
396
397 /* Return function status */
398 return HAL_OK;
399 }
400
401 /**
402 * @brief DeInitialize the HASH peripheral.
403 * @param hhash HASH handle.
404 * @retval HAL status
405 */
HAL_HASH_DeInit(HASH_HandleTypeDef * hhash)406 HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
407 {
408 /* Check the HASH handle allocation */
409 if (hhash == NULL)
410 {
411 return HAL_ERROR;
412 }
413
414 /* Change the HASH state */
415 hhash->State = HAL_HASH_STATE_BUSY;
416
417 /* Set the default HASH phase */
418 hhash->Phase = HAL_HASH_PHASE_READY;
419
420 /* Reset HashInCount, HashITCounter and HashBuffSize */
421 hhash->HashInCount = 0;
422 hhash->HashBuffSize = 0;
423 hhash->HashITCounter = 0;
424 /* Reset digest calculation bridle (MDMAT bit control) */
425 hhash->DigestCalculationDisable = RESET;
426
427 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
428 if (hhash->MspDeInitCallback == NULL)
429 {
430 hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
431 }
432
433 /* DeInit the low level hardware */
434 hhash->MspDeInitCallback(hhash);
435 #else
436 /* DeInit the low level hardware: CLOCK, NVIC */
437 HAL_HASH_MspDeInit(hhash);
438 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
439
440
441 /* Reset HASH handle status */
442 hhash->Status = HAL_OK;
443
444 /* Set the HASH state to Ready */
445 hhash->State = HAL_HASH_STATE_RESET;
446
447 /* Initialise the error code */
448 hhash->ErrorCode = HAL_HASH_ERROR_NONE;
449
450 /* Reset multi buffers accumulation flag */
451 hhash->Accumulation = 0U;
452
453 /* Return function status */
454 return HAL_OK;
455 }
456
457 /**
458 * @brief Initialize the HASH MSP.
459 * @param hhash HASH handle.
460 * @retval None
461 */
HAL_HASH_MspInit(HASH_HandleTypeDef * hhash)462 __weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
463 {
464 /* Prevent unused argument(s) compilation warning */
465 UNUSED(hhash);
466
467 /* NOTE : This function should not be modified; when the callback is needed,
468 HAL_HASH_MspInit() can be implemented in the user file.
469 */
470 }
471
472 /**
473 * @brief DeInitialize the HASH MSP.
474 * @param hhash HASH handle.
475 * @retval None
476 */
HAL_HASH_MspDeInit(HASH_HandleTypeDef * hhash)477 __weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
478 {
479 /* Prevent unused argument(s) compilation warning */
480 UNUSED(hhash);
481
482 /* NOTE : This function should not be modified; when the callback is needed,
483 HAL_HASH_MspDeInit() can be implemented in the user file.
484 */
485 }
486
487 /**
488 * @brief Input data transfer complete call back.
489 * @note HAL_HASH_InCpltCallback() is called when the complete input message
490 * has been fed to the Peripheral. This API is invoked only when input data are
491 * entered under interruption or through DMA.
492 * @note In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
493 * HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
494 * to the Peripheral.
495 * @param hhash HASH handle.
496 * @retval None
497 */
HAL_HASH_InCpltCallback(HASH_HandleTypeDef * hhash)498 __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
499 {
500 /* Prevent unused argument(s) compilation warning */
501 UNUSED(hhash);
502
503 /* NOTE : This function should not be modified; when the callback is needed,
504 HAL_HASH_InCpltCallback() can be implemented in the user file.
505 */
506 }
507
508 /**
509 * @brief Digest computation complete call back.
510 * @note HAL_HASH_DgstCpltCallback() is used under interruption, is not
511 * relevant with DMA.
512 * @param hhash HASH handle.
513 * @retval None
514 */
HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef * hhash)515 __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
516 {
517 /* Prevent unused argument(s) compilation warning */
518 UNUSED(hhash);
519
520 /* NOTE : This function should not be modified; when the callback is needed,
521 HAL_HASH_DgstCpltCallback() can be implemented in the user file.
522 */
523 }
524
525 /**
526 * @brief Error callback.
527 * @note Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
528 * to retrieve the error type.
529 * @param hhash HASH handle.
530 * @retval None
531 */
HAL_HASH_ErrorCallback(HASH_HandleTypeDef * hhash)532 __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
533 {
534 /* Prevent unused argument(s) compilation warning */
535 UNUSED(hhash);
536
537 /* NOTE : This function should not be modified; when the callback is needed,
538 HAL_HASH_ErrorCallback() can be implemented in the user file.
539 */
540 }
541
542 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
543 /**
544 * @brief Register a User HASH Callback
545 * To be used instead of the weak (surcharged) predefined callback
546 * @param hhash HASH handle
547 * @param CallbackID ID of the callback to be registered
548 * This parameter can be one of the following values:
549 * @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
550 * @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
551 * @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
552 * @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
553 * @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
554 * @param pCallback pointer to the Callback function
555 * @retval status
556 */
HAL_HASH_RegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID,pHASH_CallbackTypeDef pCallback)557 HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
558 pHASH_CallbackTypeDef pCallback)
559 {
560 HAL_StatusTypeDef status = HAL_OK;
561
562 if (pCallback == NULL)
563 {
564 /* Update the error code */
565 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
566 return HAL_ERROR;
567 }
568 /* Process locked */
569 __HAL_LOCK(hhash);
570
571 if (HAL_HASH_STATE_READY == hhash->State)
572 {
573 switch (CallbackID)
574 {
575 case HAL_HASH_INPUTCPLT_CB_ID :
576 hhash->InCpltCallback = pCallback;
577 break;
578
579 case HAL_HASH_DGSTCPLT_CB_ID :
580 hhash->DgstCpltCallback = pCallback;
581 break;
582
583 case HAL_HASH_ERROR_CB_ID :
584 hhash->ErrorCallback = pCallback;
585 break;
586
587 case HAL_HASH_MSPINIT_CB_ID :
588 hhash->MspInitCallback = pCallback;
589 break;
590
591 case HAL_HASH_MSPDEINIT_CB_ID :
592 hhash->MspDeInitCallback = pCallback;
593 break;
594
595 default :
596 /* Update the error code */
597 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
598 /* update return status */
599 status = HAL_ERROR;
600 break;
601 }
602 }
603 else if (HAL_HASH_STATE_RESET == hhash->State)
604 {
605 switch (CallbackID)
606 {
607 case HAL_HASH_MSPINIT_CB_ID :
608 hhash->MspInitCallback = pCallback;
609 break;
610
611 case HAL_HASH_MSPDEINIT_CB_ID :
612 hhash->MspDeInitCallback = pCallback;
613 break;
614
615 default :
616 /* Update the error code */
617 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
618 /* update return status */
619 status = HAL_ERROR;
620 break;
621 }
622 }
623 else
624 {
625 /* Update the error code */
626 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
627 /* update return status */
628 status = HAL_ERROR;
629 }
630
631 /* Release Lock */
632 __HAL_UNLOCK(hhash);
633 return status;
634 }
635
636 /**
637 * @brief Unregister a HASH Callback
638 * HASH Callback is redirected to the weak (surcharged) predefined callback
639 * @param hhash HASH handle
640 * @param CallbackID ID of the callback to be unregistered
641 * This parameter can be one of the following values:
642 * @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
643 * @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
644 * @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
645 * @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
646 * @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
647 * @retval status
648 */
HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID)649 HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
650 {
651 HAL_StatusTypeDef status = HAL_OK;
652
653 /* Process locked */
654 __HAL_LOCK(hhash);
655
656 if (HAL_HASH_STATE_READY == hhash->State)
657 {
658 switch (CallbackID)
659 {
660 case HAL_HASH_INPUTCPLT_CB_ID :
661 hhash->InCpltCallback = HAL_HASH_InCpltCallback; /* Legacy weak (surcharged) input completion callback */
662 break;
663
664 case HAL_HASH_DGSTCPLT_CB_ID :
665 hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
666 completion callback */
667 break;
668
669 case HAL_HASH_ERROR_CB_ID :
670 hhash->ErrorCallback = HAL_HASH_ErrorCallback; /* Legacy weak (surcharged) error callback */
671 break;
672
673 case HAL_HASH_MSPINIT_CB_ID :
674 hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
675 break;
676
677 case HAL_HASH_MSPDEINIT_CB_ID :
678 hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
679 break;
680
681 default :
682 /* Update the error code */
683 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
684 /* update return status */
685 status = HAL_ERROR;
686 break;
687 }
688 }
689 else if (HAL_HASH_STATE_RESET == hhash->State)
690 {
691 switch (CallbackID)
692 {
693 case HAL_HASH_MSPINIT_CB_ID :
694 hhash->MspInitCallback = HAL_HASH_MspInit; /* Legacy weak (surcharged) Msp Init */
695 break;
696
697 case HAL_HASH_MSPDEINIT_CB_ID :
698 hhash->MspDeInitCallback = HAL_HASH_MspDeInit; /* Legacy weak (surcharged) Msp DeInit */
699 break;
700
701 default :
702 /* Update the error code */
703 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
704 /* update return status */
705 status = HAL_ERROR;
706 break;
707 }
708 }
709 else
710 {
711 /* Update the error code */
712 hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
713 /* update return status */
714 status = HAL_ERROR;
715 }
716
717 /* Release Lock */
718 __HAL_UNLOCK(hhash);
719 return status;
720 }
721 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
722
723 /**
724 * @}
725 */
726
727 /** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
728 * @brief HASH processing functions using polling mode.
729 *
730 @verbatim
731 ===============================================================================
732 ##### Polling mode HASH processing functions #####
733 ===============================================================================
734 [..] This section provides functions allowing to calculate in polling mode
735 the hash value using one of the following algorithms:
736 (+) MD5
737 (++) HAL_HASH_MD5_Start()
738 (++) HAL_HASH_MD5_Accmlt()
739 (++) HAL_HASH_MD5_Accmlt_End()
740 (+) SHA1
741 (++) HAL_HASH_SHA1_Start()
742 (++) HAL_HASH_SHA1_Accmlt()
743 (++) HAL_HASH_SHA1_Accmlt_End()
744
745 [..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
746
747 [..] In case of multi-buffer HASH processing (a single digest is computed while
748 several buffers are fed to the Peripheral), the user can resort to successive calls
749 to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
750 to HAL_HASH_xxx_Accumulate_End().
751
752 @endverbatim
753 * @{
754 */
755
756 /**
757 * @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
758 * read the computed digest.
759 * @note Digest is available in pOutBuffer.
760 * @param hhash HASH handle.
761 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
762 * @param Size length of the input buffer in bytes.
763 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
764 * @param Timeout Timeout value
765 * @retval HAL status
766 */
HAL_HASH_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)767 HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
768 uint32_t Timeout)
769 {
770 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
771 }
772
773 /**
774 * @brief If not already done, initialize the HASH peripheral in MD5 mode then
775 * processes pInBuffer.
776 * @note Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
777 * several input buffers back-to-back to the Peripheral that will yield a single
778 * HASH signature once all buffers have been entered. Wrap-up of input
779 * buffers feeding and retrieval of digest is done by a call to
780 * HAL_HASH_MD5_Accmlt_End().
781 * @note Field hhash->Phase of HASH handle is tested to check whether or not
782 * the Peripheral has already been initialized.
783 * @note Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
784 * to read it, feeding at the same time the last input buffer to the Peripheral.
785 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
786 * HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
787 * to manage the ending buffer with a length in bytes not a multiple of 4.
788 * @param hhash HASH handle.
789 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
790 * @param Size length of the input buffer in bytes, must be a multiple of 4.
791 * @retval HAL status
792 */
HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)793 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
794 {
795 return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
796 }
797
798 /**
799 * @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
800 * @note Digest is available in pOutBuffer.
801 * @param hhash HASH handle.
802 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
803 * @param Size length of the input buffer in bytes.
804 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
805 * @param Timeout Timeout value
806 * @retval HAL status
807 */
HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)808 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
809 uint8_t *pOutBuffer, uint32_t Timeout)
810 {
811 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
812 }
813
814 /**
815 * @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
816 * read the computed digest.
817 * @note Digest is available in pOutBuffer.
818 * @param hhash HASH handle.
819 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
820 * @param Size length of the input buffer in bytes.
821 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
822 * @param Timeout Timeout value
823 * @retval HAL status
824 */
HAL_HASH_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)825 HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
826 uint32_t Timeout)
827 {
828 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
829 }
830
831 /**
832 * @brief If not already done, initialize the HASH peripheral in SHA1 mode then
833 * processes pInBuffer.
834 * @note Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
835 * several input buffers back-to-back to the Peripheral that will yield a single
836 * HASH signature once all buffers have been entered. Wrap-up of input
837 * buffers feeding and retrieval of digest is done by a call to
838 * HAL_HASH_SHA1_Accmlt_End().
839 * @note Field hhash->Phase of HASH handle is tested to check whether or not
840 * the Peripheral has already been initialized.
841 * @note Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
842 * to read it, feeding at the same time the last input buffer to the Peripheral.
843 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
844 * HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
845 * to manage the ending buffer with a length in bytes not a multiple of 4.
846 * @param hhash HASH handle.
847 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
848 * @param Size length of the input buffer in bytes, must be a multiple of 4.
849 * @retval HAL status
850 */
HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)851 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
852 {
853 return HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
854 }
855
856 /**
857 * @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
858 * @note Digest is available in pOutBuffer.
859 * @param hhash HASH handle.
860 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
861 * @param Size length of the input buffer in bytes.
862 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
863 * @param Timeout Timeout value
864 * @retval HAL status
865 */
HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)866 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
867 uint8_t *pOutBuffer, uint32_t Timeout)
868 {
869 return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
870 }
871
872 /**
873 * @}
874 */
875
876 /** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
877 * @brief HASH processing functions using interrupt mode.
878 *
879 @verbatim
880 ===============================================================================
881 ##### Interruption mode HASH processing functions #####
882 ===============================================================================
883 [..] This section provides functions allowing to calculate in interrupt mode
884 the hash value using one of the following algorithms:
885 (+) MD5
886 (++) HAL_HASH_MD5_Start_IT()
887 (++) HAL_HASH_MD5_Accmlt_IT()
888 (++) HAL_HASH_MD5_Accmlt_End_IT()
889 (+) SHA1
890 (++) HAL_HASH_SHA1_Start_IT()
891 (++) HAL_HASH_SHA1_Accmlt_IT()
892 (++) HAL_HASH_SHA1_Accmlt_End_IT()
893
894 [..] API HAL_HASH_IRQHandler() manages each HASH interruption.
895
896 [..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
897 HMAC processing mode.
898
899
900 @endverbatim
901 * @{
902 */
903
904 /**
905 * @brief Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
906 * read the computed digest in interruption mode.
907 * @note Digest is available in pOutBuffer.
908 * @param hhash HASH handle.
909 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
910 * @param Size length of the input buffer in bytes.
911 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
912 * @retval HAL status
913 */
HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)914 HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
915 uint8_t *pOutBuffer)
916 {
917 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
918 }
919
920 /**
921 * @brief If not already done, initialize the HASH peripheral in MD5 mode then
922 * processes pInBuffer in interruption mode.
923 * @note Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
924 * several input buffers back-to-back to the Peripheral that will yield a single
925 * HASH signature once all buffers have been entered. Wrap-up of input
926 * buffers feeding and retrieval of digest is done by a call to
927 * HAL_HASH_MD5_Accmlt_End_IT().
928 * @note Field hhash->Phase of HASH handle is tested to check whether or not
929 * the Peripheral has already been initialized.
930 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
931 * HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
932 * to manage the ending buffer with a length in bytes not a multiple of 4.
933 * @param hhash HASH handle.
934 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
935 * @param Size length of the input buffer in bytes, must be a multiple of 4.
936 * @retval HAL status
937 */
HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)938 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
939 {
940 return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
941 }
942
943 /**
944 * @brief End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
945 * @note Digest is available in pOutBuffer.
946 * @param hhash HASH handle.
947 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
948 * @param Size length of the input buffer in bytes.
949 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
950 * @retval HAL status
951 */
HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)952 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
953 uint8_t *pOutBuffer)
954 {
955 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
956 }
957
958 /**
959 * @brief Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
960 * read the computed digest in interruption mode.
961 * @note Digest is available in pOutBuffer.
962 * @param hhash HASH handle.
963 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
964 * @param Size length of the input buffer in bytes.
965 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
966 * @retval HAL status
967 */
HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)968 HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
969 uint8_t *pOutBuffer)
970 {
971 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
972 }
973
974
975 /**
976 * @brief If not already done, initialize the HASH peripheral in SHA1 mode then
977 * processes pInBuffer in interruption mode.
978 * @note Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
979 * several input buffers back-to-back to the Peripheral that will yield a single
980 * HASH signature once all buffers have been entered. Wrap-up of input
981 * buffers feeding and retrieval of digest is done by a call to
982 * HAL_HASH_SHA1_Accmlt_End_IT().
983 * @note Field hhash->Phase of HASH handle is tested to check whether or not
984 * the Peripheral has already been initialized.
985 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
986 * HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
987 * to manage the ending buffer with a length in bytes not a multiple of 4.
988 * @param hhash HASH handle.
989 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
990 * @param Size length of the input buffer in bytes, must be a multiple of 4.
991 * @retval HAL status
992 */
HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)993 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
994 {
995 return HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
996 }
997
998 /**
999 * @brief End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
1000 * @note Digest is available in pOutBuffer.
1001 * @param hhash HASH handle.
1002 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1003 * @param Size length of the input buffer in bytes.
1004 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1005 * @retval HAL status
1006 */
HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1007 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1008 uint8_t *pOutBuffer)
1009 {
1010 return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1011 }
1012
1013 /**
1014 * @brief Handle HASH interrupt request.
1015 * @param hhash HASH handle.
1016 * @note HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
1017 * @note In case of error reported during the HASH interruption processing,
1018 * HAL_HASH_ErrorCallback() API is called so that user code can
1019 * manage the error. The error type is available in hhash->Status field.
1020 * @retval None
1021 */
HAL_HASH_IRQHandler(HASH_HandleTypeDef * hhash)1022 void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
1023 {
1024 hhash->Status = HASH_IT(hhash);
1025 if (hhash->Status != HAL_OK)
1026 {
1027 hhash->ErrorCode |= HAL_HASH_ERROR_IT;
1028 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1029 hhash->ErrorCallback(hhash);
1030 #else
1031 HAL_HASH_ErrorCallback(hhash);
1032 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1033 /* After error handling by code user, reset HASH handle HAL status */
1034 hhash->Status = HAL_OK;
1035 }
1036 }
1037
1038 /**
1039 * @}
1040 */
1041
1042 /** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
1043 * @brief HASH processing functions using DMA mode.
1044 *
1045 @verbatim
1046 ===============================================================================
1047 ##### DMA mode HASH processing functions #####
1048 ===============================================================================
1049 [..] This section provides functions allowing to calculate in DMA mode
1050 the hash value using one of the following algorithms:
1051 (+) MD5
1052 (++) HAL_HASH_MD5_Start_DMA()
1053 (++) HAL_HASH_MD5_Finish()
1054 (+) SHA1
1055 (++) HAL_HASH_SHA1_Start_DMA()
1056 (++) HAL_HASH_SHA1_Finish()
1057
1058 [..] When resorting to DMA mode to enter the data in the Peripheral, user must resort
1059 to HAL_HASH_xxx_Start_DMA() then read the resulting digest with
1060 HAL_HASH_xxx_Finish().
1061 [..] In case of multi-buffer HASH processing, MDMAT bit must first be set before
1062 the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
1063 reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
1064 retrieved thanks to HAL_HASH_xxx_Finish().
1065
1066 @endverbatim
1067 * @{
1068 */
1069
1070 /**
1071 * @brief Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
1072 * to feed the input buffer to the Peripheral.
1073 * @note Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
1074 * be called to retrieve the computed digest.
1075 * @param hhash HASH handle.
1076 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1077 * @param Size length of the input buffer in bytes.
1078 * @retval HAL status
1079 */
HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1080 HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1081 {
1082 return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1083 }
1084
1085 /**
1086 * @brief Return the computed digest in MD5 mode.
1087 * @note The API waits for DCIS to be set then reads the computed digest.
1088 * @note HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
1089 * HMAC MD5 mode.
1090 * @param hhash HASH handle.
1091 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1092 * @param Timeout Timeout value.
1093 * @retval HAL status
1094 */
HAL_HASH_MD5_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1095 HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1096 {
1097 return HASH_Finish(hhash, pOutBuffer, Timeout);
1098 }
1099
1100 /**
1101 * @brief Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
1102 * to feed the input buffer to the Peripheral.
1103 * @note Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
1104 * be called to retrieve the computed digest.
1105 * @param hhash HASH handle.
1106 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1107 * @param Size length of the input buffer in bytes.
1108 * @retval HAL status
1109 */
HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1110 HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1111 {
1112 return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1113 }
1114
1115
1116 /**
1117 * @brief Return the computed digest in SHA1 mode.
1118 * @note The API waits for DCIS to be set then reads the computed digest.
1119 * @note HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
1120 * HMAC SHA1 mode.
1121 * @param hhash HASH handle.
1122 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1123 * @param Timeout Timeout value.
1124 * @retval HAL status
1125 */
HAL_HASH_SHA1_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1126 HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1127 {
1128 return HASH_Finish(hhash, pOutBuffer, Timeout);
1129 }
1130
1131 /**
1132 * @}
1133 */
1134
1135 /** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
1136 * @brief HMAC processing functions using polling mode.
1137 *
1138 @verbatim
1139 ===============================================================================
1140 ##### Polling mode HMAC processing functions #####
1141 ===============================================================================
1142 [..] This section provides functions allowing to calculate in polling mode
1143 the HMAC value using one of the following algorithms:
1144 (+) MD5
1145 (++) HAL_HMAC_MD5_Start()
1146 (+) SHA1
1147 (++) HAL_HMAC_SHA1_Start()
1148
1149
1150 @endverbatim
1151 * @{
1152 */
1153
1154 /**
1155 * @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1156 * read the computed digest.
1157 * @note Digest is available in pOutBuffer.
1158 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1159 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1160 * @param hhash HASH handle.
1161 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1162 * @param Size length of the input buffer in bytes.
1163 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1164 * @param Timeout Timeout value.
1165 * @retval HAL status
1166 */
HAL_HMAC_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1167 HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1168 uint32_t Timeout)
1169 {
1170 return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
1171 }
1172
1173 /**
1174 * @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1175 * read the computed digest.
1176 * @note Digest is available in pOutBuffer.
1177 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1178 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1179 * @param hhash HASH handle.
1180 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1181 * @param Size length of the input buffer in bytes.
1182 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1183 * @param Timeout Timeout value.
1184 * @retval HAL status
1185 */
HAL_HMAC_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1186 HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1187 uint32_t Timeout)
1188 {
1189 return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
1190 }
1191
1192 /**
1193 * @}
1194 */
1195
1196
1197 /** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
1198 * @brief HMAC processing functions using interrupt mode.
1199 *
1200 @verbatim
1201 ===============================================================================
1202 ##### Interrupt mode HMAC processing functions #####
1203 ===============================================================================
1204 [..] This section provides functions allowing to calculate in interrupt mode
1205 the HMAC value using one of the following algorithms:
1206 (+) MD5
1207 (++) HAL_HMAC_MD5_Start_IT()
1208 (+) SHA1
1209 (++) HAL_HMAC_SHA1_Start_IT()
1210
1211 @endverbatim
1212 * @{
1213 */
1214
1215
1216 /**
1217 * @brief Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1218 * read the computed digest in interrupt mode.
1219 * @note Digest is available in pOutBuffer.
1220 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1221 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1222 * @param hhash HASH handle.
1223 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1224 * @param Size length of the input buffer in bytes.
1225 * @param pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1226 * @retval HAL status
1227 */
HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1228 HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1229 uint8_t *pOutBuffer)
1230 {
1231 return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
1232 }
1233
1234 /**
1235 * @brief Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1236 * read the computed digest in interrupt mode.
1237 * @note Digest is available in pOutBuffer.
1238 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1239 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1240 * @param hhash HASH handle.
1241 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1242 * @param Size length of the input buffer in bytes.
1243 * @param pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1244 * @retval HAL status
1245 */
HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1246 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1247 uint8_t *pOutBuffer)
1248 {
1249 return HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1250 }
1251
1252 /**
1253 * @}
1254 */
1255
1256
1257
1258 /** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
1259 * @brief HMAC processing functions using DMA modes.
1260 *
1261 @verbatim
1262 ===============================================================================
1263 ##### DMA mode HMAC processing functions #####
1264 ===============================================================================
1265 [..] This section provides functions allowing to calculate in DMA mode
1266 the HMAC value using one of the following algorithms:
1267 (+) MD5
1268 (++) HAL_HMAC_MD5_Start_DMA()
1269 (+) SHA1
1270 (++) HAL_HMAC_SHA1_Start_DMA()
1271
1272 [..] When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
1273 user must resort to HAL_HMAC_xxx_Start_DMA() then read the resulting digest
1274 with HAL_HASH_xxx_Finish().
1275
1276 @endverbatim
1277 * @{
1278 */
1279
1280
1281 /**
1282 * @brief Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
1283 * DMA transfers to feed the key and the input buffer to the Peripheral.
1284 * @note Once the DMA transfers are finished (indicated by hhash->State set back
1285 * to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
1286 * the computed digest.
1287 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1288 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1289 * @note If MDMAT bit is set before calling this function (multi-buffer
1290 * HASH processing case), the input buffer size (in bytes) must be
1291 * a multiple of 4 otherwise, the HASH digest computation is corrupted.
1292 * For the processing of the last buffer of the thread, MDMAT bit must
1293 * be reset and the buffer length (in bytes) doesn't have to be a
1294 * multiple of 4.
1295 * @param hhash HASH handle.
1296 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1297 * @param Size length of the input buffer in bytes.
1298 * @retval HAL status
1299 */
HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1300 HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1301 {
1302 return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1303 }
1304
1305
1306 /**
1307 * @brief Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
1308 * DMA transfers to feed the key and the input buffer to the Peripheral.
1309 * @note Once the DMA transfers are finished (indicated by hhash->State set back
1310 * to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
1311 * the computed digest.
1312 * @note Same key is used for the inner and the outer hash functions; pointer to key and
1313 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1314 * @note If MDMAT bit is set before calling this function (multi-buffer
1315 * HASH processing case), the input buffer size (in bytes) must be
1316 * a multiple of 4 otherwise, the HASH digest computation is corrupted.
1317 * For the processing of the last buffer of the thread, MDMAT bit must
1318 * be reset and the buffer length (in bytes) doesn't have to be a
1319 * multiple of 4.
1320 * @param hhash HASH handle.
1321 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
1322 * @param Size length of the input buffer in bytes.
1323 * @retval HAL status
1324 */
HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1325 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1326 {
1327 return HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1328 }
1329
1330 /**
1331 * @}
1332 */
1333
1334 /** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
1335 * @brief Peripheral State functions.
1336 *
1337 @verbatim
1338 ===============================================================================
1339 ##### Peripheral State methods #####
1340 ===============================================================================
1341 [..]
1342 This section permits to get in run-time the state and the peripheral handle
1343 status of the peripheral:
1344 (+) HAL_HASH_GetState()
1345 (+) HAL_HASH_GetStatus()
1346
1347 [..]
1348 Additionally, this subsection provides functions allowing to save and restore
1349 the HASH or HMAC processing context in case of calculation suspension:
1350 (+) HAL_HASH_ContextSaving()
1351 (+) HAL_HASH_ContextRestoring()
1352
1353 [..]
1354 This subsection provides functions allowing to suspend the HASH processing
1355 (+) when input are fed to the Peripheral by software
1356 (++) HAL_HASH_SwFeed_ProcessSuspend()
1357 (+) when input are fed to the Peripheral by DMA
1358 (++) HAL_HASH_DMAFeed_ProcessSuspend()
1359
1360
1361
1362 @endverbatim
1363 * @{
1364 */
1365
1366 /**
1367 * @brief Return the HASH handle state.
1368 * @note The API yields the current state of the handle (BUSY, READY,...).
1369 * @param hhash HASH handle.
1370 * @retval HAL HASH state
1371 */
HAL_HASH_GetState(HASH_HandleTypeDef * hhash)1372 HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
1373 {
1374 return hhash->State;
1375 }
1376
1377
1378 /**
1379 * @brief Return the HASH HAL status.
1380 * @note The API yields the HAL status of the handle: it is the result of the
1381 * latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
1382 * @param hhash HASH handle.
1383 * @retval HAL status
1384 */
HAL_HASH_GetStatus(HASH_HandleTypeDef * hhash)1385 HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
1386 {
1387 return hhash->Status;
1388 }
1389
1390 /**
1391 * @brief Save the HASH context in case of processing suspension.
1392 * @param hhash HASH handle.
1393 * @param pMemBuffer pointer to the memory buffer where the HASH context
1394 * is saved.
1395 * @note The IMR, STR, CR then all the CSR registers are saved
1396 * in that order. Only the r/w bits are read to be restored later on.
1397 * @note By default, all the context swap registers (there are
1398 * HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
1399 * @note pMemBuffer points to a buffer allocated by the user. The buffer size
1400 * must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
1401 * @retval None
1402 */
HAL_HASH_ContextSaving(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1403 void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1404 {
1405 uint32_t mem_ptr = (uint32_t)pMemBuffer;
1406 uint32_t csr_ptr = (uint32_t)HASH->CSR;
1407 uint32_t i;
1408
1409 /* Prevent unused argument(s) compilation warning */
1410 UNUSED(hhash);
1411
1412 /* Save IMR register content */
1413 *(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
1414 mem_ptr += 4U;
1415 /* Save STR register content */
1416 *(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
1417 mem_ptr += 4U;
1418 /* Save CR register content */
1419 *(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
1420 HASH_CR_LKEY | HASH_CR_MDMAT);
1421 mem_ptr += 4U;
1422 /* By default, save all CSRs registers */
1423 for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1424 {
1425 *(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
1426 mem_ptr += 4U;
1427 csr_ptr += 4U;
1428 }
1429 }
1430
1431
1432 /**
1433 * @brief Restore the HASH context in case of processing resumption.
1434 * @param hhash HASH handle.
1435 * @param pMemBuffer pointer to the memory buffer where the HASH context
1436 * is stored.
1437 * @note The IMR, STR, CR then all the CSR registers are restored
1438 * in that order. Only the r/w bits are restored.
1439 * @note By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
1440 * of those) are restored (all of them have been saved by default
1441 * beforehand).
1442 * @retval None
1443 */
HAL_HASH_ContextRestoring(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1444 void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1445 {
1446 uint32_t mem_ptr = (uint32_t)pMemBuffer;
1447 uint32_t csr_ptr = (uint32_t)HASH->CSR;
1448 uint32_t i;
1449
1450 /* Prevent unused argument(s) compilation warning */
1451 UNUSED(hhash);
1452
1453 /* Restore IMR register content */
1454 WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
1455 mem_ptr += 4U;
1456 /* Restore STR register content */
1457 WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
1458 mem_ptr += 4U;
1459 /* Restore CR register content */
1460 WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
1461 mem_ptr += 4U;
1462
1463 /* Reset the HASH processor before restoring the Context
1464 Swap Registers (CSR) */
1465 __HAL_HASH_INIT();
1466
1467 /* By default, restore all CSR registers */
1468 for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1469 {
1470 WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
1471 mem_ptr += 4U;
1472 csr_ptr += 4U;
1473 }
1474 }
1475
1476
1477 /**
1478 * @brief Initiate HASH processing suspension when in polling or interruption mode.
1479 * @param hhash HASH handle.
1480 * @note Set the handle field SuspendRequest to the appropriate value so that
1481 * the on-going HASH processing is suspended as soon as the required
1482 * conditions are met. Note that the actual suspension is carried out
1483 * by the functions HASH_WriteData() in polling mode and HASH_IT() in
1484 * interruption mode.
1485 * @retval None
1486 */
HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1487 void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1488 {
1489 /* Set Handle Suspend Request field */
1490 hhash->SuspendRequest = HAL_HASH_SUSPEND;
1491 }
1492
1493 /**
1494 * @brief Suspend the HASH processing when in DMA mode.
1495 * @param hhash HASH handle.
1496 * @note When suspension attempt occurs at the very end of a DMA transfer and
1497 * all the data have already been entered in the Peripheral, hhash->State is
1498 * set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
1499 * recommended to wrap-up the processing in reading the digest as usual.
1500 * @retval HAL status
1501 */
HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1502 HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1503 {
1504 uint32_t tmp_remaining_DMATransferSize_inWords;
1505 uint32_t tmp_initial_DMATransferSize_inWords;
1506 uint32_t tmp_words_already_pushed;
1507
1508 if (hhash->State == HAL_HASH_STATE_READY)
1509 {
1510 return HAL_ERROR;
1511 }
1512 else
1513 {
1514
1515 /* Make sure there is enough time to suspend the processing */
1516 tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
1517
1518 if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
1519 {
1520 /* No suspension attempted since almost to the end of the transferred data. */
1521 /* Best option for user code is to wrap up low priority message hashing */
1522 return HAL_ERROR;
1523 }
1524
1525 /* Wait for BUSY flag to be reset */
1526 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1527 {
1528 return HAL_TIMEOUT;
1529 }
1530
1531 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1532 {
1533 return HAL_ERROR;
1534 }
1535
1536 /* Wait for BUSY flag to be set */
1537 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
1538 {
1539 return HAL_TIMEOUT;
1540 }
1541 /* Disable DMA channel */
1542 /* Note that the Abort function will
1543 - Clear the transfer error flags
1544 - Unlock
1545 - Set the State
1546 */
1547 if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
1548 {
1549 return HAL_ERROR;
1550 }
1551
1552 /* Clear DMAE bit */
1553 CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1554
1555 /* Wait for BUSY flag to be reset */
1556 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1557 {
1558 return HAL_TIMEOUT;
1559 }
1560
1561 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1562 {
1563 return HAL_ERROR;
1564 }
1565
1566 /* At this point, DMA interface is disabled and no transfer is on-going */
1567 /* Retrieve from the DMA handle how many words remain to be written */
1568 tmp_remaining_DMATransferSize_inWords = ((DMA_Stream_TypeDef *)hhash->hdmain->Instance)->NDTR;
1569
1570 if (tmp_remaining_DMATransferSize_inWords == 0U)
1571 {
1572 /* All the DMA transfer is actually done. Suspension occurred at the very end
1573 of the transfer. Either the digest computation is about to start (HASH case)
1574 or processing is about to move from one step to another (HMAC case).
1575 In both cases, the processing can't be suspended at this point. It is
1576 safer to
1577 - retrieve the low priority block digest before starting the high
1578 priority block processing (HASH case)
1579 - re-attempt a new suspension (HMAC case)
1580 */
1581 return HAL_ERROR;
1582 }
1583 else
1584 {
1585
1586 /* Compute how many words were supposed to be transferred by DMA */
1587 tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
1588 ((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
1589
1590 /* If discrepancy between the number of words reported by DMA Peripheral and
1591 the numbers of words entered as reported by HASH Peripheral, correct it */
1592 /* tmp_words_already_pushed reflects the number of words that were already pushed before
1593 the start of DMA transfer (multi-buffer processing case) */
1594 tmp_words_already_pushed = hhash->NbWordsAlreadyPushed;
1595 if (((tmp_words_already_pushed + tmp_initial_DMATransferSize_inWords - \
1596 tmp_remaining_DMATransferSize_inWords) % 16U) != HASH_NBW_PUSHED())
1597 {
1598 tmp_remaining_DMATransferSize_inWords--; /* one less word to be transferred again */
1599 }
1600
1601 /* Accordingly, update the input pointer that points at the next word to be
1602 transferred to the Peripheral by DMA */
1603 hhash->pHashInBuffPtr += 4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
1604
1605 /* And store in HashInCount the remaining size to transfer (in bytes) */
1606 hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
1607
1608 }
1609
1610 /* Set State as suspended */
1611 hhash->State = HAL_HASH_STATE_SUSPENDED;
1612
1613 return HAL_OK;
1614
1615 }
1616 }
1617
1618 /**
1619 * @brief Return the HASH handle error code.
1620 * @param hhash pointer to a HASH_HandleTypeDef structure.
1621 * @retval HASH Error Code
1622 */
HAL_HASH_GetError(HASH_HandleTypeDef * hhash)1623 uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
1624 {
1625 /* Return HASH Error Code */
1626 return hhash->ErrorCode;
1627 }
1628 /**
1629 * @}
1630 */
1631
1632
1633 /**
1634 * @}
1635 */
1636
1637 /** @defgroup HASH_Private_Functions HASH Private Functions
1638 * @{
1639 */
1640
1641 /**
1642 * @brief DMA HASH Input Data transfer completion callback.
1643 * @param hdma DMA handle.
1644 * @note In case of HMAC processing, HASH_DMAXferCplt() initiates
1645 * the next DMA transfer for the following HMAC step.
1646 * @retval None
1647 */
HASH_DMAXferCplt(DMA_HandleTypeDef * hdma)1648 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
1649 {
1650 HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1651 uint32_t inputaddr;
1652 uint32_t buffersize;
1653 HAL_StatusTypeDef status;
1654
1655 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1656 {
1657
1658 /* Disable the DMA transfer */
1659 CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1660
1661 if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
1662 {
1663 /* If no HMAC processing, input data transfer is now over */
1664
1665 /* Change the HASH state to ready */
1666 hhash->State = HAL_HASH_STATE_READY;
1667
1668 /* Call Input data transfer complete call back */
1669 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1670 hhash->InCpltCallback(hhash);
1671 #else
1672 HAL_HASH_InCpltCallback(hhash);
1673 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1674
1675 }
1676 else
1677 {
1678 /* HMAC processing: depending on the current HMAC step and whether or
1679 not multi-buffer processing is on-going, the next step is initiated
1680 and MDMAT bit is set. */
1681
1682
1683 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
1684 {
1685 /* This is the end of HMAC processing */
1686
1687 /* Change the HASH state to ready */
1688 hhash->State = HAL_HASH_STATE_READY;
1689
1690 /* Call Input data transfer complete call back
1691 (note that the last DMA transfer was that of the key
1692 for the outer HASH operation). */
1693 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1694 hhash->InCpltCallback(hhash);
1695 #else
1696 HAL_HASH_InCpltCallback(hhash);
1697 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1698
1699 return;
1700 }
1701 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
1702 {
1703 inputaddr = (uint32_t)hhash->pHashMsgBuffPtr; /* DMA transfer start address */
1704 buffersize = hhash->HashBuffSize; /* DMA transfer size (in bytes) */
1705 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
1706
1707 /* In case of suspension request, save the new starting parameters */
1708 hhash->HashInCount = hhash->HashBuffSize; /* Initial DMA transfer size (in bytes) */
1709 hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr ; /* DMA transfer start address */
1710
1711 hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
1712 /* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
1713 if (hhash->DigestCalculationDisable != RESET)
1714 {
1715 /* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
1716 no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
1717 __HAL_HASH_SET_MDMAT();
1718 }
1719 }
1720 else /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
1721 {
1722 if (hhash->DigestCalculationDisable != RESET)
1723 {
1724 /* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
1725 (case of multi-buffer HMAC processing):
1726 DCAL must not be set.
1727 Phase remains in Step 2, MDMAT remains set at this point.
1728 Change the HASH state to ready and call Input data transfer complete call back. */
1729 hhash->State = HAL_HASH_STATE_READY;
1730 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1731 hhash->InCpltCallback(hhash);
1732 #else
1733 HAL_HASH_InCpltCallback(hhash);
1734 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1735 return ;
1736 }
1737 else
1738 {
1739 /* Digest calculation is not disabled (case of single buffer input or last buffer
1740 of multi-buffer HMAC processing) */
1741 inputaddr = (uint32_t)hhash->Init.pKey; /* DMA transfer start address */
1742 buffersize = hhash->Init.KeySize; /* DMA transfer size (in bytes) */
1743 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
1744 /* In case of suspension request, save the new starting parameters */
1745 hhash->HashInCount = hhash->Init.KeySize; /* Initial size for second DMA transfer (input data) */
1746 hhash->pHashInBuffPtr = hhash->Init.pKey ; /* address passed to DMA, now entering data message */
1747
1748 hhash->NbWordsAlreadyPushed = 0U; /* Reset number of words already pushed */
1749 }
1750 }
1751
1752 /* Configure the Number of valid bits in last word of the message */
1753 __HAL_HASH_SET_NBVALIDBITS(buffersize);
1754
1755 /* Set the HASH DMA transfer completion call back */
1756 hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
1757
1758 /* Enable the DMA In DMA stream */
1759 status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
1760 (((buffersize % 4U) != 0U) ? ((buffersize + (4U - (buffersize % 4U))) / 4U) : \
1761 (buffersize / 4U)));
1762
1763 /* Enable DMA requests */
1764 SET_BIT(HASH->CR, HASH_CR_DMAE);
1765
1766 /* Return function status */
1767 if (status != HAL_OK)
1768 {
1769 /* Update HASH state machine to error */
1770 hhash->State = HAL_HASH_STATE_ERROR;
1771 }
1772 else
1773 {
1774 /* Change HASH state */
1775 hhash->State = HAL_HASH_STATE_BUSY;
1776 }
1777 }
1778 }
1779
1780 return;
1781 }
1782
1783 /**
1784 * @brief DMA HASH communication error callback.
1785 * @param hdma DMA handle.
1786 * @note HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
1787 * can contain user code to manage the error.
1788 * @retval None
1789 */
HASH_DMAError(DMA_HandleTypeDef * hdma)1790 static void HASH_DMAError(DMA_HandleTypeDef *hdma)
1791 {
1792 HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1793
1794 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1795 {
1796 hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
1797 /* Set HASH state to ready to prevent any blocking issue in user code
1798 present in HAL_HASH_ErrorCallback() */
1799 hhash->State = HAL_HASH_STATE_READY;
1800 /* Set HASH handle status to error */
1801 hhash->Status = HAL_ERROR;
1802 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1803 hhash->ErrorCallback(hhash);
1804 #else
1805 HAL_HASH_ErrorCallback(hhash);
1806 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1807 /* After error handling by code user, reset HASH handle HAL status */
1808 hhash->Status = HAL_OK;
1809
1810 }
1811 }
1812
1813 /**
1814 * @brief Feed the input buffer to the HASH Peripheral.
1815 * @param hhash HASH handle.
1816 * @param pInBuffer pointer to input buffer.
1817 * @param Size the size of input buffer in bytes.
1818 * @note HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
1819 * or not the HASH processing must be suspended. If this is the case, the
1820 * processing is suspended when possible and the Peripheral feeding point reached at
1821 * suspension time is stored in the handle for resumption later on.
1822 * @retval HAL status
1823 */
HASH_WriteData(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1824 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1825 {
1826 uint32_t buffercounter;
1827 __IO uint32_t inputaddr = (uint32_t) pInBuffer;
1828 uint32_t tmp;
1829
1830 for (buffercounter = 0U; buffercounter < Size / 4U; buffercounter++)
1831 {
1832 /* Write input data 4 bytes at a time */
1833 HASH->DIN = *(uint32_t *)inputaddr;
1834 inputaddr += 4U;
1835
1836 /* If the suspension flag has been raised and if the processing is not about
1837 to end, suspend processing */
1838 if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter * 4 + 4U) < Size))
1839 {
1840 /* wait for flag BUSY not set before Wait for DINIS = 1*/
1841 if (buffercounter * 4 >= 64U)
1842 {
1843 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1844 {
1845 return HAL_TIMEOUT;
1846 }
1847 }
1848 /* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
1849 in the input buffer */
1850 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
1851 {
1852 /* Reset SuspendRequest */
1853 hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
1854
1855 /* Depending whether the key or the input data were fed to the Peripheral, the feeding point
1856 reached at suspension time is not saved in the same handle fields */
1857 if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
1858 {
1859 /* Save current reading and writing locations of Input and Output buffers */
1860 hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
1861 /* Save the number of bytes that remain to be processed at this point */
1862 hhash->HashInCount = Size - (buffercounter * 4 + 4U);
1863 }
1864 else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
1865 {
1866 /* Save current reading and writing locations of Input and Output buffers */
1867 hhash->pHashKeyBuffPtr = (uint8_t *)inputaddr;
1868 /* Save the number of bytes that remain to be processed at this point */
1869 hhash->HashKeyCount = Size - (buffercounter * 4 + 4U);
1870 }
1871 else
1872 {
1873 /* Unexpected phase: unlock process and report error */
1874 hhash->State = HAL_HASH_STATE_READY;
1875 __HAL_UNLOCK(hhash);
1876 return HAL_ERROR;
1877 }
1878
1879 /* Set the HASH state to Suspended and exit to stop entering data */
1880 hhash->State = HAL_HASH_STATE_SUSPENDED;
1881
1882 return HAL_OK;
1883 } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS)) */
1884 } /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
1885 } /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4) */
1886
1887 /* At this point, all the data have been entered to the Peripheral: exit */
1888
1889 if (Size % 4U != 0U)
1890 {
1891 if (hhash->Init.DataType == HASH_DATATYPE_16B)
1892 {
1893 /* Write remaining input data */
1894
1895 if (Size % 4U <= 2)
1896 {
1897 HASH->DIN = (uint32_t) * (uint16_t *)inputaddr;
1898 }
1899 if (Size % 4U == 3)
1900 {
1901 HASH->DIN = *(uint32_t *)inputaddr;
1902 }
1903
1904 }
1905 else if ((hhash->Init.DataType == HASH_DATATYPE_8B)
1906 || (hhash->Init.DataType == HASH_DATATYPE_1B)) /* byte swap or bit swap or */
1907 {
1908 /* Write remaining input data */
1909 if (Size % 4U == 1)
1910 {
1911 HASH->DIN = (uint32_t) * (uint8_t *)inputaddr;
1912 }
1913 if (Size % 4U == 2)
1914 {
1915 HASH->DIN = (uint32_t) * (uint16_t *)inputaddr;
1916 }
1917 if (Size % 4U == 3)
1918 {
1919 tmp = *(uint8_t *)inputaddr;
1920 tmp |= *(uint8_t *)(inputaddr + 1U) << 8U ;
1921 tmp |= *(uint8_t *)(inputaddr + 2U) << 16U;
1922 HASH->DIN = tmp;
1923 }
1924
1925 }
1926 else
1927 {
1928 HASH->DIN = *(uint32_t *)inputaddr;
1929 }
1930 /*hhash->HashInCount += 4U;*/
1931 }
1932
1933
1934 return HAL_OK;
1935 }
1936
1937 /**
1938 * @brief Retrieve the message digest.
1939 * @param pMsgDigest pointer to the computed digest.
1940 * @param Size message digest size in bytes.
1941 * @retval None
1942 */
HASH_GetDigest(uint8_t * pMsgDigest,uint8_t Size)1943 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
1944 {
1945 uint32_t msgdigest = (uint32_t)pMsgDigest;
1946
1947 switch (Size)
1948 {
1949 /* Read the message digest */
1950 case 16: /* MD5 */
1951 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1952 msgdigest += 4U;
1953 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1954 msgdigest += 4U;
1955 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1956 msgdigest += 4U;
1957 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1958 break;
1959 case 20: /* SHA1 */
1960 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1961 msgdigest += 4U;
1962 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1963 msgdigest += 4U;
1964 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1965 msgdigest += 4U;
1966 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1967 msgdigest += 4U;
1968 *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1969 break;
1970 case 28: /* SHA224 */
1971 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1972 msgdigest += 4U;
1973 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1974 msgdigest += 4U;
1975 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1976 msgdigest += 4U;
1977 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1978 msgdigest += 4U;
1979 *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1980 msgdigest += 4U;
1981 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1982 msgdigest += 4U;
1983 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1984 break;
1985 case 32: /* SHA256 */
1986 *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1987 msgdigest += 4U;
1988 *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1989 msgdigest += 4U;
1990 *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1991 msgdigest += 4U;
1992 *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1993 msgdigest += 4U;
1994 *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1995 msgdigest += 4U;
1996 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1997 msgdigest += 4U;
1998 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1999 msgdigest += 4U;
2000 *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
2001 break;
2002 default:
2003 break;
2004 }
2005 }
2006
2007
2008
2009 /**
2010 * @brief Handle HASH processing Timeout.
2011 * @param hhash HASH handle.
2012 * @param Flag specifies the HASH flag to check.
2013 * @param Status the Flag status (SET or RESET).
2014 * @param Timeout Timeout duration.
2015 * @retval HAL status
2016 */
HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef * hhash,uint32_t Flag,FlagStatus Status,uint32_t Timeout)2017 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
2018 uint32_t Timeout)
2019 {
2020 uint32_t tickstart = HAL_GetTick();
2021
2022 /* Wait until flag is set */
2023 if (Status == RESET)
2024 {
2025 while (__HAL_HASH_GET_FLAG(Flag) == RESET)
2026 {
2027 /* Check for the Timeout */
2028 if (Timeout != HAL_MAX_DELAY)
2029 {
2030 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2031 {
2032 /* Set State to Ready to be able to restart later on */
2033 hhash->State = HAL_HASH_STATE_READY;
2034 /* Store time out issue in handle status */
2035 hhash->Status = HAL_TIMEOUT;
2036
2037 /* Process Unlocked */
2038 __HAL_UNLOCK(hhash);
2039
2040 return HAL_TIMEOUT;
2041 }
2042 }
2043 }
2044 }
2045 else
2046 {
2047 while (__HAL_HASH_GET_FLAG(Flag) != RESET)
2048 {
2049 /* Check for the Timeout */
2050 if (Timeout != HAL_MAX_DELAY)
2051 {
2052 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2053 {
2054 /* Set State to Ready to be able to restart later on */
2055 hhash->State = HAL_HASH_STATE_READY;
2056 /* Store time out issue in handle status */
2057 hhash->Status = HAL_TIMEOUT;
2058
2059 /* Process Unlocked */
2060 __HAL_UNLOCK(hhash);
2061
2062 return HAL_TIMEOUT;
2063 }
2064 }
2065 }
2066 }
2067 return HAL_OK;
2068 }
2069
2070
2071 /**
2072 * @brief HASH processing in interruption mode.
2073 * @param hhash HASH handle.
2074 * @note HASH_IT() regularly reads hhash->SuspendRequest to check whether
2075 * or not the HASH processing must be suspended. If this is the case, the
2076 * processing is suspended when possible and the Peripheral feeding point reached at
2077 * suspension time is stored in the handle for resumption later on.
2078 * @retval HAL status
2079 */
HASH_IT(HASH_HandleTypeDef * hhash)2080 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
2081 {
2082 if (hhash->State == HAL_HASH_STATE_BUSY)
2083 {
2084 /* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
2085 if (hhash->HashITCounter == 0U)
2086 {
2087 /* Disable Interrupts */
2088 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2089 /* HASH state set back to Ready to prevent any issue in user code
2090 present in HAL_HASH_ErrorCallback() */
2091 hhash->State = HAL_HASH_STATE_READY;
2092 return HAL_ERROR;
2093 }
2094 else if (hhash->HashITCounter == 1U)
2095 {
2096 /* This is the first call to HASH_IT, the first input data are about to be
2097 entered in the Peripheral. A specific processing is carried out at this point to
2098 start-up the processing. */
2099 hhash->HashITCounter = 2U;
2100 }
2101 else
2102 {
2103 /* Cruise speed reached, HashITCounter remains equal to 3 until the end of
2104 the HASH processing or the end of the current step for HMAC processing. */
2105 hhash->HashITCounter = 3U;
2106 }
2107
2108 /* If digest is ready */
2109 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
2110 {
2111 /* Read the digest */
2112 HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2113
2114 /* Disable Interrupts */
2115 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2116 /* Change the HASH state */
2117 hhash->State = HAL_HASH_STATE_READY;
2118 /* Reset HASH state machine */
2119 hhash->Phase = HAL_HASH_PHASE_READY;
2120 /* Call digest computation complete call back */
2121 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2122 hhash->DgstCpltCallback(hhash);
2123 #else
2124 HAL_HASH_DgstCpltCallback(hhash);
2125 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2126
2127 return HAL_OK;
2128 }
2129
2130 /* If Peripheral ready to accept new data */
2131 if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2132 {
2133
2134 /* If the suspension flag has been raised and if the processing is not about
2135 to end, suspend processing */
2136 if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
2137 {
2138 /* Disable Interrupts */
2139 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2140
2141 /* Reset SuspendRequest */
2142 hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
2143
2144 /* Change the HASH state */
2145 hhash->State = HAL_HASH_STATE_SUSPENDED;
2146
2147 return HAL_OK;
2148 }
2149
2150 /* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
2151 check whether the digest calculation has been triggered */
2152 if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
2153 {
2154 /* Call Input data transfer complete call back
2155 (called at the end of each step for HMAC) */
2156 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2157 hhash->InCpltCallback(hhash);
2158 #else
2159 HAL_HASH_InCpltCallback(hhash);
2160 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2161
2162 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2163 {
2164 /* Wait until Peripheral is not busy anymore */
2165 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2166 {
2167 /* Disable Interrupts */
2168 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2169 return HAL_TIMEOUT;
2170 }
2171 /* Initialization start for HMAC STEP 2 */
2172 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2; /* Move phase from Step 1 to Step 2 */
2173 __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize); /* Set NBLW for the input message */
2174 hhash->HashInCount = hhash->HashBuffSize; /* Set the input data size (in bytes) */
2175 hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr; /* Set the input data address */
2176 hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
2177 of a new phase */
2178 __HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
2179 }
2180 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2181 {
2182 /* Wait until Peripheral is not busy anymore */
2183 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2184 {
2185 /* Disable Interrupts */
2186 __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2187 return HAL_TIMEOUT;
2188 }
2189 /* Initialization start for HMAC STEP 3 */
2190 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3; /* Move phase from Step 2 to Step 3 */
2191 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize); /* Set NBLW for the key */
2192 hhash->HashInCount = hhash->Init.KeySize; /* Set the key size (in bytes) */
2193 hhash->pHashInBuffPtr = hhash->Init.pKey; /* Set the key address */
2194 hhash->HashITCounter = 1; /* Set ITCounter to 1 to indicate the start
2195 of a new phase */
2196 __HAL_HASH_ENABLE_IT(HASH_IT_DINI); /* Enable IT (was disabled in HASH_Write_Block_Data) */
2197 }
2198 else
2199 {
2200 /* Nothing to do */
2201 }
2202 } /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
2203 } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
2204
2205 /* Return function status */
2206 return HAL_OK;
2207 }
2208 else
2209 {
2210 return HAL_BUSY;
2211 }
2212 }
2213
2214
2215 /**
2216 * @brief Write a block of data in HASH Peripheral in interruption mode.
2217 * @param hhash HASH handle.
2218 * @note HASH_Write_Block_Data() is called under interruption by HASH_IT().
2219 * @retval HAL status
2220 */
HASH_Write_Block_Data(HASH_HandleTypeDef * hhash)2221 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
2222 {
2223 uint32_t inputaddr;
2224 uint32_t buffercounter;
2225 uint32_t inputcounter;
2226 uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
2227
2228 /* If there are more than 64 bytes remaining to be entered */
2229 if (hhash->HashInCount > 64U)
2230 {
2231 inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2232 /* Write the Input block in the Data IN register
2233 (16 32-bit words, or 64 bytes are entered) */
2234 for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
2235 {
2236 HASH->DIN = *(uint32_t *)inputaddr;
2237 inputaddr += 4U;
2238 }
2239 /* If this is the start of input data entering, an additional word
2240 must be entered to start up the HASH processing */
2241 if (hhash->HashITCounter == 2U)
2242 {
2243 HASH->DIN = *(uint32_t *)inputaddr;
2244 if (hhash->HashInCount >= 68U)
2245 {
2246 /* There are still data waiting to be entered in the Peripheral.
2247 Decrement buffer counter and set pointer to the proper
2248 memory location for the next data entering round. */
2249 hhash->HashInCount -= 68U;
2250 hhash->pHashInBuffPtr += 68U;
2251 }
2252 else
2253 {
2254 /* All the input buffer has been fed to the HW. */
2255 hhash->HashInCount = 0U;
2256 }
2257 }
2258 else
2259 {
2260 /* 64 bytes have been entered and there are still some remaining:
2261 Decrement buffer counter and set pointer to the proper
2262 memory location for the next data entering round.*/
2263 hhash->HashInCount -= 64U;
2264 hhash->pHashInBuffPtr += 64U;
2265 }
2266 }
2267 else
2268 {
2269 /* 64 or less bytes remain to be entered. This is the last
2270 data entering round. */
2271
2272 /* Get the buffer address */
2273 inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2274 /* Get the buffer counter */
2275 inputcounter = hhash->HashInCount;
2276 /* Disable Interrupts */
2277 __HAL_HASH_DISABLE_IT(HASH_IT_DINI);
2278
2279 /* Write the Input block in the Data IN register */
2280 for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
2281 {
2282 HASH->DIN = *(uint32_t *)inputaddr;
2283 inputaddr += 4U;
2284 }
2285
2286 if (hhash->Accumulation == 1U)
2287 {
2288 /* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
2289 The digest computation will be started when the last buffer data are entered. */
2290
2291 /* Reset multi buffers accumulation flag */
2292 hhash->Accumulation = 0U;
2293 /* Change the HASH state */
2294 hhash->State = HAL_HASH_STATE_READY;
2295 /* Call Input data transfer complete call back */
2296 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2297 hhash->InCpltCallback(hhash);
2298 #else
2299 HAL_HASH_InCpltCallback(hhash);
2300 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2301 }
2302 else
2303 {
2304 /* Start the Digest calculation */
2305 __HAL_HASH_START_DIGEST();
2306 /* Return indication that digest calculation has started:
2307 this return value triggers the call to Input data transfer
2308 complete call back as well as the proper transition from
2309 one step to another in HMAC mode. */
2310 ret = HASH_DIGEST_CALCULATION_STARTED;
2311 }
2312 /* Reset buffer counter */
2313 hhash->HashInCount = 0;
2314 }
2315
2316 /* Return whether or digest calculation has started */
2317 return ret;
2318 }
2319
2320 /**
2321 * @brief HMAC processing in polling mode.
2322 * @param hhash HASH handle.
2323 * @param Timeout Timeout value.
2324 * @retval HAL status
2325 */
HMAC_Processing(HASH_HandleTypeDef * hhash,uint32_t Timeout)2326 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
2327 {
2328 /* Ensure first that Phase is correct */
2329 if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
2330 && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
2331 {
2332 /* Change the HASH state */
2333 hhash->State = HAL_HASH_STATE_READY;
2334
2335 /* Process Unlock */
2336 __HAL_UNLOCK(hhash);
2337
2338 /* Return function status */
2339 return HAL_ERROR;
2340 }
2341
2342 /* HMAC Step 1 processing */
2343 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2344 {
2345 /************************** STEP 1 ******************************************/
2346 /* Configure the Number of valid bits in last word of the message */
2347 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2348
2349 /* Write input buffer in Data register */
2350 hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2351 if (hhash->Status != HAL_OK)
2352 {
2353 return hhash->Status;
2354 }
2355
2356 /* Check whether or not key entering process has been suspended */
2357 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2358 {
2359 /* Process Unlocked */
2360 __HAL_UNLOCK(hhash);
2361
2362 /* Stop right there and return function status */
2363 return HAL_OK;
2364 }
2365
2366 /* No processing suspension at this point: set DCAL bit. */
2367 __HAL_HASH_START_DIGEST();
2368
2369 /* Wait for BUSY flag to be cleared */
2370 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2371 {
2372 return HAL_TIMEOUT;
2373 }
2374
2375 /* Move from Step 1 to Step 2 */
2376 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
2377
2378 }
2379
2380 /* HMAC Step 2 processing.
2381 After phase check, HMAC_Processing() may
2382 - directly start up from this point in resumption case
2383 if the same Step 2 processing was suspended previously
2384 - or fall through from the Step 1 processing carried out hereabove */
2385 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2386 {
2387 /************************** STEP 2 ******************************************/
2388 /* Configure the Number of valid bits in last word of the message */
2389 __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
2390
2391 /* Write input buffer in Data register */
2392 hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
2393 if (hhash->Status != HAL_OK)
2394 {
2395 return hhash->Status;
2396 }
2397
2398 /* Check whether or not data entering process has been suspended */
2399 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2400 {
2401 /* Process Unlocked */
2402 __HAL_UNLOCK(hhash);
2403
2404 /* Stop right there and return function status */
2405 return HAL_OK;
2406 }
2407
2408 /* No processing suspension at this point: set DCAL bit. */
2409 __HAL_HASH_START_DIGEST();
2410
2411 /* Wait for BUSY flag to be cleared */
2412 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2413 {
2414 return HAL_TIMEOUT;
2415 }
2416
2417 /* Move from Step 2 to Step 3 */
2418 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
2419 /* In case Step 1 phase was suspended then resumed,
2420 set again Key input buffers and size before moving to
2421 next step */
2422 hhash->pHashKeyBuffPtr = hhash->Init.pKey;
2423 hhash->HashKeyCount = hhash->Init.KeySize;
2424 }
2425
2426
2427 /* HMAC Step 3 processing.
2428 After phase check, HMAC_Processing() may
2429 - directly start up from this point in resumption case
2430 if the same Step 3 processing was suspended previously
2431 - or fall through from the Step 2 processing carried out hereabove */
2432 if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
2433 {
2434 /************************** STEP 3 ******************************************/
2435 /* Configure the Number of valid bits in last word of the message */
2436 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2437
2438 /* Write input buffer in Data register */
2439 hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2440 if (hhash->Status != HAL_OK)
2441 {
2442 return hhash->Status;
2443 }
2444
2445 /* Check whether or not key entering process has been suspended */
2446 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2447 {
2448 /* Process Unlocked */
2449 __HAL_UNLOCK(hhash);
2450
2451 /* Stop right there and return function status */
2452 return HAL_OK;
2453 }
2454
2455 /* No processing suspension at this point: start the Digest calculation. */
2456 __HAL_HASH_START_DIGEST();
2457
2458 /* Wait for DCIS flag to be set */
2459 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2460 {
2461 return HAL_TIMEOUT;
2462 }
2463
2464 /* Read the message digest */
2465 HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2466
2467 /* Reset HASH state machine */
2468 hhash->Phase = HAL_HASH_PHASE_READY;
2469 }
2470
2471 /* Change the HASH state */
2472 hhash->State = HAL_HASH_STATE_READY;
2473
2474 /* Process Unlock */
2475 __HAL_UNLOCK(hhash);
2476
2477 /* Return function status */
2478 return HAL_OK;
2479 }
2480
2481
2482 /**
2483 * @brief Initialize the HASH peripheral, next process pInBuffer then
2484 * read the computed digest.
2485 * @note Digest is available in pOutBuffer.
2486 * @param hhash HASH handle.
2487 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2488 * @param Size length of the input buffer in bytes.
2489 * @param pOutBuffer pointer to the computed digest.
2490 * @param Timeout Timeout value.
2491 * @param Algorithm HASH algorithm.
2492 * @retval HAL status
2493 */
HASH_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)2494 HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2495 uint32_t Timeout, uint32_t Algorithm)
2496 {
2497 uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
2498 uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2499 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2500
2501
2502 /* Initiate HASH processing in case of start or resumption */
2503 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2504 {
2505 /* Check input parameters */
2506 if ((pInBuffer == NULL) || (pOutBuffer == NULL))
2507 {
2508 hhash->State = HAL_HASH_STATE_READY;
2509 return HAL_ERROR;
2510 }
2511
2512 /* Process Locked */
2513 __HAL_LOCK(hhash);
2514
2515 /* Check if initialization phase has not been already performed */
2516 if (hhash->Phase == HAL_HASH_PHASE_READY)
2517 {
2518 /* Change the HASH state */
2519 hhash->State = HAL_HASH_STATE_BUSY;
2520
2521 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2522 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2523
2524 /* Configure the number of valid bits in last word of the message */
2525 __HAL_HASH_SET_NBVALIDBITS(Size);
2526
2527 /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2528 input parameters of HASH_WriteData() */
2529 pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
2530 Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
2531
2532 /* Set the phase */
2533 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2534 }
2535 else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
2536 {
2537 /* if the Peripheral has already been initialized, two cases are possible */
2538
2539 /* Process resumption time ... */
2540 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2541 {
2542 /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2543 to the API input parameters but to those saved beforehand by HASH_WriteData()
2544 when the processing was suspended */
2545 pInBuffer_tmp = hhash->pHashInBuffPtr;
2546 Size_tmp = hhash->HashInCount;
2547 }
2548 /* ... or multi-buffer HASH processing end */
2549 else
2550 {
2551 /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2552 input parameters of HASH_WriteData() */
2553 pInBuffer_tmp = pInBuffer;
2554 Size_tmp = Size;
2555 /* Configure the number of valid bits in last word of the message */
2556 __HAL_HASH_SET_NBVALIDBITS(Size);
2557 }
2558 /* Change the HASH state */
2559 hhash->State = HAL_HASH_STATE_BUSY;
2560 }
2561 else
2562 {
2563 /* Phase error */
2564 hhash->State = HAL_HASH_STATE_READY;
2565
2566 /* Process Unlocked */
2567 __HAL_UNLOCK(hhash);
2568
2569 /* Return function status */
2570 return HAL_ERROR;
2571 }
2572
2573
2574 /* Write input buffer in Data register */
2575 hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2576 if (hhash->Status != HAL_OK)
2577 {
2578 return hhash->Status;
2579 }
2580
2581 /* If the process has not been suspended, carry on to digest calculation */
2582 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2583 {
2584 /* Start the Digest calculation */
2585 __HAL_HASH_START_DIGEST();
2586
2587 /* Wait for DCIS flag to be set */
2588 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2589 {
2590 return HAL_TIMEOUT;
2591 }
2592
2593 /* Read the message digest */
2594 HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
2595
2596 /* Change the HASH state */
2597 hhash->State = HAL_HASH_STATE_READY;
2598
2599 /* Reset HASH state machine */
2600 hhash->Phase = HAL_HASH_PHASE_READY;
2601
2602 }
2603
2604 /* Process Unlocked */
2605 __HAL_UNLOCK(hhash);
2606
2607 /* Return function status */
2608 return HAL_OK;
2609
2610 }
2611 else
2612 {
2613 return HAL_BUSY;
2614 }
2615 }
2616
2617
2618 /**
2619 * @brief If not already done, initialize the HASH peripheral then
2620 * processes pInBuffer.
2621 * @note Field hhash->Phase of HASH handle is tested to check whether or not
2622 * the Peripheral has already been initialized.
2623 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2624 * HASH digest computation is corrupted.
2625 * @param hhash HASH handle.
2626 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2627 * @param Size length of the input buffer in bytes, must be a multiple of 4.
2628 * @param Algorithm HASH algorithm.
2629 * @retval HAL status
2630 */
HASH_Accumulate(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2631 HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2632 {
2633 uint8_t *pInBuffer_tmp; /* input data address, input parameter of HASH_WriteData() */
2634 uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2635 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2636
2637 /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2638 if ((Size % 4U) != 0U)
2639 {
2640 return HAL_ERROR;
2641 }
2642
2643 /* Initiate HASH processing in case of start or resumption */
2644 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2645 {
2646 /* Check input parameters */
2647 if ((pInBuffer == NULL) || (Size == 0U))
2648 {
2649 hhash->State = HAL_HASH_STATE_READY;
2650 return HAL_ERROR;
2651 }
2652
2653 /* Process Locked */
2654 __HAL_LOCK(hhash);
2655
2656 /* If resuming the HASH processing */
2657 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2658 {
2659 /* Change the HASH state */
2660 hhash->State = HAL_HASH_STATE_BUSY;
2661
2662 /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2663 to the API input parameters but to those saved beforehand by HASH_WriteData()
2664 when the processing was suspended */
2665 pInBuffer_tmp = hhash->pHashInBuffPtr; /* pInBuffer_tmp is set to the input data address */
2666 Size_tmp = hhash->HashInCount; /* Size_tmp contains the input data size in bytes */
2667
2668 }
2669 else
2670 {
2671 /* Change the HASH state */
2672 hhash->State = HAL_HASH_STATE_BUSY;
2673
2674 /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2675 input parameters of HASH_WriteData() */
2676 pInBuffer_tmp = pInBuffer; /* pInBuffer_tmp is set to the input data address */
2677 Size_tmp = Size; /* Size_tmp contains the input data size in bytes */
2678
2679 /* Check if initialization phase has already be performed */
2680 if (hhash->Phase == HAL_HASH_PHASE_READY)
2681 {
2682 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2683 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2684 }
2685
2686 /* Set the phase */
2687 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2688
2689 }
2690
2691 /* Write input buffer in Data register */
2692 hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2693 if (hhash->Status != HAL_OK)
2694 {
2695 return hhash->Status;
2696 }
2697
2698 /* If the process has not been suspended, move the state to Ready */
2699 if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2700 {
2701 /* Change the HASH state */
2702 hhash->State = HAL_HASH_STATE_READY;
2703 }
2704
2705 /* Process Unlocked */
2706 __HAL_UNLOCK(hhash);
2707
2708 /* Return function status */
2709 return HAL_OK;
2710
2711 }
2712 else
2713 {
2714 return HAL_BUSY;
2715 }
2716
2717
2718 }
2719
2720
2721 /**
2722 * @brief If not already done, initialize the HASH peripheral then
2723 * processes pInBuffer in interruption mode.
2724 * @note Field hhash->Phase of HASH handle is tested to check whether or not
2725 * the Peripheral has already been initialized.
2726 * @note The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2727 * HASH digest computation is corrupted.
2728 * @param hhash HASH handle.
2729 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2730 * @param Size length of the input buffer in bytes, must be a multiple of 4.
2731 * @param Algorithm HASH algorithm.
2732 * @retval HAL status
2733 */
HASH_Accumulate_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2734 HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2735 {
2736 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2737 __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2738 uint32_t SizeVar = Size;
2739
2740 /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2741 if ((Size % 4U) != 0U)
2742 {
2743 return HAL_ERROR;
2744 }
2745
2746 /* Initiate HASH processing in case of start or resumption */
2747 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2748 {
2749 /* Check input parameters */
2750 if ((pInBuffer == NULL) || (Size == 0U))
2751 {
2752 hhash->State = HAL_HASH_STATE_READY;
2753 return HAL_ERROR;
2754 }
2755
2756 /* Process Locked */
2757 __HAL_LOCK(hhash);
2758
2759 /* If resuming the HASH processing */
2760 if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2761 {
2762 /* Change the HASH state */
2763 hhash->State = HAL_HASH_STATE_BUSY;
2764 }
2765 else
2766 {
2767 /* Change the HASH state */
2768 hhash->State = HAL_HASH_STATE_BUSY;
2769
2770 /* Check if initialization phase has already be performed */
2771 if (hhash->Phase == HAL_HASH_PHASE_READY)
2772 {
2773 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2774 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2775 hhash->HashITCounter = 1;
2776 }
2777 else
2778 {
2779 hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2780 }
2781
2782 /* Set the phase */
2783 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2784
2785 /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2786 fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2787 Therefore, first words are manually entered until DINIS raises, or until there
2788 is not more data to enter. */
2789 while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
2790 {
2791
2792 /* Write input data 4 bytes at a time */
2793 HASH->DIN = *(uint32_t *)inputaddr;
2794 inputaddr += 4U;
2795 SizeVar -= 4U;
2796 }
2797
2798 /* If DINIS is still not set or if all the data have been fed, stop here */
2799 if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
2800 {
2801 /* Change the HASH state */
2802 hhash->State = HAL_HASH_STATE_READY;
2803
2804 /* Process Unlock */
2805 __HAL_UNLOCK(hhash);
2806
2807 /* Return function status */
2808 return HAL_OK;
2809 }
2810
2811 /* otherwise, carry on in interrupt-mode */
2812 hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
2813 to be fed to the Peripheral */
2814 hhash->pHashInBuffPtr = (uint8_t *)inputaddr; /* Points at data which will be fed to the Peripheral at
2815 the next interruption */
2816 /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2817 the information describing where the HASH process is stopped.
2818 These variables are used later on to resume the HASH processing at the
2819 correct location. */
2820
2821 }
2822
2823 /* Set multi buffers accumulation flag */
2824 hhash->Accumulation = 1U;
2825
2826 /* Process Unlock */
2827 __HAL_UNLOCK(hhash);
2828
2829 /* Enable Data Input interrupt */
2830 __HAL_HASH_ENABLE_IT(HASH_IT_DINI);
2831
2832 /* Return function status */
2833 return HAL_OK;
2834
2835 }
2836 else
2837 {
2838 return HAL_BUSY;
2839 }
2840
2841 }
2842
2843
2844
2845 /**
2846 * @brief Initialize the HASH peripheral, next process pInBuffer then
2847 * read the computed digest in interruption mode.
2848 * @note Digest is available in pOutBuffer.
2849 * @param hhash HASH handle.
2850 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
2851 * @param Size length of the input buffer in bytes.
2852 * @param pOutBuffer pointer to the computed digest.
2853 * @param Algorithm HASH algorithm.
2854 * @retval HAL status
2855 */
HASH_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)2856 HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2857 uint32_t Algorithm)
2858 {
2859 HAL_HASH_StateTypeDef State_tmp = hhash->State;
2860 __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2861 uint32_t polling_step = 0U;
2862 uint32_t initialization_skipped = 0U;
2863 uint32_t SizeVar = Size;
2864
2865 /* If State is ready or suspended, start or resume IT-based HASH processing */
2866 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2867 {
2868 /* Check input parameters */
2869 if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
2870 {
2871 hhash->State = HAL_HASH_STATE_READY;
2872 return HAL_ERROR;
2873 }
2874
2875 /* Process Locked */
2876 __HAL_LOCK(hhash);
2877
2878 /* Change the HASH state */
2879 hhash->State = HAL_HASH_STATE_BUSY;
2880
2881 /* Initialize IT counter */
2882 hhash->HashITCounter = 1;
2883
2884 /* Check if initialization phase has already be performed */
2885 if (hhash->Phase == HAL_HASH_PHASE_READY)
2886 {
2887 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2888 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2889
2890 /* Configure the number of valid bits in last word of the message */
2891 __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2892
2893
2894 hhash->HashInCount = SizeVar; /* Counter used to keep track of number of data
2895 to be fed to the Peripheral */
2896 hhash->pHashInBuffPtr = pInBuffer; /* Points at data which will be fed to the Peripheral at
2897 the next interruption */
2898 /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2899 the information describing where the HASH process is stopped.
2900 These variables are used later on to resume the HASH processing at the
2901 correct location. */
2902
2903 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2904 }
2905 else
2906 {
2907 initialization_skipped = 1; /* info user later on in case of multi-buffer */
2908 }
2909
2910 /* Set the phase */
2911 hhash->Phase = HAL_HASH_PHASE_PROCESS;
2912
2913 /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2914 fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2915 Therefore, first words are manually entered until DINIS raises. */
2916 while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
2917 {
2918 polling_step = 1U; /* note that some words are entered before enabling the interrupt */
2919
2920 /* Write input data 4 bytes at a time */
2921 HASH->DIN = *(uint32_t *)inputaddr;
2922 inputaddr += 4U;
2923 SizeVar -= 4U;
2924 }
2925
2926 if (polling_step == 1U)
2927 {
2928 if (SizeVar == 0U)
2929 {
2930 /* If all the data have been entered at this point, it only remains to
2931 read the digest */
2932 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2933
2934 /* Start the Digest calculation */
2935 __HAL_HASH_START_DIGEST();
2936 /* Process Unlock */
2937 __HAL_UNLOCK(hhash);
2938
2939 /* Enable Interrupts */
2940 __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2941
2942 /* Return function status */
2943 return HAL_OK;
2944 }
2945 else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2946 {
2947 /* It remains data to enter and the Peripheral is ready to trigger DINIE,
2948 carry on as usual.
2949 Update HashInCount and pHashInBuffPtr accordingly. */
2950 hhash->HashInCount = SizeVar;
2951 hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
2952 /* Update the configuration of the number of valid bits in last word of the message */
2953 __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2954 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2955 if (initialization_skipped == 1U)
2956 {
2957 hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2958 }
2959 }
2960 else
2961 {
2962 /* DINIS is not set but it remains a few data to enter (not enough for a full word).
2963 Manually enter the last bytes before enabling DCIE. */
2964 __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2965 HASH->DIN = *(uint32_t *)inputaddr;
2966
2967 /* Start the Digest calculation */
2968 hhash->pHashOutBuffPtr = pOutBuffer; /* Points at the computed digest */
2969 __HAL_HASH_START_DIGEST();
2970 /* Process Unlock */
2971 __HAL_UNLOCK(hhash);
2972
2973 /* Enable Interrupts */
2974 __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2975
2976 /* Return function status */
2977 return HAL_OK;
2978 }
2979 } /* if (polling_step == 1) */
2980
2981
2982 /* Process Unlock */
2983 __HAL_UNLOCK(hhash);
2984
2985 /* Enable Interrupts */
2986 __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2987
2988 /* Return function status */
2989 return HAL_OK;
2990 }
2991 else
2992 {
2993 return HAL_BUSY;
2994 }
2995
2996 }
2997
2998
2999 /**
3000 * @brief Initialize the HASH peripheral then initiate a DMA transfer
3001 * to feed the input buffer to the Peripheral.
3002 * @note If MDMAT bit is set before calling this function (multi-buffer
3003 * HASH processing case), the input buffer size (in bytes) must be
3004 * a multiple of 4 otherwise, the HASH digest computation is corrupted.
3005 * For the processing of the last buffer of the thread, MDMAT bit must
3006 * be reset and the buffer length (in bytes) doesn't have to be a
3007 * multiple of 4.
3008 * @param hhash HASH handle.
3009 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3010 * @param Size length of the input buffer in bytes.
3011 * @param Algorithm HASH algorithm.
3012 * @retval HAL status
3013 */
HASH_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3014 HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3015 {
3016 uint32_t inputaddr;
3017 uint32_t inputSize;
3018 HAL_StatusTypeDef status ;
3019 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3020
3021
3022 /* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
3023 (case of multi-buffer HASH processing) */
3024 assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
3025
3026 /* If State is ready or suspended, start or resume polling-based HASH processing */
3027 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3028 {
3029 /* Check input parameters */
3030 if ((pInBuffer == NULL) || (Size == 0U) ||
3031 /* Check phase coherency. Phase must be
3032 either READY (fresh start)
3033 or PROCESS (multi-buffer HASH management) */
3034 ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
3035 {
3036 hhash->State = HAL_HASH_STATE_READY;
3037 return HAL_ERROR;
3038 }
3039
3040
3041 /* Process Locked */
3042 __HAL_LOCK(hhash);
3043
3044 /* If not a resumption case */
3045 if (hhash->State == HAL_HASH_STATE_READY)
3046 {
3047 /* Change the HASH state */
3048 hhash->State = HAL_HASH_STATE_BUSY;
3049
3050 /* Check if initialization phase has already been performed.
3051 If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
3052 API is processing a new input data message in case of multi-buffer HASH
3053 computation. */
3054 if (hhash->Phase == HAL_HASH_PHASE_READY)
3055 {
3056 /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
3057 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
3058
3059 /* Set the phase */
3060 hhash->Phase = HAL_HASH_PHASE_PROCESS;
3061 }
3062
3063 /* Configure the Number of valid bits in last word of the message */
3064 __HAL_HASH_SET_NBVALIDBITS(Size);
3065
3066 inputaddr = (uint32_t)pInBuffer; /* DMA transfer start address */
3067 inputSize = Size; /* DMA transfer size (in bytes) */
3068
3069 /* In case of suspension request, save the starting parameters */
3070 hhash->pHashInBuffPtr = pInBuffer; /* DMA transfer start address */
3071 hhash->HashInCount = Size; /* DMA transfer size (in bytes) */
3072
3073 }
3074 /* If resumption case */
3075 else
3076 {
3077 /* Change the HASH state */
3078 hhash->State = HAL_HASH_STATE_BUSY;
3079
3080 /* Resumption case, inputaddr and inputSize are not set to the API input parameters
3081 but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3082 processing was suspended */
3083 inputaddr = (uint32_t)hhash->pHashInBuffPtr; /* DMA transfer start address */
3084 inputSize = hhash->HashInCount; /* DMA transfer size (in bytes) */
3085
3086 }
3087
3088 /* Set the HASH DMA transfer complete callback */
3089 hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3090 /* Set the DMA error callback */
3091 hhash->hdmain->XferErrorCallback = HASH_DMAError;
3092
3093 /* Store number of words already pushed to manage proper DMA processing suspension */
3094 hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3095
3096 /* Enable the DMA In DMA stream */
3097 status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3098 (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) : \
3099 (inputSize / 4U)));
3100
3101 /* Enable DMA requests */
3102 SET_BIT(HASH->CR, HASH_CR_DMAE);
3103
3104 /* Process Unlock */
3105 __HAL_UNLOCK(hhash);
3106
3107 /* Return function status */
3108 if (status != HAL_OK)
3109 {
3110 /* Update HASH state machine to error */
3111 hhash->State = HAL_HASH_STATE_ERROR;
3112 }
3113
3114 return status;
3115 }
3116 else
3117 {
3118 return HAL_BUSY;
3119 }
3120 }
3121
3122 /**
3123 * @brief Return the computed digest.
3124 * @note The API waits for DCIS to be set then reads the computed digest.
3125 * @param hhash HASH handle.
3126 * @param pOutBuffer pointer to the computed digest.
3127 * @param Timeout Timeout value.
3128 * @retval HAL status
3129 */
HASH_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)3130 HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
3131 {
3132
3133 if (hhash->State == HAL_HASH_STATE_READY)
3134 {
3135 /* Check parameter */
3136 if (pOutBuffer == NULL)
3137 {
3138 return HAL_ERROR;
3139 }
3140
3141 /* Process Locked */
3142 __HAL_LOCK(hhash);
3143
3144 /* Change the HASH state to busy */
3145 hhash->State = HAL_HASH_STATE_BUSY;
3146
3147 /* Wait for DCIS flag to be set */
3148 if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
3149 {
3150 return HAL_TIMEOUT;
3151 }
3152
3153 /* Read the message digest */
3154 HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
3155
3156 /* Change the HASH state to ready */
3157 hhash->State = HAL_HASH_STATE_READY;
3158
3159 /* Reset HASH state machine */
3160 hhash->Phase = HAL_HASH_PHASE_READY;
3161
3162 /* Process UnLock */
3163 __HAL_UNLOCK(hhash);
3164
3165 /* Return function status */
3166 return HAL_OK;
3167
3168 }
3169 else
3170 {
3171 return HAL_BUSY;
3172 }
3173
3174 }
3175
3176
3177 /**
3178 * @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3179 * read the computed digest.
3180 * @note Digest is available in pOutBuffer.
3181 * @note Same key is used for the inner and the outer hash functions; pointer to key and
3182 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3183 * @param hhash HASH handle.
3184 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3185 * @param Size length of the input buffer in bytes.
3186 * @param pOutBuffer pointer to the computed digest.
3187 * @param Timeout Timeout value.
3188 * @param Algorithm HASH algorithm.
3189 * @retval HAL status
3190 */
HMAC_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)3191 HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3192 uint32_t Timeout, uint32_t Algorithm)
3193 {
3194 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3195
3196 /* If State is ready or suspended, start or resume polling-based HASH processing */
3197 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3198 {
3199 /* Check input parameters */
3200 if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3201 || (pOutBuffer == NULL))
3202 {
3203 hhash->State = HAL_HASH_STATE_READY;
3204 return HAL_ERROR;
3205 }
3206
3207 /* Process Locked */
3208 __HAL_LOCK(hhash);
3209
3210 /* Change the HASH state */
3211 hhash->State = HAL_HASH_STATE_BUSY;
3212
3213 /* Check if initialization phase has already be performed */
3214 if (hhash->Phase == HAL_HASH_PHASE_READY)
3215 {
3216 /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3217 if (hhash->Init.KeySize > 64U)
3218 {
3219 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3220 Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3221 }
3222 else
3223 {
3224 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3225 Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3226 }
3227 /* Set the phase to Step 1 */
3228 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3229 /* Resort to hhash internal fields to feed the Peripheral.
3230 Parameters will be updated in case of suspension to contain the proper
3231 information at resumption time. */
3232 hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
3233 hhash->pHashInBuffPtr = pInBuffer; /* Input data address, HMAC_Processing input
3234 parameter for Step 2 */
3235 hhash->HashInCount = Size; /* Input data size, HMAC_Processing input
3236 parameter for Step 2 */
3237 hhash->HashBuffSize = Size; /* Store the input buffer size for the whole HMAC process*/
3238 hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address, HMAC_Processing input parameter for Step
3239 1 and Step 3 */
3240 hhash->HashKeyCount = hhash->Init.KeySize; /* Key size, HMAC_Processing input parameter for Step 1
3241 and Step 3 */
3242 }
3243
3244 /* Carry out HMAC processing */
3245 return HMAC_Processing(hhash, Timeout);
3246
3247 }
3248 else
3249 {
3250 return HAL_BUSY;
3251 }
3252 }
3253
3254
3255
3256 /**
3257 * @brief Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3258 * read the computed digest in interruption mode.
3259 * @note Digest is available in pOutBuffer.
3260 * @note Same key is used for the inner and the outer hash functions; pointer to key and
3261 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3262 * @param hhash HASH handle.
3263 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3264 * @param Size length of the input buffer in bytes.
3265 * @param pOutBuffer pointer to the computed digest.
3266 * @param Algorithm HASH algorithm.
3267 * @retval HAL status
3268 */
HMAC_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)3269 HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3270 uint32_t Algorithm)
3271 {
3272 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3273
3274 /* If State is ready or suspended, start or resume IT-based HASH processing */
3275 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3276 {
3277 /* Check input parameters */
3278 if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3279 || (pOutBuffer == NULL))
3280 {
3281 hhash->State = HAL_HASH_STATE_READY;
3282 return HAL_ERROR;
3283 }
3284
3285 /* Process Locked */
3286 __HAL_LOCK(hhash);
3287
3288 /* Change the HASH state */
3289 hhash->State = HAL_HASH_STATE_BUSY;
3290
3291 /* Initialize IT counter */
3292 hhash->HashITCounter = 1;
3293
3294 /* Check if initialization phase has already be performed */
3295 if (hhash->Phase == HAL_HASH_PHASE_READY)
3296 {
3297 /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3298 if (hhash->Init.KeySize > 64U)
3299 {
3300 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3301 Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3302 }
3303 else
3304 {
3305 MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3306 Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3307 }
3308
3309 /* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
3310 to feed the Peripheral whatever the HMAC step.
3311 Lines below are set to start HMAC Step 1 processing where key is entered first. */
3312 hhash->HashInCount = hhash->Init.KeySize; /* Key size */
3313 hhash->pHashInBuffPtr = hhash->Init.pKey ; /* Key address */
3314
3315 /* Store input and output parameters in handle fields to manage steps transition
3316 or possible HMAC suspension/resumption */
3317 hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
3318 hhash->pHashMsgBuffPtr = pInBuffer; /* Input message address */
3319 hhash->HashBuffSize = Size; /* Input message size (in bytes) */
3320 hhash->pHashOutBuffPtr = pOutBuffer; /* Output digest address */
3321
3322 /* Configure the number of valid bits in last word of the key */
3323 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3324
3325 /* Set the phase to Step 1 */
3326 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3327 }
3328 else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
3329 {
3330 /* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
3331
3332 }
3333 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3334 {
3335 /* Restart IT-based HASH processing after Step 2 suspension */
3336
3337 }
3338 else
3339 {
3340 /* Error report as phase incorrect */
3341 /* Process Unlock */
3342 __HAL_UNLOCK(hhash);
3343 hhash->State = HAL_HASH_STATE_READY;
3344 return HAL_ERROR;
3345 }
3346
3347 /* Process Unlock */
3348 __HAL_UNLOCK(hhash);
3349
3350 /* Enable Interrupts */
3351 __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
3352
3353 /* Return function status */
3354 return HAL_OK;
3355 }
3356 else
3357 {
3358 return HAL_BUSY;
3359 }
3360
3361 }
3362
3363
3364
3365 /**
3366 * @brief Initialize the HASH peripheral in HMAC mode then initiate the required
3367 * DMA transfers to feed the key and the input buffer to the Peripheral.
3368 * @note Same key is used for the inner and the outer hash functions; pointer to key and
3369 * key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3370 * @note In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
3371 * be a multiple of 4 otherwise, the HASH digest computation is corrupted.
3372 * Only the length of the last buffer of the thread doesn't have to be a
3373 * multiple of 4.
3374 * @param hhash HASH handle.
3375 * @param pInBuffer pointer to the input buffer (buffer to be hashed).
3376 * @param Size length of the input buffer in bytes.
3377 * @param Algorithm HASH algorithm.
3378 * @retval HAL status
3379 */
HMAC_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3380 HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3381 {
3382 uint32_t inputaddr;
3383 uint32_t inputSize;
3384 HAL_StatusTypeDef status ;
3385 HAL_HASH_StateTypeDef State_tmp = hhash->State;
3386 /* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
3387 is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
3388 assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
3389 /* If State is ready or suspended, start or resume DMA-based HASH processing */
3390 if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3391 {
3392 /* Check input parameters */
3393 if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
3394 /* Check phase coherency. Phase must be
3395 either READY (fresh start)
3396 or one of HMAC PROCESS steps (multi-buffer HASH management) */
3397 ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
3398 {
3399 hhash->State = HAL_HASH_STATE_READY;
3400 return HAL_ERROR;
3401 }
3402
3403
3404 /* Process Locked */
3405 __HAL_LOCK(hhash);
3406
3407 /* If not a case of resumption after suspension */
3408 if (hhash->State == HAL_HASH_STATE_READY)
3409 {
3410 /* Check whether or not initialization phase has already be performed */
3411 if (hhash->Phase == HAL_HASH_PHASE_READY)
3412 {
3413 /* Change the HASH state */
3414 hhash->State = HAL_HASH_STATE_BUSY;
3415 /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
3416 At the same time, ensure MDMAT bit is cleared. */
3417 if (hhash->Init.KeySize > 64U)
3418 {
3419 MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3420 Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3421 }
3422 else
3423 {
3424 MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3425 Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3426 }
3427 /* Store input aparameters in handle fields to manage steps transition
3428 or possible HMAC suspension/resumption */
3429 hhash->HashInCount = hhash->Init.KeySize; /* Initial size for first DMA transfer (key size) */
3430 hhash->pHashKeyBuffPtr = hhash->Init.pKey; /* Key address */
3431 hhash->pHashInBuffPtr = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
3432 hhash->pHashMsgBuffPtr = pInBuffer; /* Input data address */
3433 hhash->HashBuffSize = Size; /* input data size (in bytes) */
3434
3435 /* Set DMA input parameters */
3436 inputaddr = (uint32_t)(hhash->Init.pKey); /* Address passed to DMA (start by entering Key message) */
3437 inputSize = hhash->Init.KeySize; /* Size for first DMA transfer (in bytes) */
3438
3439 /* Configure the number of valid bits in last word of the key */
3440 __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3441
3442 /* Set the phase to Step 1 */
3443 hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3444
3445 }
3446 else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3447 {
3448 /* Process a new input data message in case of multi-buffer HMAC processing
3449 (this is not a resumption case) */
3450
3451 /* Change the HASH state */
3452 hhash->State = HAL_HASH_STATE_BUSY;
3453
3454 /* Save input parameters to be able to manage possible suspension/resumption */
3455 hhash->HashInCount = Size; /* Input message address */
3456 hhash->pHashInBuffPtr = pInBuffer; /* Input message size in bytes */
3457
3458 /* Set DMA input parameters */
3459 inputaddr = (uint32_t)pInBuffer; /* Input message address */
3460 inputSize = Size; /* Input message size in bytes */
3461
3462 if (hhash->DigestCalculationDisable == RESET)
3463 {
3464 /* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
3465 __HAL_HASH_RESET_MDMAT();
3466 __HAL_HASH_SET_NBVALIDBITS(inputSize);
3467 }
3468 }
3469 else
3470 {
3471 /* Phase not aligned with handle READY state */
3472 __HAL_UNLOCK(hhash);
3473 /* Return function status */
3474 return HAL_ERROR;
3475 }
3476 }
3477 else
3478 {
3479 /* Resumption case (phase may be Step 1, 2 or 3) */
3480
3481 /* Change the HASH state */
3482 hhash->State = HAL_HASH_STATE_BUSY;
3483
3484 /* Set DMA input parameters at resumption location;
3485 inputaddr and inputSize are not set to the API input parameters
3486 but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3487 processing was suspended. */
3488 inputaddr = (uint32_t)(hhash->pHashInBuffPtr); /* Input message address */
3489 inputSize = hhash->HashInCount; /* Input message size in bytes */
3490 }
3491
3492
3493 /* Set the HASH DMA transfer complete callback */
3494 hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3495 /* Set the DMA error callback */
3496 hhash->hdmain->XferErrorCallback = HASH_DMAError;
3497
3498 /* Store number of words already pushed to manage proper DMA processing suspension */
3499 hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3500
3501 /* Enable the DMA In DMA stream */
3502 status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3503 (((inputSize % 4U) != 0U) ? ((inputSize + (4U - (inputSize % 4U))) / 4U) \
3504 : (inputSize / 4U)));
3505
3506 /* Enable DMA requests */
3507 SET_BIT(HASH->CR, HASH_CR_DMAE);
3508
3509 /* Process Unlocked */
3510 __HAL_UNLOCK(hhash);
3511
3512 /* Return function status */
3513 if (status != HAL_OK)
3514 {
3515 /* Update HASH state machine to error */
3516 hhash->State = HAL_HASH_STATE_ERROR;
3517 }
3518
3519 /* Return function status */
3520 return status;
3521 }
3522 else
3523 {
3524 return HAL_BUSY;
3525 }
3526 }
3527 /**
3528 * @}
3529 */
3530
3531 #endif /* HAL_HASH_MODULE_ENABLED */
3532
3533 /**
3534 * @}
3535 */
3536 #endif /* HASH*/
3537 /**
3538 * @}
3539 */
3540
3541